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Abstract

We improve the Brauer-Feit bound on the number of irreducible characters in a p-block for abelian defect
groups by making use of [Halasi-Podoski, 2012] and [Kessar-Malle, 2011]. We also prove Brauer’s k(B)-
Conjecture for 2-blocks with abelian defect groups of rank at most 5 and 3-blocks and 5-blocks with abelian
defect groups of rank at most 3.
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1 Introduction

Let B be a p-block of a finite group G with defect d. Then the so-called k(B)-Conjecture proposed by Richard
Brauer in 1954 [1] asserts that the number k(B) of irreducible ordinary characters of B can be bounded by pd.
In 1959, Brauer and Feit [2] proved the following weaker bound.

Theorem (Brauer-Feit). If d > 2, then k(B) < p2d−2.

In this paper we are interested in the case where B has an abelian defect groupD. Brauer himself already verified
his conjecture if D is abelian of rank at most 2. For abelian defect groups of rank 3, he obtained k(B) < p5d/3

(see for example Theorem VII.10.13 in [4]; observe that < and ≤ are mixed up there).

In the first part of the paper we substantially improve the Brauer-Feit bound under the assumption that D is
abelian (see Theorem 1). Here we use a recent result by Halasi and Podoski [7] about large orbits under coprime
actions, and one implication of Brauer’s Height Zero Conjecture proved by Kessar and Malle [11]. In particular,
our result relies on the classification of the finite simple groups. At first sight one might think that the condition
on the defect group to be abelian is very restrictive. In fact, many open conjectures in modular representation
theory are hard to verify especially for abelian defect groups (see e. g. [10]).

In the second part we verify Brauer’s k(B)-Conjecture for abelian defect groups of small rank (and small primes
p). The proof makes use of results by Usami and Puig [22, 16, 15, 23] about perfect isometries, and a result by
Külshammer [12] about normal defect groups. We also take the opportunity to investigate “small” groups with
regular orbits via computer computations.

We denote the number of irreducible Brauer characters of B by l(B). Let us choose a Brauer correspondent
bD of B in DCG(D). Then the inertial quotient of B is given by I(B) := NG(D, bD)/DCG(D). Its order
e(B) := |I(B)| is the inertial index of B. For x ∈ D there is always a Brauer correspondent bx of B in CG(x).
The pair (x, bx) is called (B-)subsection. If x ∈ Z(D), then bx also has defect group D and one may choose
(bx)D = bD. It follows that I(bx) ∼= CI(B)(x). This fact will be used often.

We denote a cyclic group of order n ∈ N by Cn. For convenience we set Cmn := Cn × . . .× Cn (m factors).
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2 The Brauer-Feit bound for abelian defect groups

Theorem 1. Let B be a p-block of a finite group with abelian defect group of order pd > p. Then

k(B) < p3d/2−1/2. (1)

Proof. Let D be a defect group of B. By Corollary 1.2 in [7] there exist elements x, y ∈ D such that CI(B)(x)∩
CI(B)(y) = 1. Without loss of generality x 6= 1. Consider a B-subsection (x, bx). As usual, bx dominates a block
bx with defect group D := D/〈x〉 and I(bx) ∼= CI(B)(x) (see Theorem 5.8.11 in [13]). We write y := y〈x〉 ∈ D.
Choose a bx-subsection (y, βy) and α ∈ I(βy). We may regard α as an element of CI(B)(x). Hence, α acts
trivially on 〈x〉 and on 〈x, y〉/〈x〉. Since α is a p′-element, it must act trivially on 〈x, y〉 (see for example
Theorem 5.3.2 in [6]). This shows α = 1 and e(βy) = 1. Thus, bx satisfies the k(B)-Conjecture. In particular,
l(bx) = l(bx) < k(bx) ≤ |D| ≤ pd−1 (or l(bx) = k(bx) = 1 < pd−1). Since B has abelian defect groups, [11] shows
k(B) = k0(B). Now Theorem V.9.17(ii) in [4] implies

k(B) ≤ pd
√
l(bx) < p3d/2−1/2.

Robinson [18, Theorem 2.1(iii)] gave a proof of Eq. (1) under the hypothesis that p does not belong to a finite
set of primes which depends on the rank of D. For p = 2, Theorem 1 can be improved further by invoking
Theorem 2.4 in [19]. In special situations one may choose x ∈ D in the proof above such that the order of x
is large. We illustrate this by an example. Suppose D ∼= Cmpn for some n,m ∈ N. Then I(B) acts faithfully on
D/Φ(D). Thus, by [7] we may assume that x has order pn. Then Eq. (1) becomes k(B) ≤ p3d/2−n/2.

3 Abelian defect groups of small rank

Theorem 1 already improves Brauer’s bound for abelian defect groups of rank 3 (see Introduction). We give an
even better bound by using [11] only.

Proposition 2. Let B be a p-block of a finite group with abelian defect group of rank 3 and order pd. Then

k(B) < p4d/3.

Proof. Let D be a defect group of B, and let x ∈ D be an element of maximal order pc. Then for the B-
subsection (x, bx) the block bx dominates a block bx with defect group D/〈x〉 of rank 2. Hence, l(bx) = l(bx) <
k(bx) ≤ |D/〈x〉| = pd−c. Since D has rank 3, it follows that pd−c ≤ p2d/3. By [11], we have k(B) = k0(B). Thus,
Theorem V.9.17(ii) in [4] implies

k(B) ≤ pd
√
l(bx) < p4d/3.

In the following we improve Proposition 2 for small primes.

Lemma 3. Let D be an abelian p-group, let F be an algebraically closed field of characteristic p, and let
A ≤ Aut(D) a p′-group such that |A| ≤ 4 or A ∼= S3. Then for the Cartan matrix C = (cij) of F [D o A] there
exists a positive definite, integral quadratic form q =

∑
1≤i≤j≤k(A) qijxixj such that∑

1≤i≤j≤k(A)

qijcij ≤ |D|.

Proof. Let H := DoA. After going over to H/Z(H), we may assume Z(H) = 1 and A 6= 1. Now we determine
the decomposition matrix of FH by discussing the various isomorphism types of A. Assume first that |A| = 2.
The irreducible Brauer characters of H are just the inflations of H/D ∼= C2. Since D = [D,A] ⊆ H ′ ⊆ D (see
Theorem 5.2.3 in [6]), we see that H has just two linear characters. Hence, the character group D̂ := Irr(D) ∼= D
splits under the action of A into one orbit of length 1 (containing the trivial character) and (|D| − 1)/2 orbits
of length 2. We compute the irreducible (ordinary) characters of H via induction. The trivial character of
D extends to two irreducible characters of H whose rows in the decomposition matrix are (1, 0) and (0, 1).
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Inducing a character of D̂ which is not stable under A yields an irreducible character of H whose row in the
decomposition matrix is (1, 1). For χ ∈ Irr(H) we denote the corresponding row in the decomposition matrix
by rχ. Let q = x21 +x22−x1x2 the positive definite quadratic form corresponding to the Dynkin diagram of type
A2. Then we have ∑

1≤i≤j≤2

qijcij =
∑

χ∈Irr(H)

q(rχ) = k(H) ≤ |D|.

Here the last inequality holds by the affirmative solution of Brauer’s k(B)-Conjecture for solvable groups, but
one could certainly use more elementary arguments. Exactly the same proof works for |A| = 3.

Suppose next that A ∼= C4. Here the action of A on D̂ gives one orbit of length 1, α orbits of length 2, and β
orbits of length 4. As before we get rows of the form (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) and (1, 1, 1, 1)

in the decomposition matrix. Let χ ∈ D̂ be a character in an orbit of length 2. Then χ extends to D o Φ(A).
Hence, if we arrange the Brauer characters of H suitably, χ contributes two rows (1, 1, 0, 0) and (0, 0, 1, 1) to
the decomposition matrix. Again we have q(rχ) = 1 for all χ ∈ Irr(H), and the claim follows.

The case A ∼= C2
2 is slightly more complicated. First note that p > 2. Again D̂ splits into one orbit of length

1, α orbits of length 2, and β orbits of length 4. Suppose first that there is an element 1 6= g ∈ A which acts
freely on D̂. In this case we may arrange the four irreducible Brauer characters of H in such a way that every
row of the decomposition matrix has the form (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1),
(1, 0, 0, 1), (0, 1, 1, 0) or (1, 1, 1, 1). Let q be the quadratic form corresponding to the positive definite matrix

1

2


2 −1 1 −1
−1 2 −1 .
1 −1 2 −1
−1 . −1 2

 .

Then it can be seen that q(rχ) = 1 for every χ ∈ Irr(H). The claim follows as above. Now we treat the case where
every non-trivial element of A has a non-trivial fixed point on D̂. We write A = {1, g1, g2, g3}, Ai := CD̂(gi)

and αi := |Ai| > 1 for i = 1, 2, 3. Without loss of generality, α1 ≤ α2 ≤ α3. Since A acts faithfully on D̂, we
have A2 ∩A3 = 1 and A2×A3 ≤ D̂. Moreover, α = (α1 +α2 +α3− 3)/2 and β = (|D| −α1−α2−α3 + 2)/4 ≥
(α2α3 − α1 − α2 − α3 + 2)/4. Now the inequality

α ≤ 3(β − 1)

reduces to α1 + α2 + α3 ≤ 3α3 ≤ α2α3 which is true since α2 ≥ p > 2. We may arrange the irreducible Brauer
characters of H such that the decomposition matrix consists of (α1 − 1)/2 pairs of rows (1, 0, 1, 0), (0, 1, 0, 1),
(α2 − 1)/2 pairs of the form (1, 0, 0, 1), (0, 1, 1, 0), and (α3 − 1)/2 pairs of the form (1, 1, 0, 0), (0, 0, 1, 1). Let
q be the quadratic form corresponding to the Dynkin diagram of type A4. Then q(1, 0, 1, 0) = q(0, 1, 0, 1) =
q(1, 0, 0, 1) = 2 and q(r) = 1 for all other types of rows r. Since (α3 − 1)/2 ≥ α/3 and (α1 − 1)/2 ≤ α/3, it
follows that∑

1≤i≤j≤4

qijcij =
∑

χ∈Irr(H)

q(rχ) ≤ 4 +
2

3
α+ α+

4

3
α+ β = 4 + 3α+ β ≤ 1 + 2α+ 4β = |D̂| = |D|.

Finally assume that A ∼= S3. Then p ≥ 5. We may arrange the three irreducible Brauer characters of H such
that their degrees are (1, 2, 1). As above we get three rows in the decomposition matrix (1, 0, 0), (0, 1, 0) and
(0, 0, 1). Again we consider the action of A on D̂. Let α be the number of orbits of length 2, let β the number
of orbits of length 3, and let γ be the number of regular orbits. Then we get α triples of rows (0, 1, 0), (0, 1, 0),
(1, 0, 1), β pairs of rows (1, 1, 0), (0, 1, 1), and γ rows of the form (1, 2, 1) in the decomposition matrix of H.
Let q be the quadratic form corresponding to the Dynkin diagram of type A3. We discuss some special cases
separately. In case α = 0 we obtain with the notation introduced above:∑

1≤i≤j≤3

qijcij =
∑

χ∈Irr(H)

q(rχ) = 3 + 2β + 2γ ≤ 1 + 3β + 6γ = |D|.

Thus, in the following we suppose that α > 0. Let h ∈ A an element of order 3 and A1 := CD̂(h). Obviously,
α = (|A1| − 1)/2 ≥ 2, since p ≥ 5. We denote the three involutions in A by g1, g2 and g3. Moreover, let
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Bi := CD̂(gi). It is easy to see that h permutes the sets B1, B2 and B3 transitively. In particular, β = |Bi| − 1.
Also, A1 ∩B1 = 1 and A1 ×B1 ≤ D̂. We conclude that

γ =
|D| − 2α− 3β − 1

6
≥ (2α+ 1)(β + 1)− 2α− 3β − 1

6
=
αβ − β

3
.

In case β > 0 we even have β ≥ p − 1 ≥ 4 and γ ≥ 2. Then it follows that α ≤ 3γ/β + 1 ≤ 3γ − 2. For β = 0
we still have |D| ≥ (2α+ 1)p and γ ≥ 2(2α+ 1)/3. So in any case the inequality

α ≤ 3γ − 2

holds. Now we change the ordering of the Brauer characters such that their degrees are (1, 1, 2). Then as above∑
1≤i≤j≤3

qijcij =
∑

χ∈Irr(H)

q(rχ) = 3 + 3α+ 3β + 3γ ≤ 1 + 2α+ 3β + 6γ = |D|.

This finishes the proof.

By Section 3 in [21] it is known that Lemma 3 fails for example for A ∼= C2
3 . Our next lemma is quite technical,

but powerful.

Lemma 4. Let B be a p-block of a finite group with defect group D. If there exists an element x ∈ Z(D) such
that D/〈x〉 is abelian, and |CI(B)(x)| ≤ 4 or CI(B)(x) ∼= S3, then Brauer’s k(B)-Conjecture holds for B.

Proof. We consider a B-subsection (x, bx). The aim of the proof is to apply Theorem 2.4 in [9] in connection
with Lemma 3. Let C be the Cartan matrix of bx. As usual, bx dominates a block bx with abelian defect
group D := D/〈x〉, Cartan matrix C := 1

|〈x〉|C = (cij), and I(bx) ∼= CI(B)(x). By work of Usami and Puig
[22, 16, 15, 23] there exists a perfect isometry between bx and its Brauer correspondent with normal defect
group. By Theorem 4.11 in [3] the Cartan matrices are preserved under perfect isometries up to basic sets.
Thus, we may assume that bx has normal defect group D. By [12], bx is Morita equivalent to the group algebra
F [D o I(bx)] (where F is an algebraically closed field of characteristic p) except possibly if I(bx) ∼= C2

2 (which
has non-trivial Schur multiplier H2(C2

2 , F
×) ∼= C2). Let us first handle this exceptional case. Here bx is Morita

equivalent to a (non-trivial) twisted group algebra Fγ [D o C2
2 ] where the 2-cocycle γ is uniquely determined.

By Lemma 5.5 and Proposition 5.15 in [14] we can treat the twisted group algebra as a block algebra. More
precisely, the Cartan matrix of bx is the same as the Cartan matrix of a non-principal block of a group of type
DoD8 (note that D8 is a covering group of C2

2 ; the other covering group Q8 would lead to the same conclusion).
The group algebra of D o D8 has k(D8) = 5 irreducible Brauer characters. Four of them lie in the principal
block. Therefore, the Cartan matrix of bx is a 1× 1 matrix. Hence, we are done in the exceptional case.

Now assume that bx is Morita equivalent to FH where H := D o I(bx). Then by Lemma 3 there is a positive
definite quadratic form q =

∑
1≤i≤j≤k(bx) qijxixj such that∑

1≤i≤j≤k(bx)

qijcij ≤ |D|.

The result follows easily by Theorem 2.4 in [9].

The following lemma generalizes Corollary 1.2(ii) in [18].

Lemma 5. Let B be a block of a finite group with abelian defect group D. If I(B) contains an abelian subgroup
of index at most 4, then Brauer’s k(B)-Conjecture holds for B.

Proof. Let A ≤ I(B) be abelian such that |I(B) : A| ≤ 4. It is well-known that A has a regular orbit on D,
i. e. there exists an element x ∈ D such that CA(x) = 1. Hence, |CI(B)(x)| ≤ 4, and the claim follows from
Lemma 4.
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We remark that Lemma 5 also holds under the more general hypothesis that I(B) contains a subgroup R of
index at most 4 such that R has a regular orbit on D. For example, if R is nilpotent, one can use [25]. Since
many non-abelian groups also guarantee regular orbits, it is worthwhile to study small groups with this property
in detail. In the following Lemma we make use of the “small group library” available in GAP [5].

Lemma 6. Let A act faithfully on the finite group P such that (|A|, |P |) = 1. If |A| < 100 and A is not
isomorphic to SmallGroup(n, i) where (n, i) is one of the pairs given in the appendix, then A has a regular orbit
on P .

Proof. The proof is computer assisted. By Lemma 2.6.2 in [8] we may assume that P is an elementary abelian
p-group, i. e. a vector space over Fp. By Maschke’s Theorem, P decomposes into a direct sum P = P1×. . .×Pn of
irreducible A-invariant subgroups Pi. Assume that we have already found elements xi ∈ Pi such that CA(xi) ⊆
CA(Pi) for i = 1, . . . , n. Then the element x := x1 . . . xn fulfills CA(x) = 1 and we are done. Hence, we may
replace A by A/CA(P1) and P by P1, i. e. the action is faithful and irreducible. LetM be the set of subgroups
of A of prime order. If A has no regular orbit on P , we have

P =
⋃

M∈M
CP (M).

Since P cannot be the union of p proper subgroups, it follows that p < |M| < |A|. Now there are only finitely
many possibilities for the action of A on P and we compute these with GAP (which in turn uses Meataxe
routines).

In few cases (namely A ∼= Dm where m ∈ {46, 50, 58, 74, 82, 86, 92, 94, 98}) not all irreducible representations
are available immediately, since certain Conway polynomials are unknown. However, for most of these cases
(except D50, D92 and D98) we can use a simpler argument described below: We have |A| = 2q for some odd
prime q. Let S ∈ Sylq(A) and Syl2(A) = {T1, . . . , Tq}. Then S permutes the CP (Ti) transitively. If A has no
regular orbit, we obtain P = CP (S) ∪ CP (T1) ∪ . . . ∪ CP (Tq) and

|P | = pa + qpb − q

where |CP (S)| =: pa and |CP (Ti)| =: pb. Since S has a regular orbit, we have b ≥ 1. Evaluating the equation
modulo p implies a = 0 and p | q − 1. Now it is easy to see that this cannot hold.

For A ∼= D92 things are a bit more complicated. We have p < |M| = 48, and GAP shows that there is a regular
orbit provided p /∈ {17, 19, 37, 43} (in these four cases the order of p modulo 23 is 22). We may also assume
that A acts faithfully and irreducibly on P , since we already know that proper quotients of A have regular
orbits. Suppose first that there exists 1 6= x ∈ P such that 23 | |CA(x)|. Then the orbit of x has at most 4
elements x1, . . . , x4. Moreover, x1 . . . x4 ∈ CP (A) = 1. Thus, x1, . . . , x4 are not linearly independent. Since A
acts irreducibly, P = 〈x1, . . . , x4〉 ≤ F3

p. It follows that 23 | (p− 1)(p2− 1)(p3− 1) and p = 47. This was already
excluded. Hence, |CA(x)| ∈ {2, 4} for all 1 6= x ∈ P . Let {g1, . . . , g23}, {h1, . . . , h23} and {z} be the three
conjugacy classes of involutions in A. Define |CP (gi)| =: pa, |CP (hi)| =: pb and |CP (z)| =: pc. Then we have
|CP (gi)∩CP (z)| = |CP (hj)∩CP (z)| =: pd for i, j = 1, . . . , 23. Moreover CP (gi)∩CP (gj) = CP (hi)∩CP (hj) = 1
for i 6= j, and

|CP (gi) ∩ CP (hj)| =

{
pd if gi = hjz,

1 otherwise.

Now the principle of inclusion and exclusion implies

P = 23pa + 23pb + pc − 3 · 23pd −
((

47

2

)
− 3 · 23

)
+ 23pd +

((
47

3

)
− 23

)
+

47∑
i=4

(−1)i−1
(

47

i

)
= 23pa + 23pb + pc − 2 · 23pd.

Obviously, d ≤ min{a, b, c}. After dividing by pd, we may assume that d = 0. Since p /∈ {2, 23}, at least one of
a, b or c also vanishes. In fact we must have c = 0. Evaluating modulo p gives p ∈ {3, 5, 11}. All these cases are
already checked by GAP.

Next, let A ∼= D98. Only the primes p ∈ {17, 23, 37, 47} cause problems. Suppose first that there is an element
x ∈ P such that |CA(x)| = 14. Then we may assume |P | ≤ p6. We may also assume that A acts faithfully.
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However, GL(6, p) does not contain a cyclic subgroup of order 49. Hence, we may assume that |CA(x)| ∈ {2, 7}
for all 1 6= x ∈ P . It follows easily that

|P | = pa + 49pb − 49

for some a, b ∈ Z and b ≥ 1. This gives p = 3 which was already excluded. The proof for A ∼= D50 is completely
similar.

We give some improvements of the algorithm above. If Z(A) is not cyclic, it is well-known that A has no faithful,
irreducible representation. Hence, it suffices to consider proper quotients here. Conversely, if A has only one
minimal normal subgroup, then it is enough to look at the faithful irreducible representations of A. If A has no
regular orbit, then P is usually pretty small (we use |P | ≤ 105 in our implementation). If on the other hand P
is large, then there are usually many regular orbits. In this case we pick elements x ∈ P randomly and check
CA(x) = 1. This is much faster than going through P as a list. Since we only check a sufficient condition we
may miss some groups which also have regular orbits. In order to find more groups we do the following. Make a
list of all subgroups of A which have regular orbits (i. e. groups we have already found). For each subgroup H
on this list check if there is another subgroup K 6= 1 such that H ∩K = 1. If not, A must have a regular orbit.
This gives us new groups with regular orbits and we can even repeat the procedure.

Notice that we have not proved the converse of Lemma 6. For example, we do not know whether the group
SmallGroup(32, 30) must have regular orbits or not (although it can probably be figured out if needed). The
problem here is that there are non-faithful irreducible representations without regular orbits.

One can show that more than two thirds of the groups of order less than 100 provide regular orbits in the
situation above (for this reason we list the complementary set in the appendix). Lemma 6 will be applied later
in Proposition 10, but we need to settle a special case for p = 2 first.

Lemma 7. Let A be a p′-automorphism group of an abelian p-group P ∼=
∏n
i=1 C

mi

pi . Then A is isomorphic to
a subgroup of

n∏
i=1

GL(mi, p)

where GL(0, p) := 1.

Proof. As a p′-group, A acts faithfully on P/Φ(P ). Hence, the canonical homomorphism

A −→
n∏
i=1

Aut(Ωn−i+1(P )Φ(P )/Ωn−i(P )Φ(P )) (2)

where Ωi(P ) := 〈x ∈ P : xp
i

= 1〉 for i ≥ 0 is injective. Since Ωi(P )Φ(P )/Ωi−1(P )Φ(P ) is elementary abelian
of rank mi for i = 1, . . . , n, the claim follows.

Combining Lemma 5 and Lemma 7 gives the following result which is probably not new.

Corollary 8. Let B be a p-block of a finite group with abelian defect group D ∼=
∏n
i=1 C

mi

pi such that mi ≤ 1

for i = 1, . . . , n. Then Brauer’s k(B)-Conjecture holds for B.

Now we turn to abelian p-groups with homocyclic factors. Here it is necessary to restrict p.

Theorem 9. Let B be a 2-block of a finite group with abelian defect group D ∼=
∏n
i=1 C

mi

2i . Assume that one of
the following holds:

(i) For some i ∈ {1, . . . , n} we have mi ≤ 4 and mj ≤ 2 for all j 6= i.

(ii) D has rank 5.

Then Brauer’s k(B)-Conjecture holds for B.

Proof.
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(i) For each k ∈ {1, . . . , n} we define Ak to be the image of the canonical map

I(B) −→ Aut(Ωn−k+1(D)Φ(D)/Ωn−k(D)Φ(D)) ∼= GL(mk, p).

Then we can refine the monomorphism from Eq. (2) to I(B) →
∏n
k=1Ak. Since GL(2, 2) ∼= S3, we have

Aj ≤ C3 for j 6= i. In order to apply Lemma 5, it suffices to show that Ai ≤ GL(4, 2) contains an abelian
subgroup of index at most 4. Since Ai has odd order, we have |Ai| | (24 − 1)(23 − 1)(22 − 1) = 32 · 5 · 7. It
can be seen further that |Ai| ∈ {1, 3, 5, 7, 9, 15, 21}. The claim follows.

(ii) Now assume that D has rank 5. The case |D| = 32 was already handled in Corollary 2 in [21]. Thus, by
part (i) we may assume that C5

4 ≤ D and I(B) ≤ GL(5, 2). As usual, e(B) is a divisor of 32 · 5 · 7 · 31.
Suppose first that 31 | e(B). One can show that every group whose order divides 32 · 5 · 7 · 31 has a normal
Sylow 31-subgroup. Therefore I(B) lies in the normalizer of a Sylow 31-subgroup of GL(5, 2). Thus, we
may assume e(B) = 31 · 5. Here Lemma 5 does not apply. However, we can still show the existence of a
regular orbit. Obviously, I(B) cannot have a regular orbit on D/Φ(D) ∼= C5

2 . However, using GAP one
can show that I(B) has a regular orbit on Ω2(D) ∼= C5

4 . So we can find a subsection (u, bu) such that
l(bu) = 1. The claim follows in this case.

Now we can assume that 31 - e(B). In case 7 | e(B) we see again that I(B) has a normal Sylow 7-subgroup
and e(B) = 32 · 7 without loss of generality. It is easy to see that every group of order 32 · 7 has an
abelian subgroup of index 3. Thus, we may finally suppose that 7 - e(B). Then I(B) is abelian itself. This
completes the proof.

Theorem 9 improves an unpublished result by Robinson [17]. In the next proposition we investigate how far we
can go only by restricting the inertial index.

Proposition 10. Let B be a block of a finite group with abelian defect group and e(B) ≤ 255. Then the
k(B)-Conjecture is satisfied for B.

Proof. Let I(B) be an arbitrary group of order at most 255, and let D be a defect group of B. We compute with
GAP the set L of subgroups of I(B) which have order less than 100 and are not on the list in the appendix.
For every H ∈ L we check the following condition:

∀K ≤ I(B) : K ∩H = 1 =⇒ |K| ≤ 4 ∨K ∼= S3. (∗)

By Lemma 6 there is x ∈ D such that CI(B)(x) ∩ H = CH(x) = 1. Hence, if Condition (∗) is true for some
H ∈ L, we get |CI(B)(x)| ≤ 4 or CI(B)(x) ∼= S3. Then the k(B)-Conjecture follows from Lemma 4. It turns out
that (∗) is false for only a few groups which will be handled case by case.

For I(B) ∼= SL(2, 5) the algorithm from Lemma 6 shows that I(B) has in fact a regular orbit on D. In case
I(B) ∼= 51+2

+ (extraspecial of order 125 and exponent 5) the same is true by the main result of [25].

Now assume I(B) ∼= C31 o C5. Then one can show that we have a regular orbit unless p = 2. Thus, let p = 2.
We study the (faithful) action of I(B) on Ω(D). By Theorem 9 we may assume |Ω(D)| ≥ 26. A GAP calculation
shows that I(B) has eight irreducible representations over F2 and their degrees are 1, 4, 5, . . . , 5. Moreover, the
image of the second representation has order 5 while the last six representations are faithful. In particular the
action of I(B) on Ω(D) is not irreducible. So we decompose Ω(D) = V1× . . .×Vn into irreducible I(B)-invariant
subgroups Vi. Without loss of generality, V1 is faithful. Hence, we find an element v1 ∈ V1 such that CI(B)(v1)
has order 5. If there is at least one more non-trivial summand, say V2, we find another element v2 ∈ V2 such that
CI(B)(v1) * CI(B)(v2). It follows that CI(B)(v) = 1 for v := v1v2. Therefore, we may assume that I(B) acts
trivially on V2 × . . .× Vn. By Theorem 5.2.3 in [6], also D decomposes as D = CD(I(B))× [D, I(B)]. It follows
that [D, I(B)] ∼= C5

2a for some a ≥ 1. In case a ≥ 2 we have seen in the proof of Theorem 9 that I(B) has a
regular orbit on [D, I(B)]. Hence, [D, I(B)] is elementary abelian of order 32. Define |CD(I(B))| =: 2k. Then B
has 2k+1 subsections up to conjugation. Half of them have inertial index 155 while the other half have inertial
index 5. Let (u, bu) be one of the B-subsections with I(bu) ∼= I(B). In order to determine l(bu) we may suppose
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that CD(I(B)) = 1 by a theorem of Watanabe [24] (applied inductively). Now take a non-trivial bu-subsection
(v, βv). Then the Cartan matrix of βv is given by

2


4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4


(see Case 2 in the proof of Proposition 1 in [20]). Theorem 2.4 in [9] gives k(bu) ≤ 16. Since (v, βv) is the only
non-trivial bu-subsection up to conjugation, we obtain l(bu) ≤ 11. Similarly we can show that l(bu) ≤ 5 if (u, bu)
is a B-subsection such that e(bu) = 5. Now we get k(B) ≤ 2k · 11 + 2k · 5 = 2k+4 ≤ |D|, because k(B) is the
sum over the numbers l(bu) (see Theorem 5.9.4 in [13]). This completes the case e(B) = 155.

The next exceptional group is I(B) ∼= SmallGroup(160, 199). Here Z(I(B)) is the unique minimal normal
subgroup of I(B). In particular every faithful representation contains a faithful, irreducible representation
as a direct summand. Using GAP we show that only the prime p = 3 is “interesting”. If I(B) acts faith-
fully and irreducibly on D, then one can find an element x ∈ D such that |CI(B)(x)| ≤ 2. Therefore, the
k(B)-Conjecture follows from Lemma 4. We also need to discuss another group of the same order, namely
I(B) ∼= SmallGroup(160, 207) ∼= D8× (C5oC4). Here we may assume again that p = 3. Let us consider the rep-
resentations of the subgroup H ∼= SmallGroup(80, 30) ∼= C4× (C5oC4). This subgroup has just one irreducible
faithful representation, and this representation provides regular orbits. Now assume that H acts faithfully on
D without regular orbits. Then D decomposes into irreducible H-invariant subgroups V1, . . . , Vn where n ≥ 2.
Without loss of generality, the Vi are distinct as F3H-modules. A calculation shows that there is only one index
i such that no element x ∈ Vi with CH(x) = CH(Vi) exists (this is the reason why H appears on the list in the
appendix). We may assume that i = 1. Then |CH(V1)| = 2. We conclude that the situation can be reduced to
the case n = 2. However, then it can be shown that H has a regular orbit on D. Now the k(B)-Conjecture for
I(B) follows from Lemma 4 as before.

We continue with I(B) ∼= SmallGroup(168, 42) ∼= GL(3, 2). Here the algorithm of Lemma 6 shows that I(B) has
regular orbits. The next interesting groups I(B) are non-abelian of order 203 = 29 · 7 and 205 = 41 · 5. Here the
arguments for the dihedral groups in Lemma 6 work. Then we have four groups I(B) ∼= SmallGroup(240, i) for
i = 89, 90, 93, 94. For i = 89, 90, 94 there are always regular orbits. Now let i = 93. Then I(B) ≤ GL(2, 5) and
the subgroup SL(2, 5) provides a regular orbit as we have seen above. In the same way we handle some groups
of order 250 which have 51+2

+ as Sylow 5-subgroup. Finally, the non-abelian group of order 253 = 23 · 11 is also
easy to handle. This finishes the whole proof.

For e(B) = 256 the arguments in Proposition 10 fail as one can see by the following example. There is a subgroup
A ≤ GL(4, 3) of order 256 such that C4

3 splits under the action of A into orbits of lengths 1, 16, 32 and 32.
Hence, the corresponding stabilizers have order at least 8.

4 Odd primes

In this section we focus on odd primes p. The next theorem handles the k(B)-Conjecture for 3-blocks with
abelian defect groups of rank at most 3 as a special case.

Theorem 11. Let B be a 3-block of a finite group with defect group D ∼=
∏n
i=1 C

mi

3i such that for two i, j ∈
{1, . . . , n} we have mi,mj ≤ 3, and mk ≤ 1 for all i 6= k 6= j. Then Brauer’s k(B)-Conjecture holds for B.

Proof. As in the proof of Theorem 9 we may assume that I(B) ≤ GL(3, 3)×GL(3, 3). By Lemma 5, it suffices
to show that every 3′-subgroup of GL(3, 3) has an abelian subgroup of index at most 2. In order to do so, we
may assume I(B) ≤ GL(3, 3). Then e(B) is a divisor of (33 − 1)(32 − 1)(3 − 1) = 25 · 13. In case 13 | e(B),
Sylow’s Theorem shows that I(B) has a normal Sylow 13-subgroup. Hence, I(B) lies in the normalizer of the
Sylow 13-subgroup in GL(3, 3). Thus, e(B) = 2 · 13 without loss of generality. The claim holds. Suppose next
that I(B) is a 2-group. It can be shown that a Sylow 2-subgroup of GL(3, 3) is isomorphic to SD16 × C2; so it
contains an abelian maximal subgroup. Obviously the same holds for I(B) and the claim follows.
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For p = 5 it is necessary to restrict the rank of the defect group.

Theorem 12. Let B be a 5-block of a finite group with abelian defect group of rank 3. Then Brauer’s k(B)-
Conjecture holds for B.

Proof. We consider the (faithful) action of I(B) on Ω(D) ∼= C3
5 . In particular, I(B) ≤ GL(3, 5). Fortunately,

GAP is able to compute a set of representatives for the conjugacy classes of 5′-subgroups of GL(3, 5). In
particular we obtain e(B) | 27 · 3 or e(B) | 22 · 3 · 31. A further analysis shows that there is an element x ∈ Ω(D)
such that |CI(B)(x)| ≤ 4 or CI(B)(x) ∼= S3. The claim follows by Lemma 4.

For the defect group C3
7 the proof above would not work. More precisely, it is possible here that I(B) has

order 64, the largest orbit on D has length 63, and the corresponding stabilizer is isomorphic to C6. Hence, the
existence of a perfect isometry for bx is unknown.
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Appendix

The following table is needed in Lemma 6.
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size id size id size id size id size id size id size id size id
8 3 48 7 64 95 64 174 64 251 80 36 96 79 96 136
12 4 48 14 64 97 64 176 64 253 80 37 96 80 96 137
16 7 48 15 64 98 64 177 64 254 80 38 96 81 96 138
16 8 48 17 64 99 64 178 64 255 80 39 96 82 96 139
16 11 48 25 64 101 64 186 64 258 80 40 96 83 96 144
16 13 48 29 64 115 64 187 64 261 80 41 96 87 96 145
20 4 48 33 64 116 64 189 64 263 80 42 96 88 96 146
21 1 48 35 64 117 64 196 64 265 80 44 96 89 96 147
24 5 48 36 64 118 64 198 72 5 80 46 96 90 96 148
24 6 48 37 64 119 64 201 72 6 80 50 96 91 96 149
24 8 48 38 64 121 64 202 72 8 80 51 96 92 96 153
24 14 48 39 64 123 64 203 72 17 81 7 96 93 96 154
28 3 48 40 64 124 64 205 72 20 84 8 96 98 96 155
32 9 48 41 64 128 64 206 72 21 84 12 96 99 96 156
32 11 48 43 64 129 64 207 72 22 84 13 96 100 96 157
32 19 48 47 64 130 64 210 72 23 84 14 96 101 96 158
32 25 48 48 64 131 64 211 72 25 88 5 96 102 96 160
32 27 48 51 64 133 64 213 72 27 88 7 96 103 96 168
32 28 52 4 64 134 64 215 72 28 88 9 96 104 96 179
32 30 56 4 64 137 64 216 72 30 93 1 96 105 96 186
32 31 56 5 64 138 64 217 72 32 96 4 96 106 96 187
32 34 56 7 64 140 64 218 72 33 96 5 96 107 96 189
32 39 56 9 64 141 64 219 72 35 96 6 96 108 96 192
32 40 56 12 64 142 64 220 72 46 96 7 96 109 96 195
32 42 60 12 64 144 64 221 72 48 96 12 96 110 96 200
32 43 63 3 64 145 64 223 72 49 96 13 96 111 96 206
32 46 64 6 64 146 64 226 76 3 96 16 96 113 96 207
32 48 64 8 64 147 64 227 80 4 96 27 96 114 96 208
32 50 64 10 64 149 64 228 80 5 96 28 96 115 96 209
36 4 64 12 64 150 64 229 80 6 96 30 96 116 96 210
36 10 64 32 64 152 64 230 80 7 96 32 96 117 96 211
36 12 64 34 64 155 64 231 80 14 96 33 96 118 96 212
36 13 64 38 64 157 64 232 80 15 96 34 96 119 96 213
40 5 64 41 64 159 64 233 80 16 96 35 96 120 96 214
40 6 64 52 64 161 64 234 80 17 96 44 96 121 96 215
40 8 64 67 64 162 64 235 80 25 96 54 96 122 96 216
40 10 64 71 64 163 64 236 80 26 96 61 96 123 96 217
40 12 64 73 64 167 64 237 80 28 96 62 96 124 96 219
40 13 64 75 64 169 64 240 80 29 96 64 96 125 96 223
48 4 64 89 64 170 64 243 80 30 96 67 96 126 96 226
48 5 64 90 64 171 64 244 80 31 96 68 96 134 96 230
48 6 64 92 64 173 64 250 80 34 96 78 96 135

References

[1] R. Brauer, On the structure of groups of finite order, in: Proceedings of the International Congress of
Mathematicians, Amsterdam, 1954, Vol. 1, 209-217, Erven P. Noordhoff N.V., Groningen, 1957.

[2] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat.
Acad. Sci. U.S.A. 45 (1959), 361–365.

[3] M. Broué, Equivalences of blocks of group algebras, in: Finite-dimensional algebras and related topics
(Ottawa, ON, 1992), 1–26, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 424, Kluwer Acad. Publ.,
Dordrecht, 1994.

10



[4] W. Feit, The representation theory of finite groups, North-Holland Mathematical Library, Vol. 25, North-
Holland Publishing Co., Amsterdam, 1982.

[5] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.5.7 ; 2012, (http://www.
gap-system.org).

[6] D. Gorenstein, Finite groups, Harper & Row Publishers, New York, 1968.

[7] Z. Halasi and K. Podoski, Every coprime linear group admits a base of size two, arXiv:1212.0199v1.

[8] B. Hartley and A. Turull, On characters of coprime operator groups and the Glauberman character corre-
spondence, J. Reine Angew. Math. 451 (1994), 175–219.

[9] L. Héthelyi, B. Külshammer and B. Sambale, A note on Olsson’s Conjecture, J. Algebra (to appear), DOI:
10.1016/j.jalgebra.2012.08.010.

[10] R. Kessar, S. Koshitani and M. Linckelmann, Conjectures of Alperin and Broué for 2-blocks with elementary
abelian defect groups of order 8, J. Reine Angew. Math. 671 (2012), 85–130.

[11] R. Kessar and G. Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, arXiv:1112.2642v1.

[12] B. Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147–
168.

[13] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press Inc., Boston, MA, 1989.

[14] L. Puig, Pointed groups and construction of modules, J. Algebra 116 (1988), 7–129.

[15] L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and Klein four inertial
quotients, J. Algebra 160 (1993), 192–225.

[16] L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients
of order 4, J. Algebra 172 (1995), 205–213.

[17] G. R. Robinson, On the number of characters in a block and the Brauer-Feit matrix, unpublished.

[18] G. R. Robinson, On Brauer’s k(B) problem, J. Algebra 147 (1992), 450–455.

[19] B. Sambale, Further evidence for conjectures in block theory, submitted.

[20] B. Sambale, Cartan matrices and Brauer’s k(B)-conjecture, J. Algebra 331 (2011), 416–427.

[21] B. Sambale, Cartan matrices and Brauer’s k(B)-conjecture II, J. Algebra 337 (2011), 345–362.

[22] Y. Usami, On p-blocks with abelian defect groups and inertial index 2 or 3. I, J. Algebra 119 (1988),
123–146.

[23] Y. Usami, Perfect isometries for blocks with abelian defect groups and dihedral inertial quotients of order
6, J. Algebra 172 (1995), 113–125.

[24] A. Watanabe, Notes on p-blocks of characters of finite groups, J. Algebra 136 (1991), 109–116.

[25] Y. Yang, Regular orbits of nilpotent subgroups of solvable linear groups, J. Algebra 325 (2011), 56–69.

Benjamin Sambale
Mathematisches Institut

Friedrich-Schiller-Universität
07743 Jena
Germany

benjamin.sambale@uni-jena.de

11

http://www.gap-system.org
http://www.gap-system.org
http://arxiv.org/abs/1212.0199v1
http://dx.doi.org/10.1016/j.jalgebra.2012.08.010
http://dx.doi.org/10.1016/j.jalgebra.2012.08.010
http://de.arxiv.org/abs/1112.2642v1
mailto:benjamin.sambale@uni-jena.de

