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Abstract

It is well known that the number of real irreducible characters of a finite group G coincides with
the number of real conjugacy classes of G. Richard Brauer has asked if the number of irreducible
characters with Frobenius–Schur indicator 1 can also be expressed in group theoretical terms. We
show that this can done by counting solutions of g21 . . . g2n = 1 with g1, . . . , gn ∈ G.
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1 Introduction

Since Brauer’s survey [2], there has been some interest in expressing representation theoretical invari-
ants of a finite group G in terms of group theoretical descriptions. The most basic observation of this
kind is probably that the number of irreducible characters of G equals the number of conjugacy classes
of G. In principle the whole character table of G is implicitly determined via the class multiplication
constants

|{(x, y) ∈ C ×D : xy = z}|,

where C,D,E are conjugacy classes and z ∈ E is fixed (this is the basis of the Dixon–Schneider
algorithm; see [5, Corollary 2.4.3]). It is often desirable to have more direct relations. Brauer was
particularly interested in the existence of p-defect zero characters, i. e. χ ∈ Irr(G) such that the degree
χ(1) is divisible by the p-part |G|p. Strunkov [13] (see also [7, Theorem 4.12]) showed that such
characters exist if and only if there exists g ∈ G such that p does not divide

|{(x, y) ∈ G2 : [x, y] = g}|,

where [x, y] = xyx−1y−1 denotes the commutator of x and y. Similar criteria were obtained by
Barker [1], Broué [3], Qian [8] and Shi [12]. Robinson [9] (see also [6, Theorem 4.20]) has expressed the
precise number of p-defect zero characters as the rank of a certain matrix defined in group theoretical
terms. This has answered Brauer’s Problem 19 of [2].

Brauer’s permutation lemma on the character table implies that the number of real irreducible charac-
ters coincides with the number of real conjugacy classes. Here, a conjugacy class C of G is called real if
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C = {x−1 : x ∈ C}. Brauer’s Problem 14 asks whether one can describe the number of characters which
arise from real irreducible representations (i. e. χ ∈ Irr(G) with Frobenius–Schur indicator ϵ(χ) = 1)
group theoretically. Note that this number is not encoded in the character table (compare D8 and Q8).
We answer this question positively as follows.

Theorem A. Let G be a finite group with kr(G) = | IrrR(G)| real conjugacy classes. Then the multiset
{χ(1)ϵ(χ) : χ ∈ IrrR(G)} is determined by the sequence

s(n) := |{(g1, . . . , gn) ∈ Gn : g21 . . . g
2
n = 1}|

for n = 1, . . . , kr(G) + 1. In particular, kr(G) = s(2)
|G| and the number of irreducible characters of G

with Frobenius–Schur indicator 1 can be described purely in group theoretical terms.

Robinson [10] has shown that the multiset of irreducible character degrees of G is determined by the
group theoretical sequence

|{(a1, b1, . . . , an, bn) ∈ G2n : [a1, b1] . . . [an, bn] = 1}| (n ∈ N).

He has shown further that the number of real characters of a given degree is computable from the
sequence {s(2n) : n = 1, . . . , |G|} where s(n) is as in Theorem A. Our result improves this.

2 Proofs

We start with a combinatorial lemma.

Lemma 1. Let a1, . . . , an ∈ C. Then the multiset {a1, . . . , an} is uniquely determined by the power
sums

∑n
i=1 a

k
i for k = 0, 1, . . . , n.

Proof. Let σ0 := 1, σ1, . . . , σn be the elementary symmetric functions in n variables. By the Girard–
Newton identities (see [11, Theorem 8.7]), the values σk(a1, . . . , an) can be computed from the power
sums. Hence, the polynomial

(X − a1) . . . (X − an) =
n∑

k=0

(−1)n−kσn−k(a1, . . . , an)X
k

is uniquely determined and so are its roots.

Remark: Suppose that a1, . . . , an are non-zero. Let ρk(a1, . . . , an) :=
∑n

i=1 a
k
i for k ∈ Z. With the

notation of the proof above, we have

σn(a1, . . . , an)ρ−1(a1, . . . , an) = a1 . . . an

n∑
i=1

a−1
i = σn−1(a1, . . . , an).

Hence, if ρ−1(a1, . . . , an) is known and non-zero, then ρn(a1, . . . , an) is not required to compute
a1, . . . , an. This will be used in the following proof.

Recall that the Frobenius–Schur indicator of χ ∈ Irr(G) is defined by

ϵ(χ) :=
1

|G|
∑
g∈G

χ(g2) ∈ {0, 1,−1}. (2.1)
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Proof of Theorem A. Consider S := 1
|G|

∑
g∈G g2 ∈ Z(CG). For a fixed n ∈ N we may write Sn =∑

g∈G αgg with αg ∈ Z for g ∈ G. Note that s(n) = α1|G|n. Let χ ∈ Irr(G). Recall that the function χ
χ(1)

extends to an algebra homomorphism ωχ : Z(CG) → C. By (2.1), ωχ(S) =
ϵ(χ)
χ(1) . By the orthogonality

relation,

s(n)

|G|n−1
=

∑
g∈G

αg

∑
χ∈Irr(G)

χ(g)χ(1) =
∑

χ∈Irr(G)

χ(1)2
∑
g∈G

ag
χ(g)

χ(1)

=
∑

χ∈Irr(G)

χ(1)2ωχ(S)
n =

∑
χ∈Irr(G)

ϵ(χ)n

χ(1)n−2
=

∑
χ∈IrrR(G)

( ϵ(χ)

χ(1)

)n−2

for every n ∈ N. In particular, s(2) = |G|kr(G). We apply Lemma 1 with the non-zero numbers
{a1, . . . , akr(G)} = {

ϵ(χ)
χ(1)

: χ ∈ IrrR(G)}. The power sums are given in terms of the s(n). By the remark
after Lemma 1, the multiset {χ(1)ϵ(χ) : χ ∈ IrrR(G)} is determined by s(n) for n = 1, . . . , kr(G) + 1
since s(1) > 0.

If all χ ∈ IrrR(G) have ϵ(χ) = 1, then the proof shows that s(n)
|G|n is a non-increasing sequence. Hence,

if there exists some (odd) n such that s(n)|G| < s(n+ 1), then some χ ∈ Irr(G) has ϵ(χ) = −1. This
criterion applies to the simple group G = PSU(3, 3) with n = 5 as one can check with GAP [4]. It
does not, however, apply to the McLaughlin group McL, which is the only sporadic group with some
ϵ(χ) = −1. In general it is easy to show that

lim
n→∞

s(n)

|G|n−1
= |G/N |

where N := ⟨g2 : g ∈ G⟩ is the smallest normal subgroup of G with elementary abelian 2-quotient.

Since kr(G) and s(2) are group theoretical invariants, one may ask if the equality kr(G)|G| = s(2)
from Theorem A can be proved without characters. To this end, let C be a real conjugacy class and
x ∈ C. Then there exist exactly |CG(x)| elements y ∈ G such that y−1xy = x−1. Now there are
|C||CG(x)| = |G| pairs (x, y) ∈ G2 such that y−1xy = x−1 and x ∈ C. Consequently, it suffices to
verify that the maps

{(x, y) ∈ G2 : y−1xy = x−1} ←→ {(g, h) ∈ G2 : g2h2 = 1},
(x, y) 7−→ (xy−1, y),

(gh, h)←− [ (g, h)

are mutually inverse bijections (we leave this to the reader).
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