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Abstract

Let G be a permutation group on n <∞ objects. Let f(g) be the number of fixed points of g ∈ G, and let
{f(g) : 1 6= g ∈ G} = {f1, . . . , fr}. In this expository note we give a character-free proof of a theorem of
Blichfeldt which asserts that the order of G divides (n − f1) . . . (n − fr). We also discuss the sharpness of
this bound.
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Let us consider a permutation group G on a finite set Ω consisting of n elements. By Lagrange’s Theorem
applied to the symmetric group on Ω, it follows that the order |G| of G is a divisor of n!. In order to strengthen
this divisibility relation we denote the number of fixed points of a subgroup H ≤ G on Ω by f(H). Moreover,
let f(g) := f(〈g〉) for every g ∈ G. In 1895, Maillet [11] proved the following (see also Cameron’s book [4,
p. 172]).

Theorem 1 (Maillet). Let {f(H) : 1 6= H ≤ G} = {f1, . . . , fr}. Then |G| divides (n− f1) . . . (n− fr).

Using the newly established character theory of finite groups, Blichfeldt [1] showed in 1904 that it suffices to
consider cyclic subgroups H in Maillet’s Theorem (this was rediscovered by Kiyota [10]).

Theorem 2 (Blichfeldt). Let {f(g) : 1 6= g ∈ G} = {f1, . . . , fr}. Then |G| divides (n− f1) . . . (n− fr).

For the convenience of the reader we present the elegant argument which can be found in [4, Theorem 6.5].

Proof of Blichfeldt’s Theorem. Since f is the permutation character, the function ψ sending g ∈ G to (f(g) −
f1) . . . (f(g)− fr) is a generalized character of G (i. e. a difference of ordinary complex characters). From

ψ(g) =

{
(n− f1) . . . (n− fr) if g = 1,

0 if g 6= 1

we conclude that ψ is a multiple of the regular character ρ of G. In particular, ρ(1) = |G| divides ψ(1) =
(n− f1) . . . (n− fr).

It seems that no elementary proof (avoiding character theory) of Blichfeldt’s Theorem has been published so
far. The aim of this note is to provide such a proof.

Character-free proof of Blichfeldt’s Theorem. It suffices to show that

1

|G|
∑
g∈G

(f(g)− f1) . . . (f(g)− fr) ∈ Z,
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since all summands with g 6= 1 vanish. Expanding the product we see that it is enough to prove

Fk(G) :=
1

|G|
∑
g∈G

f(g)k ∈ Z

for k ≥ 0. Obviously, F0(G) = 1. Arguing by induction on k we may assume that Fk−1(H) ∈ Z for all H ≤ G.
Let ∆1, . . . ,∆s be the orbits of G on Ω, and let ωi ∈ ∆i for i = 1, . . . , s. For ω ∈ ∆i the stabilizers Gω and
Gωi

are conjugate in G. In particular, Fk−1(Gω) = Fk−1(Gωi
). Recall that the orbit stabilizer theorem gives us

|∆i| = |G : Gωi | for i = 1, . . . , s. This implies

Fk(G) =
1

|G|
∑
ω∈Ω

∑
g∈Gω

f(g)k−1 =
1

|G|
∑
ω∈Ω

|Gω|Fk−1(Gω) =
1

|G|

s∑
i=1

∑
ω∈∆i

|Gω|Fk−1(Gω)

=
1

|G|

s∑
i=1

|∆i||Gωi
|Fk−1(Gωi

) =
1

|G|

s∑
i=1

|G : Gωi
||Gωi

|Fk−1(Gωi
) =

s∑
i=1

Fk−1(Gωi
) ∈ Z.

As a byproduct of the proof we observe that F1(G) is the number of orbits of G. This is a well-known formula
sometimes (inaccurately) called Burnside’s Lemma (see [13]). If there is only one orbit, the group is called
transitive. In this case, F2(G) is the rank of G, i. e. the number of orbits of any one-point stabilizer.

It is known that Blichfeldt’s Theorem can be improved by considering only the fixed point numbers of non-trivial
elements of prime power order. This can be seen as follows. Let Sp be a Sylow p-subgroup of G for every prime
divisor p of |G|. Since

{f(g) : 1 6= g ∈ Sp} ⊆ {f(g) : 1 6= g ∈ G has prime power order} = {f1, . . . , fr},

Theorem 2 implies that |Sp| divides (n− f1) . . . (n− fr) for every p. Since the orders |Sp| are pairwise coprime,
also |G| =

∏
p |Sp| is a divisor of (n − f1) . . . (n − fr). On the other hand, it does not suffice to take the fixed

point numbers of the elements of prime order. An example is given by G = 〈(1, 2)(3, 4), (1, 3)(2, 4), (1, 2)(5, 6)〉.
This is a dihedral group of order 8 where every involution moves exactly four letters.

Cameron-Kiyota [5] (and independently Chillag [6]) obtained another generalization of Theorem 2 where f is
assumed to be any generalized character χ of G and n is replaced by its degree χ(1). A dual version for conjugacy
classes instead of characters appeared in Chillag [7].

Numerous articles addressed the question of equality in Blichfeldt’s Theorem. Easy examples are given by the
regular permutation groups. These are the transitive groups whose order coincides with the degree. In fact, by
Cayley’s Theorem every finite group is a regular permutation group acting on itself by multiplication. A wider
class of examples consists of the sharply k-transitive permutation groups G for 1 ≤ k ≤ n. Here, for every pair
of tuples (α1, . . . , αk), (β1, . . . , βk) ∈ Ωk with αi 6= αj and βi 6= βj for all i 6= j there exists a unique g ∈ G such
that αg

i = βi for i = 1, . . . , k. Setting αi = βi for all i, we see that any non-trivial element of G fixes less than
k points. Hence,

{f(g) : 1 6= g ∈ G} ⊆ {0, 1, . . . , k − 1}.

On the other hand, if (α1, . . . , αk) is fixed, then there are precisely n(n−1) . . . (n−k+1) choices for (β1, . . . , βk).
It follows that |G| = n(n − 1) . . . (n − k + 1). Therefore, we have equality in Theorem 2. Note that sharply 1-
transitive and regular are the same thing. An interesting family of sharply 2-transitive groups comes from the
affine groups

Aff(1, pm) = {ϕ : Fpm → Fpm | ∃a ∈ F×pm , b ∈ Fpm : ϕ(x) = ax+ b ∀x ∈ Fpm}

where Fpm is the field with pm elements. More generally, all sharply 2-transitive groups are Frobenius groups with
abelian kernel. By definition, a Frobenius group G is transitive and satisfies {f(g) : 1 6= g ∈ G} = {0, 1}. The
kernel K of G is the subset of fixed point free elements together with the identity. Frobenius Theorem asserts
that K is a (normal) subgroup of G. For the sharply 2-transitive groups this can be proved in an elementary
fashion (see [4, Exercise 1.16]), but so far no character-free proof of the full claim is known. The dihedral group
〈(1, 2, 3, 4, 5), (2, 5)(3, 4)〉 of order 10 illustrates that not every Frobenius group is sharply 2-transitive.
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A typical example of a sharply 3-transitive group is SL(2, 2m) with its natural action on the set of one-
dimensional subspaces of F2

2m . We leave this claim as an exercise for the interested reader. The sharply k-
transitive groups for k ∈ {2, 3} were eventually classified by Zassenhaus [16, 15] using near fields (see Passman’s
book [14, Theorems 20.3 and 20.5]). On the other hand, there are not many sharply k-transitive groups when
k is large. In fact, there is a classical theorem by Jordan [9] which was supplemented by Mathieu [12].

Theorem 3 (Jordan, Mathieu). The sharply k-transitive permutation groups with k ≥ 4 are given as follows:

(i) the symmetric group of degree n ≥ 4 (k ∈ {n, n− 1}),

(ii) the alternating group of degree n ≥ 6 (k = n− 2),

(iii) the Mathieu group of degree 11 (k = 4),

(iv) the Mathieu group of degree 12 (k = 5).

We remark that the Mathieu groups of degree 11 and 12 are the smallest members of the sporadic simple
groups.

In accordance with these examples, permutation groups with equality in Theorem 2 are now called sharp
permutation groups (this was coined by Ito-Kiyota [8]). Apart from the ones we have already seen, there are
more examples. For instance, the symmetry group of a square acting on the four vertices has order 8 (again a
dihedral group) and the non-trivial fixed point numbers are 0 and 2. Recently, Brozovic [3] gave a description
of the primitive sharp permutation groups G such that {f(g) : 1 6= g ∈ G} = {0, k} for some k ≥ 1. Here,
a permutation group is primitive if it is transitive and any one-point stabilizer is a maximal subgroup. The
complete classification of the sharp permutation groups is widely open.

Finally, we use the opportunity to mention a related result by Bochert [2] where the divisibility relation of |G|
is replaced by an inequality. As usual bxc denotes the largest integer less than or equal to x ∈ R.

Theorem 4 (Bochert). If G is primitive, then |G| ≤ n(n − 1) . . . (n − bn/2c + 1) unless G is the symmetric
group or the alternating group of degree n.
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