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Abstract

We show that the major counting conjectures of modular representation theory are satisfied for 2-blocks of
defect at most 4 except one possible case. In particular we determine the invariants of such blocks.
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1 Introduction

Let B be a 2-block of a finite group G with defect group D. Then there are several open conjectures regarding
the number k(B) of irreducible ordinary characters of B and the number l(B) of irreducible Brauer characters
of B. The aim of this paper is to show that most of these conjectures are fulfilled if D is small. More precisely
we will assume that B has defect at most 4, i. e. D has order at most 16. We denote the number of irreducible
ordinary characters of height i in B by ki(B) for i ≥ 0.

An essential tool is the following recent theorem by Kessar and Malle [17].

Theorem 1.1 (Kessar, Malle, 2011). For every p-block B of a finite group with abelian defect group we have
k(B) = k0(B).

For |D| ≤ 8 the block invariants and conjectures for B are known by the work of Brauer [5], Olsson [23] and
Kessar-Koshitani-Linckelmann [16]. So we assume that D has order 16.

2 The elementary abelian case

Let I(B) be the inertial quotient of B and set e(B) := |I(B)|.

Proposition 2.1. Let B be a block of a finite group G with elementary abelian defect group D of order 16.
Then one of the following holds:

(i) B is nilpotent. Then e(B) = l(B) = 1 and k(B) = k0(B) = 16.

(ii) e(B) = l(B) = 3, CD(I(B)) = 1 and k(B) = k0(B) = 8.

(iii) e(B) = l(B) = 3, |CD(I(B))| = 4 and k(B) = k0(B) = 16.

(iv) e(B) = l(B) = 5 and k(B) = k0(B) = 8.

(v) e(B) = l(B) = 7 and k(B) = k0(B) = 16.

(vi) e(B) = l(B) = 9 and k(B) = k0(B) = 16.

(vii) e(B) = 9, l(B) = 1 and k(B) = k0(B) = 8.

(viii) e(B) = l(B) = 15 and k(B) = k0(B) = 16.
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(ix) e(B) = 15, l(B) = 7 and k(B) = k0(B) = 8.

(x) e(B) = 21, l(B) = 5 and k(B) = k0(B) = 16.

Moreover, all cases except possibly case (ix) actually occur.

Proof. First of all by Theorem 1.1 we have k(B) = k0(B). The inertial quotient I(B) is a subgroup of Aut(D) ∼=
GL(4, 2) of odd order. It follows that e(B) ∈ {1, 3, 5, 7, 9, 15, 21} (this can be shown with GAP [13]). If e(B) 6= 21,
the inertial quotient is necessarily abelian. Then by Corollary 1.2(ii) in [29] there is a nontrivial subsection (u, b)
such that l(b) = 1. Hence, Corollary 2 in [6] implies that |D| = 16 is a sum of k(B) odd squares. This shows
k(B) ∈ {8, 16} for these cases. In order to determine l(B) we calculate the numbers l(b) for all nontrivial
subsections (u, b). Here it suffices to consider a set of representatives of the orbits of D under I(B), since B is
a controlled block. If e(B) = 1, the block is nilpotent and the result is clear. We discuss the remaining cases
separately:

Case 1: e(B) = 3
Here by results of Usami and Puig (see [40, 28]) there is a perfect isometry between B and its Brauer corre-
spondent in NG(D). According to two different actions of I(B) on D, we get k(B) = 8 if CD(I(B)) = 1 or
k(B) = 16 if |CD(I(B))| = 4. In both cases we have l(B) = 3.

Case 2: e(B) = 5
Then there are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) with l(b1) = l(b2) = l(b3) = 1 up to
conjugation. In [37] it was shown that k(B) = 16 is impossible. Hence, k(B) = 8 and l(B) = 5.

Case 3: e(B) = 7
There are again four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) up to conjugation. But in this case l(b1) =
l(b2) = 1 and l(b3) = 7 by [16]. Thus, k(B) = 16 and l(B) = 7.

Case 4: e(B) = 9
There are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) such that l(b1) = 1 and l(b2) = l(b3) = 3 up to
conjugation. This gives the possibilities (vi) and (vii).

Case 5: e(B) = 15
Here I(B) acts regularly on D \ {1}. Thus, there are only two subsections (1, B) and (u, b) such that l(b) = 1.
This gives the possibilities (viii) and (ix).

Case 6: e(B) = 21
Here I(B) is nonabelian. Hence, we get four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) up to conjugation.
We have l(b1) = l(b2) = 3 and l(b3) = 5 by [16]. Since I(B) has a fixed point on D, it follows that l(B) = 5 and
k(B) = 16 by Theorem 1 in [45].

For all cases except (vii) and (ix) examples are given by the principal block of D o I(B). In case (vii) we can
take a nonprincipal block of the group SmallGroup(432,526) ∼= D o E where E is the extraspecial group of
order 27 and exponent 3 (see “small groups library”).

We will see later that case (ix) would contradict Alperin’s Weight Conjecture. Now we investigate the differences
between the cases (vi) and (vii).

Lemma 2.2. Let B be a block of a finite group G with elementary abelian defect group D of order 16. If
e(B) = l(B) = 9, then the elementary divisors of the Cartan matrix of B are 1, 1, 1, 1, 4, 4, 4, 4, 16. Moreover,
the two I(B)-stable subgroups of D of order 4 are lower defect groups of B. Both occur with 1-multiplicity 2.

Proof. Let C be the Cartan matrix of B. As in the proof of Proposition 2.1 there are four subsections (1, B),
(u1, b1), (u2, b2) and (u3, b3) such that l(b1) = 1 and l(b2) = l(b3) = 3 up to conjugation. In order to determine
C up to basic sets, we need to investigate the generalized decomposition numbers dui

rs for i = 1, 2, 3. The block
b2 dominates a block b2 of CG(u2)/〈u2〉 with defect group D/〈u2〉 and inertial index 3. Thus, as in the proof of
Theorem 3 in [36] the Cartan matrix of b2 has the form8 4 4

4 8 4
4 4 8
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up to basic sets. Since k(B) = 16, we may assume that the numbers du2
rs take the form 1 1 1 1 1 1 1 1 . . . . . . . .

1 1 1 1 . . . . 1 1 1 1 . . . .
1 1 1 1 . . . . . . . . 1 1 1 1

T

.

For the column of decomposition numbers du1
rs we have essentially the following possibilities:

(i) : (1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1)T,

(ii) : (1, 1, 1,−1, 1,−1,−1,−1, 1,−1,−1,−1, 1,−1,−1,−1)T,

(iii) : (1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1)T.

Now we use a GAP program to enumerate the possible decomposition numbers du3
rs . After that the ordinary

decomposition matrix M can be calculated as the orthogonal space. Then C = MTM up to basic sets. It turns
out that in some cases C has 2 as an elementary divisor. Using the notion of lower defect groups as described in
[24] we show that these cases cannot occur. If 2 is an elementary divisor of C, then there exists a lower defect
group Q ≤ D of order 2. With the notation of [24] we have m(1)

B (Q) > 0. By Theorem 7.2 in [24] there is a
block bQ of NG(Q) = CG(Q) such that bGQ = B and m(1)

bQ
(Q) > 0. In particular the Cartan matrix of bQ has 2

as elementary divisor. Hence, bQ is conjugate to b2 or b3. But we have seen above that all elementary divisors
of the Cartan matrix of b2 (and also b3) must be divisible by 4. This contradiction shows that 2 does not occur
as elementary divisor of C. After excluding these cases the GAP program reveals the following two possibilities
for the elementary divisors of C: 1, 1, 1, 1, 4, 4, 4, 4, 16 or 1, 1, 4, 4, 4, 4, 4, 4, 16.

Now we have to look at the lower defect group multiplicities more carefully. The calculation above and (7G) in
[4] imply

4 ≤
∑
R∈R

m
(1)
B (R)

where R is a set of representatives for the G-conjugacy classes of subgroups of G of order 4. After combining
this with the formula (2S) of [7] we get

4 ≤
∑

(R,bR)∈R′
m

(1)
B (R, bR)

where R′ is a set of representatives for the G-conjugacy classes of B-subpairs (R, bR) such that R has order 4.
Let bD be a Brauer correspondent of B in CG(D). Then, after changing the representatives if necessary we may
assume (R, bR) ≤ (D, bD) for (R, bR) ∈ R′. Then it is well known that bR = b

CG(R)
D is uniquely determined by

R. Since the fusion of these subpairs is controlled by NG(D, bD), we get

4 ≤
∑
R∈R′′

m
(1)
B (R, bR)

where R′′ is a set of representatives for the I(B)-conjugacy classes of subgroups of D of order 4.

Now let Q ≤ D of order 4 such that m(1)
B (Q, bQ) > 0. Then by (2Q) in [7] we have m(1)

BQ
(Q) > 0 where

BQ := b
NG(Q,bQ)
Q . If Q is not fixed under I(B), then we would have the contradiction e(BQ) = l(BQ) = 1. Thus,

we have shown that Q is stable under I(B). Hence,

4 ≤ m(1)
B (Q, bQ) +m

(1)
B (P, bP ) (1)

where P 6= Q is the other I(B)-stable subgroup of D of order 4. Since 16 is always an elementary divisor of
C, we have m(1)

BQ
(D) = 1. Observe that bQ has defect group D and inertial index 3, so that l(bQ) = 3 by

Proposition 2.1. Now Theorem 5.11 in [24] and the remark following it imply

3 = l(bQ) ≥ m(1)
BQ

(Q) +m
(1)
BQ

(D).

(Notice that in Theorem 5.11 it should read B ∈ Bl(G) instead of B ∈ Bl(Q).) Thus, m(1)
BQ

(Q) ≤ 2 and similarly

m
(1)
BP

(P ) ≤ 2. Now Equation (1) yields m(1)
B (Q, bQ) = m

(1)
B (P, bP ) = 2. In particular, 4 occurs as elementary

divisor of C with multiplicity 4. It is easy to see that we also have m(1)
B (Q) = m

(1)
B (P ) = 2 which proves the

last claim.
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Proposition 2.3. Let B be a block of a finite group G with elementary abelian defect group D of order 16. If
e(B) = 9, then Alperin’s Weight Conjecture holds for B.

Proof. Let bD be a Brauer correspondent of B in CG(D), and let BD be the Brauer correspondent of B in
NG(D, bD). Then it suffices to show that l(B) = l(BD). By Proposition 2.1 we have to consider two cases
l(B) ∈ {1, 9}. As in Lemma 2.2 we set bR := b

CG(R)
D for R ≤ D.

We start with the assumption l(B) = 9. Then by Lemma 2.2 there is an I(B)-stable subgroup Q ≤ D of order
4 such that m(1)

BQ
(Q) = m

(1)
B (Q, bQ) > 0 where BQ := b

NG(Q,bQ)
Q . In particular l(BQ) = 9. Let P ≤ D be the

other I(B)-stable subgroup of order 4. Moreover, let b′P := b
NG(Q,bQ)∩CG(P )
D such that (P, b′P ) is a BQ-subpair.

Then by the same argument we get
m

(1)
β (P ) = m

(1)
BQ

(P, b′P ) > 0

where β := (b′P )NG(Q,bQ)∩NG(P,b′P ) is a block with defect group D and l(β) = 9. Now D = QP implies

NG(D, bD) ≤ NG(Q, bQ) ∩NG(P, b′P ) ≤ NG(D).

Since BNG(Q,bQ)∩NG(P,b′P )
D = β, it follows that l(BD) = 9 as desired.

Now let us consider the case l(B) = 1. Here we can just follow the same lines except that we have m(1)
BQ

(Q) = 0

and m(1)
β (P ) = 0.

We want to point out that Usami showed in [42] that in case 2 6= p 6= 7 there is a perfect isometry between a
p-block with abelian defect group D and inertial index 9 and its Brauer correspondent in NG(D).

3 The Ordinary Weight Conjecture

For most 2-blocks of defect 4 Robinson’s Ordinary Weight Conjecture (OWC) [30] is known to hold. In this
section we handle the remaining cases.

Proposition 3.1. Let B be a block of a finite group G with minimal nonabelian defect group

D := 〈x, y | x2
r

= y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉

of order 2r+2 ≥ 16. Then the Ordinary Weight Conjecture holds for B.

Proof. The block invariants of B were determined and several conjectures were verified in [35]. In order to prove
the OWC we use the version in Conjecture 6.5 in [15]. Let F be the fusion system of B. We may assume that
F is nonnilpotent. Let z := [x, y]. Then it was shown in [35] that Q := 〈x2, y, z〉 ∼= C2r−1 × C2

2 and D are the
only F-centric and F-radical subgroups of D. Moreover, OutF (Q) = AutF (Q) ∼= S3 and OutF (D) = 1. Hence,
it follows easily that w(D, d) = kd(D) = kd(B) for all d ∈ N where kd(D) is the number of characters of defect
d in D. Thus, it suffices to show w(Q, d) = 0 for all d ∈ N by Theorem 3.6 in [35]. Since Q is abelian, we have
w(Q, d) = 0 unless d = r + 1. Thus, let d = r + 1. Up to conjugation NQ consists of the trivial chain σ : 1 and
the chain τ : 1 < C, where C ≤ OutF (Q) has order 2. We consider the chain σ first. Here I(σ) = OutF (Q) ∼= S3

acts faithfully on Ω(Q) ∼= C3
2 and thus fixes a four-group. Hence, the characters in Irr(Q) split in 2r−1 orbits

of length 3 and 2r−1 orbits of length 1 under I(σ). For a character χ ∈ Irr(D) lying in an orbit of length 3 we
have I(σ, χ) ∼= C2 and thus w(Q, σ, χ) = 0. For the 2r−1 stable characters χ ∈ Irr(D) we get w(Q, σ, χ) = 1,
since I(σ, χ) = OutF (Q) has precisely one block of defect 0.

Now consider the chain τ . Here I(τ) = C and the characters in Irr(Q) split in 2r−1 orbits of length 2 and 2r

orbits of length 1 under I(τ). For a character χ ∈ Irr(D) in an orbit of length 2 we have I(τ, χ) = 1 and thus
w(Q, τ, χ) = 1. For the 2r stable characters χ ∈ Irr(D) we get I(τ, χ) = I(τ) = C and w(Q, τ, χ) = 0.

Taking both chains together, we derive

w(Q, d) = (−1)|σ|+12r−1 + (−1)|τ |+12r−1 = 2r−1 − 2r−1 = 0.

This proves the OWC.
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Now we consider the OWC for blocks with abelian defect groups D of order 2d. Here of course D is the only
F-centric and F-radical subgroup of D and I(B) = OutF (D) has odd order. In particular ND consists only of
the trivial chain. Moreover, w(D, d′) = 0 unless d′ = d. If we assume in addition that I(B) is cyclic, then

w(D, d) =
∑

χ∈Irr(D)/I(B)

|I(B) ∩ I(χ)| (2)

where I(B) ∩ I(χ) := {α ∈ I(B) : αχ = χ}. In connection with Theorem 1.1, the OWC predicts k(B) =
w(D, d).

Now let us consider the case where D is elementary abelian of order 16. Then if 21 6= e(B) 6= 9, the OWC
follows easily from Proposition 2.1 and Equation (2) except if case (ix) occurs (where OWC does not hold).
Now assume e(B) = 21. Here the number of 2-blocks of defect 0 in I(B) (which is denoted by z(kI(B)) in [15]
where k is an algebraically closed field of characteristic 2) is 5. We have to insert this number for |I(B) ∩ I(χ)|
in Equation (2) if χ is invariant under I(B). Now the OWC also follows in this case. We will deal with the
remaining case e(B) = 9 in the next section.

4 The general case

Theorem 4.1. Let B be a 2-block of a finite group G with defect group D of order at most 16. Then one of the
following holds:

(i) The following conjectures are satisfied for B:

• Alperin’s Weight Conjecture [2]

• Brauer’s k(B)-Conjecture [3]

• Brauer’s Height-Zero Conjecture [3]

• Olsson’s Conjecture [25]

• Alperin-McKay Conjecture [1]

• Robinson’s Ordinary Weight Conjecture [30]

• Gluck’s Conjecture [14]

• Eaton’s Conjecture [9]

• Eaton-Moretó Conjecture [11]

• Malle-Navarro Conjecture [22]

Moreover, the Gluing Problem [21] for B has a unique solution.

(ii) D ∼= C4
2 , e(B) = 15, k(B) = k0(B) = 8, l(B) = 7 and D /∈ Syl2(G). The Cartan matrix of B is given by

6 5 5 5 5 5 7
5 6 5 5 5 5 7
5 5 6 5 5 5 7
5 5 5 6 5 5 7
5 5 5 5 6 5 7
5 5 5 5 5 6 7
7 7 7 7 7 7 10


up to basic sets. Alperin’s Weight Conjecture and the Alperin-McKay Conjecture are not satisfied for B.

Proof. As explained earlier we may assume that |D| = 16. Then the situation splits in the following possibilities:

(a) D is metacyclic

(b) D is minimal nonabelian
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(c) D is abelian, but nonmetacyclic

(d) D ∼= D8 × C2

(e) D ∼= Q8 × C2

(f) D ∼= D8 ∗ C4

We start with a remark about Gluck’s Conjecture which only applies to rational defect groups of nilpotency
class at most 2. By Corollary 3.2 and Lemma 2.1 in [14] we may assume that D is nonabelian of exponent 4 in
order to prove Gluck’s Conjecture. Moreover, Gluck’s Conjecture is satisfied for nilpotent blocks.

In case (a) the block invariants are known by [5, 23, 39]. From this most of the conjectures follow trivially.
Observe here that the nonabelian metacyclic groups of exponent 4 provide only nilpotent blocks. In particular
Gluck’s Conjecture follows. For the OWC we refer to [32] and for the Gluing Problem to [26].

In case (b),D has the formD ∼= 〈x, y | x4 = y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉; in particularD is not rational.
Then the result follows from [35] (for the OWC see Proposition 3.1). Again we skip the elementary details for
the three (less-known) conjectures in (i). The last three cases (d), (e) and (f) were handled in [38, 32, 31] (for
Gluck’s Conjecture see [37]). It remains to consider case (c). Here it is known that the Gluing Problem has a
unique solution (see [21]). We have two possibilities: D ∼= C4 × C2 × C2 or D is elementary abelian. We may
assume that B is nonnilpotent.

In case D ∼= C4 ×C2 ×C2, 3 is the only odd prime divisor of |Aut(D)|. Thus, by Usami and Puig (see [40, 28])
there is a perfect isometry between B and its Brauer correspondent in NG(D). Then it is easy to see that the
conjectures are true.

Now we consider the elementary abelian case. By Proposition 2.1, Brauer’s k(B)-Conjecture, Brauer’s Height-
Zero Conjecture, Olsson’s Conjecture, Eaton’s Conjecture, the Eaton-Moretó Conjecture and the Malle-Navarro
Conjecture are satisfied. For abelian defect groups, Alperin’s Weight Conjecture is equivalent to l(B) = l(b)
where b is the Brauer correspondent of B in NG(D). For e(B) = 9 this was shown in Proposition 2.3. Thus,
assume e(B) 6= 9. By the main result in [20], b is Morita equivalent to a twisted group algebra of DoI(B). Since
e(B) 6= 9, the corresponding 2-cocycle must be trivial so that b is Morita equivalent to the group algebra of
DoI(B). This gives l(b) = k(I(B)). Now it can be seen that Alperin’s Weight Conjecture holds unless case (ix)
in Proposition 2.1 occurs.

Since k(B)− l(B) = k0(B)− l(B) is determined locally, the Alperin-McKay Conjecture follows from Alperin’s
Weight Conjecture. Now consider the Ordinary Weight Conjecture. By the remarks in the last section it suffices
to look at the case e(B) = 9. Here again b is Morita equivalent to a twisted group algebra of D o I(B). If the
corresponding 2-cocycle α is trivial we have l(B) = 9 and l(B) = 1 otherwise. Then with the notation in [15]
we have z(kαI(B)) = 9 or z(kαI(B)) = 1 respectively. Now the OWC follows as in the last section.

Now we consider the situation e(B) = 15, k(B) = k0(B) = 8 and l(B) = 7 more closely. The arguments
above imply that Alperin’s Weight Conjecture and thus also the Alperin-McKay Conjecture are not fulfilled.
In particular G is nonsolvable. The Cartan matrix C of B can be determined as in [37]. Here observe that
detC = 16 = |D| a fact which is also predicted by Corollary 1 in [12].

Assume that D ∈ Syl2(G). We spend the rest of the proof to derive a contradiction. By the first Fong reduction
we may assume that B is quasiprimitive, i.e. that, for any normal subgroup N of G, B covers a unique block
BN of N . Note that D ∩N is a Sylow 2-subgroup of N and a defect group of BN .

Suppose now that N = O(G). Then, by the second Fong reduction there exist a finite group G∗ with a cyclic
central subgroup N∗ of odd order such that G∗/N∗ is isomorphic to G/N , and a block B∗ of G∗ whose defect
group D∗ is isomorphic to D; moreover, B∗ is Morita equivalent to B; in particular, we have k(B∗) = k(B) = 8
and l(B∗) = l(B) = 7.

Thus, Proposition 2.1 implies that e(B∗) = 15 as well, so that G∗, B∗ is also a counterexample. So we may
assume that G = G∗ and B = B∗. Then N is a central cyclic subgroup of odd order in G.

Let M/N be a minimal normal subgroup of G/N . Then D ∩M is a Sylow 2-subgroup of M ; in particular,
D ∩M 6= 1. Then D ∩M is stable under the inertial subgroup NG(D, b) of B. Since NG(D, b) acts transitively
on D \ {1}, we must have D = D ∩M ⊆ M . Thus M/N is the only minimal normal subgroup of G/N , and
|G : M | is odd.
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If M/N is abelian then M = D × N ; in particular, B has a normal defect group. But this is impossible since
G, B is a counterexample.

Hence M/N is a direct product of isomorphic nonabelian finite simple groups which are transitively permuted
under conjugation in G:

M/N = S1/N × . . .× St/N.

Thus D = (D∩S1)× . . .× (D∩St) with isomorphic factors. Since |D| = 24, we must have t = 1, t = 2 or t = 4.
Since |G : M | is odd, this implies that t = 1. HenceM/N is a simple group with Sylow 2-subgroupD. By Walter’s
Theorem (see [44]), we must have M/N = PSL(2, 16). Note also that M = F∗(G). Since PSL(2, 16) has a trivial
Schur multiplier and an outer automorphism group of order 4, we conclude that G = M = PSL(2, 16)×N . We
may therefore clearly assume that N = 1. In this case B is the principal 2-block of PSL(2, 16), and l(B) = 15,
a final contradiction.

We remark that even more informations about 2-blocks of defect 4 can be extracted from [37]. For example
Cartan matrices and the number of 2-rational and 2-conjugate characters of these blocks are known in most
cases.

5 Invariants of blocks

In this section we give an overview in which cases the block invariants of p-blocks for arbitrary primes p are
known. It should be pointed out that many p-groups provide only nilpotent fusion systems. For such defect
groups all block invariants are known, and we will omit theses cases. The extraspecial group of order p3 and
exponent p2 for an odd prime p is denoted by p1+2

− . More generally, let Mpn be the (unique) nonabelian group
of order pn with exponent pn−1.

p D I(B) classification used? references
arbitrary cyclic arbitrary no [8]
arbitrary abelian e(B) ≤ 4 no [40, 28, 27]
arbitrary abelian S3 no [41]
≥ 7 abelian C4 × C2 no [43]

/∈ {2, 7} abelian C2
3 no [42]

2 metacyclic arbitrary no [5, 23, 28, 39]
2 maximal class ∗ cyclic, arbitrary only for D ∼= C3

2 [16, 38, 31, 32]
incl. ∗ = ×

2 minimal nonabelian arbitrary only for one family [35, 10]
where |D| = 22r+1

2 minimal nonmetacyclic arbitrary only for D ∼= C3
2 [37]

2 |D| ≤ 16 � C15 yes this paper
2 C4 o C2 arbitrary no [19]
2 D8 ∗Q8 C5 yes [34]
2 C2n × C3

2 , n ≥ 2 arbitrary yes [34]
3 C2

3 /∈ {C8, Q8} no [18, 46]
3, 5, 7, 11 p1+2

− e(B) ≤ 2 no [33]
3 M81 arbitrary no [33]
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