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Abstract

We prove new inequalities concerning Brauer’s k(B)-Conjecture and Olsson’s Conjecture by generalizing
old results from [Olsson, 1981]. After that we obtain the invariants for 2-blocks of finite groups with certain
bicyclic defect groups. Here, a bicyclic group is a product of two cyclic subgroups. This provides an application
for the classification of the corresponding fusion systems in [Sambale, 2012]. To some extent this generalizes
previously known cases with defect groups of type D2n ×C2m , Q2n ×C2m and D2n ∗C2m . As a consequence
we prove Alperin’s Weight Conjecture and other conjectures for several new infinite families of nonnilpotent
blocks. We also prove Brauer’s k(B)-Conjecture and Olsson’s Conjecture for the 2-blocks of defect at most
5. This completes results from [Sambale, 2011]. The k(B)-Conjecture is also verified for defect groups with
a cyclic subgroup of index at most 4. Finally, we consider Olsson’s Conjecture for certain 3-blocks.
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1 Introduction

Let B be a p-block of a finite group G. One aim of this paper is to establish new inequalities on the number of
irreducible characters of B in terms of subsections. We outline the idea behind these things.

Olsson proved in [38] the following:
l(B) ≤ 2 =⇒ k(B) ≤ pd

where d is the defect of B. In particular this gives an example for Brauer’s k(B)-Conjecture. However, in praxis
this implication is not so useful, because usually the knowledge of l(B) already implies the exact value of k(B).
Since the proofs in [38] only rely on computations with the contributions of the trivial subsection (1, B), it
seems likely that one can extend this result to major subsections. Then we would be able to apply induction
on d (see Theorem 4.9). Hence, let (z, bz) be a major subsection such that l(bz) ≤ 2. In case l(bz) = 1 we have∑
ki(B)p2i ≤ pd by Theorem 3.4 in [40] (a stronger bound can be found in [20]).

In the first part of this paper we show
l(bz) ≤ 2 =⇒ k(B) ≤ pd.

In contrast to Olsson’s paper we use methods from [40] and [45]. For p = 2, Olsson proved the stronger statement
l(B) ≤ 3 =⇒ k(B) ≤ pd. Using his ideas we generalize this to major subsections as well. The underlying
properties of the contribution matrices were first discovered by Brauer in [5]. However, we will refer to Feit’s
book [16] for a more accessible account. Using Galois theory we overcome the difficulty that the contributions
are not necessarily integers in this general setting.

More generally we consider arbitrary subsections for the prime 2 in order to give bounds on the number
of characters of height 0. Here it is known by [8] (more recent accounts can be found in [41, 32]) that the
corresponding contributions for characters of height 0 do not vanish. Using exactly the same method we show
that k0(B) ≤ 2q if there is a subsection (u, bu) such that bu has defect q and l(bu) ≤ 3.

In the third section of this article we present new infinite families of defect groups for which the block invariants
can be calculated. These defect groups are examples of bicyclic 2-groups (i. e. D = 〈x〉〈y〉 for some x, y ∈ D).
The proofs make use of the classification of the corresponding fusion systems in [51]. However, we cannot handle
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all bicyclic 2-groups. We also remark that these defect groups are in a sense noncommutative versions of the
groups D2n × C2m , Q2n × C2m and D2n ∗C2m covered in [47, 50, 49]. As a consequence we verify numerous
conjectures including Alperin’s Weight Conjecture for these blocks.

After that we collect some more or less related examples for block invariants. In particular we discuss some
defect groups of order 32. One of the main results here is the verification of Brauer’s k(B)-Conjecture for the
2-blocks of defect at most 5. This completes Theorem 3 in [46]. The new ingredient here is in fact an old result
of Brauer which uses the inverse of the Cartan matrix of a major subsection.

In the last section we obtain new cases for Olsson’s Conjecture. In particular we handle the 2-blocks of defect
at most 5 and some 3-blocks with defect group of 3-rank 2 which were left over in [20].

2 New Inequalities

Let B be a p-block of a finite group G with defect group D. We define the height h(χ) of a character χ ∈ Irr(B)
by χ(1)p = ph(χ)|G : D|p. Moreover, Irri(B) := {χ ∈ Irr(B) : h(χ) = i}, k(B) := |Irr(B)| and ki(B) := |Irri(B)|
for i ≥ 0. As usual we denote the set of irreducible Brauer characters of B by IBr(B) and its cardinality by
l(B) := |IBr(B)|.

In the following we choose an element z ∈ Z(D). Then there exists a Brauer correspondent bz of B in CG(z).
The pair (z, bz) is called major subsection.

Theorem 2.1. Let B be a p-block of a finite group with defect d, and let (z, bz) be a major subsection such that
l(bz) ≤ 2. Then one of the following holds:

(i)
∞∑
i=0

ki(B)p2i ≤ pd.

(ii)

k(B) ≤


p+ 3

2
pd−1 if p > 2,

2

3
2d if p = 2.

In particular Brauer’s k(B)-Conjecture holds for B.

Proof. In case l(bz) = 1 Eq. (i) holds. Hence, let l(bz) = 2, and let Cz = (cij) be the Cartan matrix of bz up to
basic sets. We consider the number

q(bz) := min{xpdC−1
z xT : 0 6= x ∈ Zl(bz)} ∈ N.

If q(bz) = 1, Eq. (i) follows from Theorem 3.4.1 in [40]. Therefore, we may assume q(bz) ≥ 2. Then Brauer’s
k(B)-Conjecture already holds by Theorem V.9.17 in [16], but we want to obtain the stronger bound (ii). Since
pd is always an elementary divisor of Cz, we see that Cz is not a diagonal matrix. This allows us to apply
Theorem 2.4 in [20]. All entries of Cz are divisible by the smallest elementary divisor γ := p−d detCz. Hence,
we may consider the integral matrix C̃z = (c̃ij) := γ−1Cz. After changing the basic set we may assume that
0 < 2c̃12 ≤ c̃11 ≤ c̃22. Then

c̃11c̃22 −
c̃211

4
≤ c̃11c̃22 − c̃212 = det C̃z =

pd

γ

and

c̃11 + c̃22 ≤
5

4
c̃11 +

det C̃z
c̃11

=: f(c̃11).

A discussion of the convex function f(c̃11) as in Theorem 1 in [45] shows that c̃11 + c̃22 ≤ f(2). Now Theorem 2.4
in [20] leads to

k(B) ≤ γ(c̃11 + c̃22 − c̃12) ≤ γ(f(2)− 1) ≤ pd + 3γ

2
.
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Since γ ≤ pd−1, we get (ii) for p odd. In order to deduce the k(B)-Conjecture we need to consider the case
p = 2. If c̃11 = 2, we must have c̃12 = 1. Hence, under these circumstances p > 2, since otherwise det C̃z is not
a p-power. Now assume c̃11 ≥ 3 and p = 2. Since

pdC−1
z =

pd

γ
C̃−1
z =

(
c̃22 −c̃12

−c̃12 c̃11

)
,

we have q(bz) ≥ 3. Now Theorem V.9.17 in [16] implies (ii). We will derive another estimation for p = 2 in
Theorem 2.2 below.

It is conjectured that the matrix Cz for l(bz) ≥ 2 in the proof of Theorem 2.1 cannot have diagonal shape (this
holds for p-solvable groups by Lemma 1 in [45]). Hence for l(bz) = 2 Theorem 2.1(ii) might always apply. Then
k(B) < pd unless p = 3.

In order to improve Theorem 2.1 for p = 2 we need more notation. Suppose as before that (z, bz) is a major
subsection. We denote the corresponding part of the generalized decomposition matrix by Dz := (dzχϕ : χ ∈
Irr(B), ϕ ∈ IBr(bz)). Then the Cartan matrix of bz is given by Cz := DT

z Dz. Moreover, the contribution matrix
of bz is defined as

Mz := (mz
χψ)χ,ψ∈Irr(B) = |D|DzC

−1
z Dz

T
.

In case |〈z〉| ≤ 2, it can be seen easily that Mz is an integral matrix. Then most proofs of [38] remain true
without any changes. This was more or less done in [39] (compare also with Corollary 3.5 in [40]). In the general
case we have to put a bit more effort into the proof.

Theorem 2.2. Let B be a 2-block of a finite group with defect d, and let (z, bz) be a major B-subsection such
that l(bz) ≤ 3. Then

k(B) ≤ k0(B) +
2

3

∞∑
i=1

2iki(B) ≤ 2d.

In particular Brauer’s k(B)-Conjecture is satisfied for B.

Proof. Observe that by construction mz
χχ is a positive real number for every χ ∈ Irr(B), since Cz is positive

definite. Since all elementary divisors of Cz are divisors of 2d, the matrix 2dC−1
z is integral. In particular the

numbers mz
χψ are also algebraic integers. Let χ ∈ Irr(B) be a character of height 0. Let |〈z〉| = 2n. In case n ≤ 1

the proof is much easier. For this reason we assume n ≥ 2. We write

mz
χχ =

2n−1−1∑
j=0

aj(χ)ζj

with ζ := e2πi/2n

and aj(χ) ∈ Z for j = 0, . . . , 2n−1 − 1. As usual the Galois group G of the 2n-th cyclotomic
field acts on Irr(B), on the rows of Dz, and thus also on Mz in an obvious manner. Let Γ be the orbit of χ
under G. Set m := |Γ|. Then we have

ma0(χ) =
∑
ψ∈Γ

mz
ψψ > 0.

Assume first that a0(χ) = 1. Since M2
z = MzMz

T
= 2dMz (see Theorem V.9.4 in [16]), it follows that

m2d =
∑
ψ∈Γ,

τ∈Irr(B)

|mz
ψτ |2.

Applying Galois theory gives ∏
ψ∈Γ,

τ∈Irri(B)

|mz
ψτ |2 ∈ Q
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for all i ≥ 0. By Theorem V.9.4 in [16] we also know ν(mz
ψτ ) = h(τ) where ν is the 2-adic valuation and ψ ∈ Γ.

Hence, also the numbers mz
ψτ2−h(τ) are algebraic integers. This implies

Z 3
∏
ψ∈Γ,

τ∈Irri(B)

2−2i|mz
ψτ |2 ≥ 1.

Now using the inequality of arithmetic and geometric means we obtain∑
ψ∈Γ,

τ∈Irri(B)

|mz
ψτ |2 ≥ m22iki(B)

for all i ≥ 0. Summing over i gives

m2d =
∑
ψ∈Γ,

τ∈Irr(B)

|mz
ψτ |2 ≥ m

∞∑
i=0

22iki(B)

which is even more than we wanted to prove.

Hence, we can assume that a0(χ) ≥ 2 for all χ ∈ Irr(B) such that h(χ) = 0. It is well known that the ring of
integers of Q(ζ)∩R has basis 1, ζj+ζ−j = ζj−ζ2n−1−j for j = 1, . . . , 2n−2−1. In particular the numbers aj(χ) for
j ≥ 1 come in pairs modulo 2. Since ν(mz

χχ) = 0, we even have a0(χ) ≥ 3. For an arbitrary character ψ ∈ Irr(B)

of positive height we already know that mz
ψψ2−h(ψ) is a positive algebraic integer. Hence, 2h(ψ) | aj(ψ) for all

j ≥ 0. By Theorem V.9.4 in [16] we have ν(mz
ψψ) > h(ψ). Thus, we even have 2h(ψ)+1 | a0(ψ). As above we also

have a0(ψ) > 0. This implies
∑
ψ∈Irri(B)m

z
ψψ ≥ 2i+1ki(B) for i ≥ 1 via Galois theory. Using trMz = 2dl(bz) it

follows that

3 · 2d ≥
∑

ψ∈Irr(B)

mz
ψψ ≥ 3k0(B) +

∞∑
i=1

2i+1ki(B).

This proves the claim.

We remark that in Theorem 6(ii) in [38] it should read l(B) ≤ p2 − 1 (compare with Theorem 6*(ii)).

It is easy to see that the proof of Theorem 2.2 can be generalized to the following.

Proposition 2.3. Let B be a 2-block of a finite group with defect d, and let (z, bz) be a major B-subsection.
Then for every odd number α one of the following holds:

(1)
∞∑
i=0

22iki(B) ≤ 2dα,

(2) (α+ 2)k0(B) +
∞∑
i=1

2i+1ki(B) ≤ 2dl(bz).

Proof. As in Theorem 2.2 let χ ∈ Irr0(B) and define a0(χ) similarly. In case a0(χ) ≤ α the first inequality
applies. Otherwise the second inequality applies.

Observe that Proposition 2.3 also covers (a generalization of) Theorem 8 in [38] for p = 2.

Going over to arbitrary subsections (i. e. the element does not necessarily belong to Z(D)) we can prove the
following result concerning Olsson’s Conjecture. This improves Theorem 3.1 in [41] for p = 2.

Theorem 2.4. Let B be a 2-block of a finite group, and let (u, bu) be a B-subsection such that bu has defect
q. Set α :=

⌊√
l(bu)

⌋
if
⌊√

l(bu)
⌋
is odd and α := l(bu)⌊√

l(bu)
⌋

+1
otherwise. Then k0(B) ≤ α2q. In particular

k0(B) ≤ 2q if l(bu) ≤ 3.
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Proof. The contributions for (u, bu) are defined by

Mu := (mu
χψ)χ,ψ∈Irr(B) = pqDuC

−1
u Du

T
.

By Corollary 1.15 in [32] we still have mu
χψ 6= 0 as long as h(χ) = h(ψ) = 0. However, in all other cases it

is possible that mu
χψ = 0. So we can copy the proof of Theorem 2.2 by leaving out the characters of positive

height. This gives k0(B) ≤ α2q or k0(B) ≤ 2ql(bu)/(α + 2) for every odd number α. If
⌊√

l(bu)
⌋
is odd, we

choose α :=
⌊√

l(bu)
⌋
. Otherwise we take α :=

⌊√
l(bu)

⌋
− 1. The result follows.

Finally, we generalize the “dual” inequalities in [38]. For this let M ′z := (m′χψ) = 2d1k(B) −Mz.

Proposition 2.5. Let B be a 2-block of a finite group with defect d, and let (z, bz) be a major B-subsection.
Then for every odd number α one of the following holds:

(1)
∞∑
i=0

22iki(B) ≤ 2dα,

(2) (α+ 2)k0(B) +
∞∑
i=1

2i+1ki(B) ≤ 2d(k(B)− l(bz)).

In particular Brauer’s k(B)-Conjecture holds if k(B)− l(bz) ≤ 3.

Proof. By Lemma V.9.3 in [16] the numbers m′χχ for χ ∈ Irr(B) are still real, positive algebraic integers. As in
Theorem 2.2 we may assume |〈z〉| = 2n ≥ 4. Let us write

m′χχ =

2n−1−1∑
j=0

aj(χ)ζj

with χ ∈ Irr0(B), ζ := e2πi/2n

and aj(χ) ∈ Z for j = 0, . . . , 2n−1−1. The Galois group still acts onM ′z. Also the
equation (M ′z)

2 = M ′zM
′
z

T
= 2dM ′z remains true. For τ ∈ Irr(B) we have ν(m′χτ ) = ν(2d −mz

χτ ) = ν(mz
χτ ) =

h(τ). Hence, in case a0(χ) ≤ α we can carry over the arguments in Theorem 2.2.

Now assume that a0(χ) > α for all characters χ ∈ Irr0(B). Here the proof works also quite similar as in
Theorem 2.2. In fact for a character ψ ∈ Irr(B) of positive height we have ν(m′ψψ) = ν(2d − mz

ψψ) ≥
min{ν(2d), ν(mz

ψψ)} > h(ψ) by Theorem V.9.4 in [16]. Moreover, trM ′z = 2d(k(B) − l(B)). The claim fol-
lows.

It should be pointed out that usually k(B)− l(B) = k(B)− l(b1) ≤ k(B)− l(bz) for a major subsection (z, bz)
(this holds for example if z lies in the center of the fusion system of B, see [26]). However, this is not true in
general as we see in Proposition 2.1(vii) in [27]. Another problem is that k(B) − l(bz) for z 6= 1 is not locally
determined (in contrast to k(B) − l(B)). By combining with Proposition 2.3 we can replace (2) in the last
proposition by

(α+ 2)k0(B) +

∞∑
i=1

2i+1ki(B) ≤ 2d min{l(bz), k(B)− l(bz)}.

3 Bicyclic defect groups

As mentioned in the introduction, we consider in this section blocks with defect groups coming from Theo-
rem 4.19 in [51]. A key feature of the groups in the next three theorems is that all their irreducible characters
have degree 1 or 2. We also remark that Olsson’s Conjecture was verified for all blocks with bicyclic defect
groups in [51].
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Theorem 3.1. Let B be a nonnilpotent 2-block of a finite group with defect group

D ∼= 〈v, x, a | v2n

= x2 = a2m

= 1, xv = av = v−1, ax = vx〉 ∼= D2n+1 o C2m

for some n,m ≥ 2. Then k(B) = 2m−1(2n + 3), k0(B) = 2m+1, k1(B) = 2m−1(2n − 1) and l(B) = 2. In
particular Brauer’s k(B)-Conjecture and Alperin’s Weight Conjecture are satisfied.

Proof. Let F be the fusion system of B, and let z := v2n−1

. Then by Theorem 4.19 in [51], Q := 〈z, x, a2〉 is the
only F-essential subgroup up to conjugation. In order to calculate k(B) we use Brauer’s formula (Theorem 5.9.4
in [33]). We will see that it is not necessary to obtain a complete set of representatives for the F-conjugacy classes.
Since 〈v, ax〉 is an abelian maximal subgroup of D, all characters in Irr(D) have degree 1 or 2. In particular
k(D) := |Irr(D)| = |D/D′|+(|D|−|D/D′|)/4 = 2m−1(2n+3). Now we have to count how many conjugacy classes
of D are fused under AutF (Q). According to Theorem 4.19 in [51] there are two possibilities CQ(AutF (Q)) =
Z(F) ∈ {〈a2〉, 〈a2z〉}. In the first case the elements of the form xa2j are conjugate to corresponding elements
za2j under AutF (Q). In the second case a similar statement is true for a2j . Observe that the elements xa2j

and xza2j are already conjugate in D. Since 〈a2, z〉 ⊆ Z(D), no more fusion can occur. Hence, the number of
F-conjugacy classes is 2m−1(2n + 3)− 2m−1 = 2m(2n−1 + 1).

Now we have to determine at least some of the numbers l(bu) where u ∈ D. The group D1 := D/〈a2〉 (resp.
D2 := D/〈a2z〉) has commutator subgroup D′〈a2〉/〈a2〉 (resp. D′〈a2z〉/〈a2z〉) of index 4. Hence D1 (resp. D2)
has maximal class. The block ba2 (resp. ba2z) dominates a block ba2 (resp. ba2z) with defect group D1. Let
F1 (resp. F2) be the fusion system of ba2 (resp. ba2z). Then in case Z(F) = 〈a2〉 (resp. Z(F) = 〈a2z〉) Q is
the only F1-essential (resp. F2-essential) subgroup of D1 (resp. D2) up to conjugation. Thus, [7, 36] imply
l(ba2) = l(ba2) = 2 (resp. l(ba2z) = l(ba2z) = 2). The same holds for all odd powers of a2 (resp. a2z). Next we
consider the elements u := a2j

for 2 ≤ j ≤ m − 1. It can be seen that the isomorphism type of D/〈u〉 is the
same as for D except that we have to replace m by j. Also the essential subgroup Q carries over to the block
bu. Hence, induction on m gives l(bu) = 2 as well. For all other nontrivial subsections (u, bu) we only know
l(bu) ≥ 1. Finally, l(B) ≥ 2, since B is centrally controlled (Theorem 1.1 in [26]). Applying Brauer’s formula
gives

k(B) ≥ 2m + 2m(2n−1 + 1)− 2m−1 = 2m−1(2n + 3) = k(D).

We already know from Theorem 5.3 in [51] that Olsson’s Conjecture holds for B, i. e. k0(B) ≤ |D : D′| = 2m+1.
Now we apply Theorem 3.4 in [40] to the subsection (z, bz) which gives

|D| = 2m+1 + 2m+1(2n − 1) ≤ k0(B) + 4(k(B)− k0(B)) ≤
∞∑
i=0

22iki(B) ≤ |D|.

This implies k(B) = k(D) = 2m−1(2n + 3), k0(B) = 2m+1, k1(B) = 2m−1(2n − 1) and l(B) = 2. Brauer’s
k(B)-Conjecture follows immediately. In order to prove Alperin’s Weight Conjecture (see Proposition 5.4 in
[22]) it suffices to show that Q and D are the only F-radical, F-centric subgroups of D. Thus, assume by way
of contradiction that Q1 is another F-radical, F-centric subgroup. Since Q1 is F-centric it cannot lie inside Q.
Moreover, OutF (Q1) must provide an morphism of odd order, because Q1 < D. However, by Alperin’s Fusion
Theorem F is generated by AutF (Q) and AutF (D). This gives the desired contradiction.

We add some remarks. First, the direct products of similar type D2n+1 ×C2m were already handled in [47]. Also
if n = 1 we obtain the minimal nonabelian group C2

2 o C2m for which the block invariants are also known by
[44]. Moreover, it is an easy exercise to check that various other conjectures (for example [14, 12, 31]) are also
true in the situation of Theorem 3.1. We will not go into the details here.

The next theorem concerns defect groups which have a similar structure as the central products Q2n+1 ∗C2m

discussed in [49]. Also, this result is needed for the induction step in the theorem after that.

Theorem 3.2. Let B be a nonnilpotent 2-block of a finite group with defect group

D ∼= 〈v, x, a | v2n

= 1, a2m

= x2 = v2n−1

, xv = av = v−1, ax = vx〉 ∼= Q2n+1 .C2m ∼= D2n+1 .C2m

for some n,m ≥ 2 and m 6= n. Then k(B) = 2m+1(2n−2 + 1), k0(B) = 2m+1, k1(B) = 2m−1(2n − 1),
kn(B) = 2m−1 and l(B) = 2. In particular Brauer’s k(B)-Conjecture and Alperin’s Weight Conjecture are
satisfied.
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Proof. First observe that the proof of Theorem 4.20 in [51] shows that in fact

D ∼= 〈v, x, a | v2n

= x2 = 1, a2m

= v2n−1

, xv = av = v−1, ax = vx〉 ∼= D2n+1 .C2m .

Let F be the fusion system of B, and let y := v2n−2

and z := x2. Then by Theorem 4.19 in [51], Q := 〈x, y, a2〉 ∼=
Q8 ∗C2m is the only F-essential subgroup up to conjugation (since n 6= m, D is not a wreath product). Again
we use Brauer’s formula (Theorem 5.9.4 in [33]) to get a lower bound for k(B). The same argumentation as in
Theorem 3.1 shows that D has 2m−1(2n + 3) conjugacy classes and we need to know which of them are fused
in Q. It is easy to see that xa2j is conjugate to ya2j under AutF (Q) for j ∈ Z. Observe that xa2j is already
conjugate to xya2j

and x−1a2j

= xa2j+2m

in D. Since Z(F) = 〈a2〉, this is the only fusion which occurs. Hence,
the number of F-conjugacy classes is again 2m(2n−1 + 1).

Again D/〈a2〉 has maximal class and l(ba2) = 2 by [7, 36]. The same is true for the odd powers of a2. Now
let u := a2j

for some 2 ≤ j ≤ m. Then it turns out that D/〈u〉 is isomorphic to the group D2n o C2j as
in Theorem 3.1. So we obtain l(bu) = 2 as well. For the other nontrivial subsections (u, bu) we have at least
l(bu) ≥ 1. Finally l(B) ≥ 2, since B is centrally controlled (see Theorem 1.1 in [26]). Therefore,

k(B) ≥ 2m+1 + 2m(2n−1 + 1)− 2m = 2m+1(2n−2 + 1). (1)

Also, k0(B) ≤ 2m+1 by Theorem 5.3 in [51]. However, in this situation we cannot apply [40]. So we use
Theorem 2.4 in [20] for the major subsection (a2, ba2). Let us determine the isomorphism type of D := D/〈a2〉
precisely. Since (ax)2 = axax = vx2a2 ≡ v (mod 〈a2〉), ax generates a cyclic maximal subgroup D. Since
a(ax) = avx = axv−1 ≡ (ax)−1 (mod 〈a2〉), D ∼= D2n+1 . Hence, the Cartan matrix of ba2 is given by

2m
(

2n−1 + 1 2
2 4

)
up to basic sets (see [15]). This gives k(B) ≤ 2m(2n−1 + 3) which is not quite what we wanted. However, the
restriction on k0(B) will show that this maximal value for k(B) cannot be reached. For this we use the same
method as in [49], i. e. we analyze the generalized decomposition numbers duχϕi

for u := a2 and IBr(bu) =
{ϕ1, ϕ2}. Since the argument is quite similar except that n has a slightly different meaning, we only present
some key observations here. As in [49] we write

duχϕi
=

2m−1−1∑
j=0

aij(χ)ζj

where ζ := e2πi/2m

. It follows that

(a1
i , a

1
j ) = (2n + 2)δij , (a1

i , a
2
j ) = 4δij , (a2

i , a
2
j ) = 8δij .

Moreover, h(χ) = 0 if and only if
∑2m−1−1
j=0 a2

j (χ) ≡ 1 (mod 2). This gives three essentially different possibilities
for a1

j and a2
j as in [49]. Let the numbers α, β, γ and δ be defined as there. Then

γ = 2m−1 − α− β,
k(B) ≤ (2n + 6)α+ (2n + 4)β + (2n + 2)γ − δ/2

= 2m+n−1 + 6α+ 4β + 2γ − δ/2
= 2m+n−1 + 2m + 4α+ 2β − δ/2,

8α+ 4β − δ ≤ k0(B) ≤ 2m+1.

This shows k(B) ≤ 2m+n−1 + 2m+1 = 2m+1(2n−2 + 1). Together with (1) we have k(B) = 2m+1(2n−2 + 1) and
l(B) = 2. The inequalities above also show k0(B) = 2m+1. Now we can carry over the further discussion in [49]
word by word. In particular we get δ = 0,

k1(B) = (2n − 2)α+ (2n − 1)β + 2nγ = 2n+m−1 − 2α− β = 2n+m−1 − 2m−1 = 2m−1(2n − 1)

and finally kn(B) = 2m−1. The conjectures follow as usual.
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Now we can also handle defect groups of type Q2n+1 oC2m . It is interesting to see that we get the same number
of characters, although the groups are nonisomorphic as shown in [51].

Theorem 3.3. Let B be a nonnilpotent 2-block of a finite group with defect group

D ∼= 〈v, x, a | v2n

= a2m

= 1, x2 = v2n−1

, xv = av = v−1, ax = vx〉 ∼= Q2n+1 o C2m

for some n,m ≥ 2. Then k(B) = 2m+1(2n−2 + 1), k0(B) = 2m+1, k1(B) = 2m−1(2n − 1), kn(B) = 2m−1 and
l(B) = 2. In particular Brauer’s k(B)-Conjecture and Alperin’s Weight Conjecture are satisfied.

Proof. Let F be the fusion system of B, and let y := v2n−2

and z := x2. Then by Theorem 4.19 in [51],
Q := 〈x, y, a2〉 ∼= Q2n+1 × C2m−1 is the only F-essential subgroup up to conjugation. Again we use Brauer’s
formula (Theorem 5.9.4 in [33]) to get a lower bound for k(B).

The same argument as in Theorem 3.1 shows that D has 2m−1(2n + 3) conjugacy classes and we need to know
which of them are fused in Q. It is easy to see that xa2j is conjugate to ya2j under AutF (Q) for j ∈ Z.
Since Z(F) = 〈z, a2〉, this is the only fusion which occurs. Hence, the number of F-conjugacy classes is again
2m(2n−1 + 1). In case n = 2 the group D/〈z〉 ∼= C2

2 o C2m is minimal nonabelian, and we get l(bz) = 2 from
[44]. Otherwise D/〈z〉 is isomorphic to one of the groups in Theorem 3.1. Hence, again l(bz) = 2. As usual the
groups D/〈a2〉 and D/〈a2z〉 have maximal class and it follows that l(ba2) = l(ba2z) = 2. The same holds for all
odd powers of a2 and a2z. For 2 ≤ j ≤ m − 1 the group D/〈u〉 with u := a2j

has the same isomorphism type
as D where m has to be replaced by j. So induction on m shows l(bu) = 2. It remains to deal with u := a2j

z.
Here D/〈u〉 ∼= Q2n+1 .C2j is exactly the group from Theorem 3.2. Thus, for j 6= n we have again l(bu) = 2. In
case j = n, D/〈u〉 ∼= C2n o C2. Then (7.G) in [25] gives l(bu) = 2 as well. Now Brauer’s formula reveals

k(B) ≥ 2m+1 + 2m(2n−1 + 1)− 2m = 2m+1(2n−2 + 1).

For the opposite inequality we apply Theorem 2.4 in [20] to the major subsection (u, bu) where u := a2z. A
similar calculation as in Theorem 3.2 shows that D/〈u〉 ∼= Q2n+2 . Hence, the Cartan matrix of bu is given by

2m
(

2n−1 + 1 2
2 4

)
up to basic sets (see [15]). This is the same matrix as in Theorem 3.2, but the following discussion is slightly
different, because a2 has only order 2m−1 here. So we copy the proof of the main theorem in [50]. In fact we
just have to replace m by m+ 1 and n by n− 2 in order to use this proof word by word. The claim follows.

We describe the structure of these group extensions in a more generic way.

Proposition 3.4. Let D be an extension of the cyclic group 〈a〉 ∼= C2n by a group M which has maximal class
or is the fourgroup. Suppose that the corresponding coupling ω : 〈a〉 → Out(M) satisfies the following: If ω 6= 0,
then the coset ω(a) of Inn(M) contains an involution which acts nontrivially on M/ϕ(M). Moreover, assume
that D 6∼= C2m o C2 for all m ≥ 3. Then the invariants for every block of a finite group with defect group D are
known.

Proof. Assume first thatM ∼= C2
2 . Then in case ω = 0 we get the groups C2n×C2

2 and C2n+1×C2 for which the
block invariants can be calculated by [53, 23]. So let ω 6= 0. If D is nonsplit, it must contain a cyclic maximal
subgroup. In particular D is metacyclic and the block invariants are known. If the extension splits and we obtain
the minimal nonabelian group C2

2 o C2n . Here the block invariants are known by [44].

Hence, let M be a 2-group of maximal class. Then |Z(M)| = 2. Thus, for ω = 0 we obtain precisely two
extensions for every group M . All these cases were handled in [47, 50, 49]. Let us now consider the case ω 6= 0.
Since the three maximal subgroups of a semidihedral group are pairwise nonisomorphic, M must be a dihedral
or quaternion group. Write M = 〈v, x | v2m

= 1, x2 ∈ 〈v2m−1〉, xv = v−1〉. Let α ∈ Aut(M) be an involution
which acts nontrivially on M/ϕ(M). Then there is an odd integer i such that αx = vix. Since α2 = 1, it follows
that αv = v−1. Hence, the coset α Inn(M) ∈ Out(M) is determined uniquely. Hence, ω is unique. So we get four
group extensions for every pair (n,m). Two of them are isomorphic and all cases are covered in Theorem 3.1,
3.2 and 3.3 (and [25] for C4 o C2).
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4 More examples

Since almost all block invariants for 2-blocks of defect 4 are known (see [27]), it is natural to look at 2-blocks of
defect 5. Here for the abelian defect group C4×C3

2 the invariants are not known so far. We handle more general
abelian defect groups in the next theorem. This result relies on the classification of the finite simple groups. We
denote the inertial index of B by e(B).

Theorem 4.1. Let B be a block of a finite group G with defect group C2n ×C3
2 for some n ≥ 2. Then we have

k(B) = k0(B) = |D| = 2n+3 and one of the following holds:

(i) e(B) = l(B) = 1.

(ii) e(B) = l(B) = 3.

(iii) e(B) = l(B) = 7.

(iv) e(B) = 21, l(B) = 5.

Proof. Let D = C2n × C3
2 . Since Aut(D) acts faithfully on Ω(D)/ϕ(D) ∼= C3

2 , we have e(B) ∈ {1, 3, 7, 21}. In
case e(B) = 1, the block is nilpotent and the result is clear. Now we consider the remaining cases.

Case 1: e(B) = 3.
Then there are 2n+2 subsections (u, bu) up to conjugation and 2n+1 of them satisfy l(bu) = 1. For the other 2n+1

subsections Theorem 1 in [55] implies l(bu) = 3. This gives k(B) = 2n+3 = |D|. The Height Zero Conjecture
follows from Theorem 1.1 in [24].

Case 2: e(B) = 7.
Here we have 2n+1 subsections (u, bu) up to conjugation where 2n of them satisfy l(bu) = 1. For the other 2n

subsections we use Theorem 1 in [55] in connection with Theorem 1.1 in [23] (instead of [23] we could also
use [24] which we need anyway). This gives l(bu) = 7 for these subsections. It follows that k(B) = |D| and
k(B) = k0(B) by Theorem 1.1 in [24].

Case 3: e(B) = 21.
Here we have again 2n+1 subsections (u, bu) up to conjugation. But this time 2n subsections satisfy l(bu) = 3
and the other 2n subsections satisfy l(bu) = 5 by [55, 23]. The result follows as before.

Next we study another group of order 32 with an easy structure. For this let MNA(r, s) be the minimal
nonabelian group given by

〈x, y | x2r

= y2s

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉

for some r ≥ s ≥ 1 (see [43]). For the notion of a constrained fusion system we refer to Definition 2.3 in [35].

Proposition 4.2. Let B be a nonnilpotent block of a finite group with defect group D ∼= MNA(2, 1) × C2.
Then k(B) = 20, k0(B) = 16, k1(B) = 4 and l(B) = 2. In particular Olsson’s Conjecture and Alperin’s Weight
Conjecture hold for B.

Proof. Let F be the fusion system of B. Since |D : Z(D)| = 4, every F-essential subgroup is maximal, and there
are three candidates for these groups. Let Z(D) < M < D such that M ∼= C4 × C2

2 . Then AutF (M) must act
nontrivially on Ω(M)/ϕ(M). However, it can be seen that ND(M) acts trivially on Ω(M)/ϕ(M). In particular
M is not F-radical. Hence, there is only one F-essential subgroup Q ∼= C4

2 (up to conjugation). Since QED, F is
constrained and thus uniquely determined by OutF (Q) (see Theorem 4.6 in [30]). By Lemma 3.11 in [51] we have
some possibilities for OutF (Q). However, a GAP calculation shows that only OutF (Q) ∼= S3 is realizable. Then
F is the fusion system on the group SmallGroup(96, 194) ∼= (A4oC4)×C2. In particular there are exactly 16 F-
conjugacy classes on D. Moreover, Z(F) ∼= C2

2 , and for 1 6= z ∈ Z(F) we have D/〈z〉 ∈ {MNA(2, 1), D8 × C2}.
Hence, we get l(bz) = 2 as usual. For all other nontrivial subsections (u, bu) we have l(bu) ≥ 1. Since B is
centrally controlled, Theorem 1.1 in [26] implies l(B) ≥ 2. Brauer’s formula for k(B) gives k(B) ≥ 20. If x ∈ D
has order 4, then CD(x)/〈x〉 has order 4. Hence, Olsson’s Conjecture follows from Theorem 2.5 in [20], i. e.

9



k0(B) ≤ |D : D′| = 16. For an element z ∈ Z(D) \ Z(F) the block bz is nilpotent. Thus, Theorem 3.4 in [40]
implies

|D| = 32 ≤ k0(B) + 4(k(B)− k0(B)) ≤
∞∑
i=0

22iki(B) ≤ |D|.

The claim follows as usual.

In the classification of the simple groups of 2-rank 2 the sole exception PSU(3, 4) shows up (see [1]). This
group has a Suzuki Sylow 2-subgroup P of order 64 (see Definition 1.4 in [10]). The group P also occurs in
the classification of the centerfree fusion systems on 2-groups of 2-rank 2 (see [10]). It can also be described as
the smallest 2-group with exactly three involutions and an automorphism of order 5. This answers as question
raised in Exercise 82.3 in [3]. In fact P admits an automorphism of order 15. Moreover, Z(P ) = ϕ(P ) = P ′ =
Ω(P ) ∼= C2

2 ; so P is special (see p. 183 in [18]).

Using this as a motivation it seems worth to obtain the invariants of blocks with defect group P (this will be
done in an upcoming diploma thesis). Doing so we need to handle the extraspecial group P/〈z〉 ∼= D8 ∗Q8 for
1 6= z ∈ Z(P ) for the induction step.

Proposition 4.3. Let B be a block of a finite group G with defect group D8 ∗Q8 and inertial index 5. Then
l(B) = 5, k(B) = 13, k0(B) = 8 and k2(B) = 5. Moreover, the Cartan matrix of B is given by

2


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 4


up to basic sets.

Proof. Let D = D8 ∗Q8, and let F be the fusion system of B. By Theorem 5.3 in [52], F is controlled by
AutF (D). Let Z(D) = 〈z〉. As usual we denote the subsections by (u, bu). Then bz covers a block bz with
elementary abelian defect group of order 16. It follows from Proposition 2.1 in [27] that 5 = e(B) = e(bz) =
e(bz) = l(bz) = l(bz). Moreover, B is centrally controlled; in particular Theorem 1.1 in [26] implies l(B) ≥ 5.

There are three nonmajor subsections (u1, b1), (u2, b2) and (u3, b3). Since |D′| = 2, every conjugacy class in D
has at most two elements. In particular |CD(ui)| = 16 for i = 1, 2, 3. By Proposition 5.1 in [20] we have l(bi) = 1
for i = 1, 2, 3. Now let us look at the major subsection (z, bz). By the proof of Proposition 1 in [46] the Cartan
matrix of bz is given by

2


4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4


up to basic sets. If we change the basic set, we get the following matrix with smaller entries:

Cz := 2


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 4

 .

Now we consider the matrix Dz := (dzij). Since z has order 2, Dz is an integral matrix such that DT
z Dz = C.

Since all columns of Dz are orthogonal to the columns of ordinary decomposition numbers, we see that the first
four columns consist of exactly four entries ±1 each. By way of contradiction assume that the first two columns
of Dz have the form (

1 1 1 1 . · · · .
1 1 1 −1 . · · · .

)T

.
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Then there is at least one column of ordinary decomposition numbers with is not orthogonal to the difference
of these two columns of Dz. This contradiction shows that Dz has the form

Dz =


1 1 1 1 . . . . . . . · · · .
1 1 . . 1 1 . . . . . · · · .
1 1 . . . . 1 1 . . . · · · .
1 1 . . . . . . 1 1 . · · · .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · · ∗


T

up to signs and permutations. It holds that k(B) = l(B) + l(bz) + l(b1) + l(b2) + l(b3) ≥ 13. Hence, for the last
column of Dz we have essentially the following possibilities:

( 1 1 . . . . . . . . 1 1 1 1 1 1 )T,

( 1 . 1 . 1 . 1 . 1 . 1 1 1 )T,

( 1 1 1 −1 . . . . . . 1 1 1 1 )T,

( 2 . . . . . . . . . 1 1 1 1 )T,

( 1 1 . . . . . . . . 2 1 1 )T.

This already implies k(B) ∈ {13, 14, 16}. In order to investigate to heights of the irreducible characters we
consider the matrix Mz = (mz

ij) = 32DzC
−1
z DT

z of contributions. We have

32C−1
z =


13 −3 −3 −3 −1
−3 13 −3 −3 −1
−3 −3 13 −3 −1
−3 −3 −3 13 −1
−1 −1 −1 −1 5

 .

By (5G) and (5H) in [5] we have

h(χ) = 0⇐⇒ mz
χχ ≡ 1 (mod 2)⇐⇒

∑
ϕ∈IBr(bz)

dzχϕ ≡ 1 (mod 2).

This gives k0(B) ∈ {8, 12, 16} according to the last column of Dz. By Proposition 1 in [8] we also have h(χ) =
0 ⇔ dui

χϕi
≡ 1 (mod 2) for i = 1, 2, 3 where IBr(bui

) = {ϕi}. Since the norm of these nonmajor columns is 16,
we have the following possibilities for the nonvanishing entries according to k0(B): sixteen ±1, twelve ±1 and
one ±2, eight ±1 and two ±2, seven ±1 and one ±3.

Taking this together we can enumerate all the possibilities for the decomposition numbers of nontrivial subsec-
tions with GAP. Then the ordinary decomposition matrix (up to multiplication with an invertible matrix) can
be determined as the orthogonal space. Finally the square of the ordinary decomposition matrix is the Cartan
matrix C of B. Now we determine the elementary divisors of C by considering the lower defect groups.

By (7G) in [6] the multiplicity m(d) of the elementary divisor d ∈ N of C is given by

m(d) =
∑
R∈R

m
(1)
B (R)

where R is a set of representatives for the G-conjugacy classes of subgroups of G of order d. After combining
this with the formula (2S) of [9] we get

m(d) =
∑

(R,bR)∈R′
m

(1)
B (R, bR)

where R′ is a set of representatives for the G-conjugacy classes of B-subpairs (R, bR) such that R has order d.
We have to emphasize that in contrast to other papers we regard bR as a block of CG(R) instead of RCG(R).
Let bD be a Brauer correspondent of B in CG(D). Then, after changing the representatives if necessary we may
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assume (R, bR) ≤ (D, bD) for (R, bR) ∈ R′. Then it is well known that bR is uniquely determined by R. Since
the fusion of these subpairs is controlled by NG(D, bD), we get

m(d) =
∑
R∈R′′

m
(1)
B (R, bR)

where R′′ is a set of representatives for the AutF (D)-conjugacy classes of subgroups of D of order d.

It is well known that we have m(32) = 1. Now we discuss smaller values for d. We begin with the case d = 2.
For this let m(1)

B (Q, bQ) > 0 for some Q with |Q| = 2. Then (Q, bQ) is in fact a subsection and 2 is also an
elementary divisor of the Cartan matrix of bQ. In particular l(bQ) > 1. This shows that Q = Z(D). One can
show that 2 occurs as elementary divisor of Cz exactly four times. If we apply the same arguments to the block
bz instead of B, we see that m(2) = m

(1)
B (Q, bQ) = 4.

Now let 2 < d < 32 and Q ≤ D such that |Q| = d. Then by (2Q) in [9] we have m(1)
BQ

(Q) > 0 where

BQ := b
NG(Q,bQ)
Q . Since Q is fully F-normalized, Theorem 2.4 in [29] implies that CD(Q) is a defect group of bQ

and ND(Q) is a defect group of BQ. By Proposition 2.1 in [2] also the block bQ is controlled. If we follow the
proof of this proposition more closely it turns out that (CD(Q), bQCD(Q)) is a Sylow bQ-subpair. So the inertial
quotient of bQ is

NCG(Q)(CD(Q), bQCD(Q))/CD(Q) CCG(Q)(CD(Q)) ≤
NG(QCD(Q), bQCD(Q)) ∩ CG(Q)/CD(Q) CG(QCD(Q)).

All odd order automorphisms of AutF (QCD(Q)) = NG(QCD(Q), bQCD(Q))/CG(QCD(Q)) come from restric-
tions of AutF (D). However the automorphism of order 5 in AutF (D) cannot centralize Q, since 2 < d. Hence,
the inertial index of bQ is 1 and l(bQ) = 1. Finally, Theorem 5.11 in [37] and the remark following it show

1 = l(bQ) ≥ m(1)
BQ

(Q) +m
(1)
BQ

(ND(Q)) = m
(1)
BQ

(Q) + 1

and m(1)
BQ

(Q) = 0. Taking these arguments together, we proved that the elementary divisors of C are 32, 2, 2,
2, 2, 1, . . . , 1 (including the possibility of no 1 at all).

Using this, our GAP program reveals that the only possibility for the generalized decomposition numbers is:

1 1 1 1 . . . . . . . . .
1 1 . . 1 1 . . . . . . .
1 1 . . . . 1 1 . . . . .
1 1 . . . . . . 1 1 . . .
1 . 1 . 1 . 1 . 1 . 1 1 1
−1 . . 1 . 1 . 1 . 1 3 −1 −1
−1 . . 1 . 1 . 1 . 1 −1 3 −1
−1 . . 1 . 1 . 1 . 1 −1 −1 3



T

(up to permutations and choosing signs as described earlier). In particular k(B) = 13, k0(B) = 8 and l(B) = 5.
Moreover, C is uniquely determined up to basic sets. Hence, C = Cz up to basic sets, because in case z ∈ Z(G),
B and bz would coincide. It remains to determine ki(B) for i > 0. For this let ψ ∈ Irr(B) be the fourth character
in the numbering above. In particular ψ has height 0. Then for a character χ ∈ Irr(B) with h(χ) > 0 we can
see that mz

χψ is divisible by 4 but not by 8. Thus, (5H) in [5] implies k2(B) = 5.

For the defect group in the last proposition the inertial index could also be 3. However, in this case the
computational effort is too big.

In [46] we verified Brauer’s k(B)-Conjecture for defect groups of order at most 32, but not isomorphic to the
extraspecial group D8 ∗D8. We are finally able to handle this remaining group as well.

Theorem 4.4. Brauer’s k(B)-Conjecture holds for defect groups with a central cyclic subgroup of index at most
16. In particular, the k(B)-Conjecture holds for the 2-blocks of defect at most 5.
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Proof. Let B be a p-block with defect group D of the stated form. By Theorem 1 and Theorem 3 in [46] we
may assume that there is a major B-subsection (z, bz) such that D/〈z〉 ∼= C4

2 (in particular p = 2) and B has
inertial index 9. We apply Theorem V.9.17 in [16]. For this it suffices to determine the Cartan matrix of bz
(only up to basic sets). Thus, we may consider a 2-block B with elementary abelian defect group D of order
16 and inertial index 9. As in Lemma 2.2 in [27] we obtain a list of possible Cartan matrices of B. However,
since we are considering 9× 9 matrices it is very hard to see if two of these candidates only differ by basic sets.
In order to reduce the set of possible Cartan matrices further we apply various ad hoc matrix manipulations
as permutations of rows and columns and elementary row/column operations. After this procedure we end up
with a list of only ten possible Cartan matrices of B which might be all equal up to basic sets. For the purpose
of illustration, we display one of this matrices:

4 −1 1 . 1 1 2 . .
1 4 . 1 −1 1 . 1 1
1 . 4 1 −1 1 2 −1 −1
. 1 1 4 . . . 2 .
1 −1 −1 . 4 . 1 1 1
1 1 1 . . 4 1 1 1
2 . 2 . 1 1 4 . −2
. 1 −1 2 1 1 . 4 .
. 1 −1 . 1 1 −2 . 4


.

It can be seen that all diagonal entries are 4 (for every one of these ten matrices). In order to apply Theo-
rem V.9.17 in [16] let C be one of these ten matrices. Then we have a positive definite integral quadratic form q
corresponding to the matrix 16C−1. We need to find the minimal nonzero value of q among all integral vectors.
More precisely, we have to check if a value strictly smaller than 9 is assumed by q. By Theorem 1 in [28] it
suffices to consider only vectors with entries in {0,±1} (observe that the notation of a quadratic form given by a
matrix is the same in [16] and [28]). Hence, there are only 39 values to consider. An easy computer computation
shows that in fact the minimum of q is at least 9. So Brauer’s k(B)-Conjecture follows from Theorem V.9.17 in
[16].

We like to point out that we do not know a single Cartan matrix such that Brauer’s k(B)-Conjecture would not
follow from Theorem 2.4 in [20] or from Theorem V.9.17 in [16]. Since these two results are somehow related, it
seems interesting to investigate the following problem: Let C = (cij) ∈ Zl×l be the Cartan matrix of a p-block
with defect d. Assume that for all integral, positive definite quadratic forms q(x1, . . . , xl(bu)) =

∑
1≤i≤j≤l qijxixj

we have ∑
1≤i≤j≤l

qijcij > pd.

Then prove that xpdC−1xT ≥ l for all 0 6= x ∈ Zl. If this can be done, the k(B)-Conjecture would follow in full
generality. A diagonal matrix shows that this argument fails for arbitrary positive definite, symmetric matrices
C.

In the next proposition we take a closer look at the defect group D8 ∗D8.

Proposition 4.5. Let B be a block of a finite group G with defect group D ∼= D8 ∗D8. Suppose that the inertial
quotient OutF (D) has order 3 and acts freely on D/ϕ(D). Then k(B) = 11, k0(B) = 8 and l(B) = 3. Moreover,
the Cartan matrix of B is given by

2

2 1 1
1 2 1
1 1 6


up to basic sets. For the numbers ki(B) (i ≥ 1) we have the following cases (k1(B), k2(B)) ∈ {(0, 3), (2, 1)}.

Proof. Let F be the fusion system of B. By Theorem 5.3 in [52], F is controlled by AutF (D). By hypothesis
OutF (D) ∼= C3 acts freely on D/ϕ(D). Hence, there are two major and five nonmajor subsections. The Cartan
matrix of the nontrivial major subsection (z, bz) is given by

2

2 1 1
1 2 1
1 1 6
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up to basic sets. In particular k(B) ≤ 16. The nonmajor subsections (u, bu) all satisfy l(bu) = 1. Since B is
centrally controlled, we have k(B) ≥ 11. The first two columns of the bz decomposition numbers have the form(

1 1 1 1 . . . . . . . · · · .
1 1 . . 1 1 . . . . . · · · .

)T

up to signs and permutations (compare with proof of Proposition 4.3). For the third column we have essentially
17 possibilities which we do not list explicitly here. Similarly as in Proposition 4.3 we get k0(B) ∈ {8, 12, 16}
and also the positions of the characters of height 0 depending on the third column of Dz. Since every element
of order 4 in D is conjugate to its inverse, all generalized decomposition numbers are integers. For every of the
17 cases we proceed by enumerating the five columns of nonmajor subsections with the help of a computer.
Entirely similar as in the proof of Proposition 4.3 we see that the elementary divisors of the Cartan matrix of
B are 32, 2, 2, 1, . . . , 1. Now the computations reveal k(B) = 11, k0(B) = 8, l(B) = 3 and the Cartan matrix
of B up to basic sets. However, the value of k1(B) does not follow immediately from these calculations. Instead
we obtain the two cases (k1(B), k2(B)) ∈ {(0, 3), (2, 1)}.

It is easy to construct examples for Proposition 4.5 such that k1(B) = 0. In contrast, k1(B) = 2 would contradict
the Ordinary Weight Conjecture (see [42]).

The next proposition concerns the Sylow 2-subgroup of PSU(3, 4) as mentioned above. This will result will be
used in an upcoming diploma thesis.

Proposition 4.6. Let B be a block of a finite group G with defect group D ∈ Syl2(PSU(3, 4)) and inertial index
15. Then the elementary divisors of the Cartan matrix of B lie in {1, 4, 64} where 4 occurs with multiplicity at
most 4.

Proof. Since D is a Suzuki 2-group, Theorem 4.4 in [10] tells us that the fusion system F of B is controlled. So
similarly as in the proof of Proposition 4.3 the multiplicity of d as an elementary divisor of the Cartan matrix
C of B is given by

m(d) =
∑
R∈R′′

m
(1)
B (R, bR)

where R′′ is a set of representatives for the AutF (D)-conjugacy classes of subgroups of D of order d. Assume
first d = 2 and m(1)

B (Q, bQ) > 0 for |Q| = 2. Then (Q, bQ) is a subsection and Q ⊆ Z(D). One can show that
bQ has defect group D and inertial index 5. Moreover, bQ covers a block bQ of CG(Q)/Q with defect group
D/Q ∼= D8 ∗Q8. Hence, Proposition 4.3 implies that all elementary divisors of the Cartan matrix of bQ are
divisible by 4. This contradiction shows that m(2) = 0. Now suppose that 2 < d < 64. Again we assume
m

(1)
B (Q, bQ) > 0 such that |Q| = d. We argue as in the proof of Proposition 4.3. The inertial quotient of bQ is

given by

NCG(Q)(CD(Q), bQCD(Q))/CD(Q) CCG(Q)(CD(Q)) ≤
NG(QCD(Q), bQCD(Q)) ∩ CG(Q)/CD(Q) CG(QCD(Q)).

Every odd order automorphism in NG(QCD(Q), bQCD(Q))/CG(QCD(Q)) = AutF (QCD(Q)) comes from a
restriction of AutF (D). Moreover, OutF (D) acts freely on D/ϕ(D). So in case d > 4 we see that these odd order
automorphisms cannot lie in CG(Q). Hence, in this case l(bQ) = 1 andm(d) = 0 (compare with Proposition 4.3).
It remains to deal with the case Q = Z(D) = ϕ(D). Then we have bQ = b

CG(Z(D))
D . Moreover, bQ has defect

group D and inertial index 5. Looking at the covered block of CG(Q)/Q, we see that l(bQ) = 5. Hence,

5 = l(bQ) ≥ m(1)
BQ

(Q) +m
(1)
BQ

(ND(Q)) = m
(1)
BQ

(Q) + 1

by Theorem 5.11 in [37] and the remark following it. This gives m(4) = m
(1)
BQ

(Q) ≤ 4 and the proof is complete.

Our next result handles rather unknown groups of order 32. The key observation here is that the fusion system
is constrained and thus quite easy to understand.
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Proposition 4.7. Let B be a nonnilpotent block of a finite group G with defect group D ∼= SmallGroup(32, q)
for q ∈ {28, 29}. Then k(B) = 14, k0(B) = 8, k1(B) = 6 and l(B) = 2.

Proof. Let F be the fusion system of B. Using GAP one can show that Aut(D) is 2-group. In particular
OutF (D) = 1. Moreover, one can show using general results in [51] that D contains only one F-essential
subgroup Q. Here C2

2 × C4
∼= Q E D. In particular F is constrained. Another GAP calculation shows that F

is the fusion system of the group SmallGroup(96, 187) or SmallGroup(96, 185) for q ∈ {28, 29} respectively. We
have ten B-subsections up to conjugation. The center of D is a four-group and ϕ(Q) ⊆ Z(D). Hence, an odd
order automorphism of Q cannot act on Z(D). It follows that we have four major subsections (1, B), (z, bz),
(v, bv) and (w, bw) up to conjugation. Here we may assume that l(bv) = l(bw) = 1. On the other hand bz
dominates a nonnilpotent block with defect group D/〈z〉 ∼= D8 × C2. Thus, by Proposition 3 in [46] we have
l(bz) = 2. Also we find an element u ∈ Q such that bu is nonnilpotent with defect group Q. Here Proposition 2 in
[46] implies l(bu) = 3. The remaining nonmajor subsections split in one subsection (u1, b1) of defect 16 and four
subsections (ui, bi) (i = 2, 3, 4, 5) of defect 8. Here l(bi) = 1 for i = 1, . . . , 5. In particular Olsson’s Conjecture
k0(B) ≤ 8 = |D : D′| follows at once. Since B is centrally controlled, we also obtain l(B) ≥ 2 and k(B) ≥ 14.
So the generalized decomposition numbers dvij consist of eight entries ±1 and six entries ±2. Hence, k(B) = 14,
k0(B) = 8, k1(B) = 6 and l(B) = 2.

Also in the next proposition the corresponding fusion is easy to understand, since it is controlled. Another
advantage here is that k(B) is relatively small so that computational effort is small as well.

Proposition 4.8. Let D be a central cyclic extension of SmallGroup(32, q) for q ∈ {33, 34}. Then Brauer’s
k(B)-Conjecture holds for all blocks with defect group D.

Proof. As usual, it suffices to consider a block B with defect group D ∼= SmallGroup(32, q) for q ∈ {33, 34}.
GAP shows that B is a controlled block with inertial index 3. Hence, the fusion system of B is the same as the
fusion system of the group D o C3. It follows that there are only six B-subsections up to conjugation; two of
them are major. For 1 6= z ∈ Z(D) we have l(bz) = 1. Let us denote the four nonmajor subsections by (ui, bi)
for i = 1, . . . , 4. We may assume that b1 has defect group C3

2 . It is easy to see that AutF (D) restricts to the
inertial group of b1. In particular l(b1) = e(b1) = 3. Moreover, the Cartan matrix of b1 is given by

2

2 1 1
1 2 1
1 1 2


up to basic sets (see Theorem 3 in [45]). Moreover, b2 has defect 3 and b3 and b4 have defect 4. Here, l(b2) =
l(b3) = l(b4) = 1. In particular Olsson’s Conjecture k0(B) ≤ 8 = |D : D′| follows. Looking at dzij we get
k(B) ≤ 14. The numbers du1

ij can certainly be arranged in the form 1 1 1 1 . . . . . · · · .
1 1 . . 1 1 . . . · · · .
1 1 . . . . 1 1 . · · · .

T

Using the contributions it follows that k0(B) = 8. We can easily add the column for (u2, b2) as

(1, 1,−1, . . . ,−1, 0, . . . , 0)T or (1,−1, 1,−1, 1,−1, 1,−1, 0, . . . , 0)T.

We investigate next the elementary divisors of the Cartan matrix of B. For this we consider the multiplicity of
〈u1〉 as a lower defect group. The multiplicity of 2 as an elementary divisor of the Cartan matrix of b1 is certainly
2. Since 〈u1〉 is the only lower defect group of order 2 of b1, we have m(2) = m

(1)
B (〈u1〉, b1) = m

(1)
b1

(〈u1〉, b1) = 2.
This shows l(B) ≥ 3 and k(B) ≥ 10. Every automorphism of order 3 of D fixes only two elements in D. Thus,
it follows as in Proposition 4.3 that m(d) = 0 for 2 < d < 32. We have essentially four possibilities for the
numbers dzij :

• eight entries ±1 and six entries ±2,

• eight entries ±1, two entries ±2 and one entry ±4,
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• seven entries ±1, four entries ±2 and one entry ±3,

• six entries ±1, two entries ±2 and two entries ±3.

In particular k(B) determines ki(B) for i ≥ 1 uniquely. It remains to add the generalized decomposition
numbers corresponding to (u3, b3) and (u4, b4). Here the situation is distinguished by q ∈ {33, 34}. Assume first
that q = 34. Then u−1

3 (resp. u−1
4 ) is conjugate to u3 (resp. u4). Hence, the numbers du3

ij and du4
ij are integers.

It is easy to see that such a column must consist of the following (nonzero) entries:

• eight entries ±1 and two entries ±2,

• seven entries ±1 and one entry ±3.

In contrast, for q = 33 the elements u−1
3 and u4 are conjugate. So we may assume u4 := u−1

3 , and it suffices
to consider the column du3

ij whose entries are Gaussian integers. Let us write du3
χϕ3

:= a(χ) + b(χ)i where
IBr(b3) = {ϕ3}, a, b ∈ Zk(B) and i :=

√
−1. Then (a, a) = (b, b) = 8 and (a, b) = 0. Since we have only one pair

of algebraically conjugate subsections, there is only one pair of 2-conjugate characters (see Lemma IV.6.10 in
[16]). This shows that b consists of two entries ±2. Now k0(B) = 8 implies that a has eight entries ±1.

As usual we enumerate all these configurations of the generalized decomposition matrix and obtain the Cartan
matrix of B as orthogonal space. However, we get two possibilities l(B) ∈ {3, 4}. We are not able to exclude
the case l(B) = 4 despite it contradicts Alperin’s Weight Conjecture. Anyway in both cases l(B) ∈ {3, 4} all
candidates for the Cartan matrix satisfy Theorem 2.4 in [20]. The claim follows.

We add a short discussion about the defect group

D := SmallGroup(32, 27) ∼= 〈a, b, c | a2 = b2 = c2 = [a, b] = [a, ca] = [ca, b] = [b, cb] = 1〉 ∼= C4
2 o C2.

Let F be a nonnilpotent fusion system on D. It can be shown that Q := 〈a, b, ca, cb〉 ∼= C4
2 is the only possible

F-essential subgroup. In particular F is controlled or constrained (note that controlled is a strong form of
constrained). In the controlled case we have F = FD(DoC3) = FD(SmallGroup(96, 70)). In the noncontrolled
case we have various possibilities for F according to OutF (Q) ∈ {S3, D10, S3×C3, SmallGroup(18, 4), D10×C3}
(see Lemma 3.11 in [51]). These possibilities are represented by the following groups:

• SmallGroup(96, 195),

• SmallGroup(96, 227),

• SmallGroup(160, 234),

• SmallGroup(288, 1025),

• SmallGroup(288, 1026),

• SmallGroup(480, 1188).

Here observe that in case OutF (Q) = S3 there are essentially two different actions of OutF (Q) on Q. The
cases OutF (Q) ∈ {S3 × C3, SmallGroup(18, 4)} also differ by OutF (D) ∈ {C3, 1} respectively. Additionally, for
OutF (Q) = SmallGroup(18, 4) there exists a nontrivial 2-cocycle on OutF (Q) (on the other hand the Künneth
formula implies H2(S3 × C3, F

×) = 0 for an algebraically closed field F of characteristic 2). This gives even
more examples for blocks with defect group D. For example a nonprincipal 2-block of SmallGroup(864, 3996)
has defect group D and only one irreducible Brauer character. In all these examples l(B) assumes the values
1, 2, 3, 5, 6, 9. We will not consider the block invariants in full generality although it might be possible. We also
end the discussion about the remaining groups of order 32. In most cases (especially when 9×9 Cartan matrices
show up) the computational effort to compute the corresponding block invariants is too big.

In the following table we enumerate all groups of order 32 by using the small groups library and give information
about blocks with corresponding defect groups. In many cases it can be shown with GAP that there are no
nontrivial fusion systems. These cases were also determined in [54]; however with the Hall-Senior enumeration
[19]. Using a conversion between both enumerations provided by Eamonn O’Brien, we confirm the results in
[54]. We denote the modular group of order 2n ≥ 16 by M2n , i. e. the unique group of class 2 with a cyclic
maximal subgroup.
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Small group no. description invariants comments reference
1 C32 known nilpotent
2 MNA(2, 2) known controlled [44, 13]
3 C8 × C4 known nilpotent
4 C8 o C4 known nilpotent [48]
5 MNA(3, 1) known [44]
6 MNA(2, 1) o C2 known nilpotent GAP
7 M16 o C2 known nilpotent GAP
8 C2.MNA(2, 1) known nilpotent GAP
9 D8 o C4 known bicyclic Theorem 3.1
10 Q8 o C4 known bicyclic Theorem 3.3
11 C4 o C2 known [25]
12 C4 o C8 known nilpotent [48]
13 C8 o C4 known nilpotent [48]
14 C8 o C4 known nilpotent [48]
15 C8.C4 known nilpotent [48]
16 C16 × C2 known nilpotent
17 M32 known nilpotent [48]
18 D32 known maximal class [7]
19 SD32 known maximal class [36]
20 Q32 known maximal class [36]
21 C2

4 × C2 known controlled [53]
22 MNA(2, 1)× C2 known constrained Proposition 4.2
23 (C4 o C4)× C2 known nilpotent GAP
24 C2

4 o C2 known nilpotent GAP
25 D8 × C4 known [47]
26 Q8 × C4 known [50]
27 C4

2 o C2

28 (C4 × C2
2 ) o C2 known constrained Proposition 4.7

29 (Q8 × C2) o C2 known constrained Proposition 4.7
30 (C4 × C2

2 ) o C2 known nilpotent GAP
31 (C4 × C4) o C2 known nilpotent GAP
32 C2

2 .C
3
2 known nilpotent GAP

33 (C4 × C4) o C2 controlled
34 (C4 × C4) o C2 controlled
35 C4 oQ8 known nilpotent GAP
36 C8 × C2

2 known controlled [53]
37 M16 × C2 known nilpotent GAP
38 D8 ∗C8 known [49]
39 D16 × C2 known [47]
40 SD16 × C2 known [50]
41 Q16 × C2 known [50]
42 D16 ∗ C4 known [49]
43 (D8 × C2) o C2

44 (Q8 × C2) o C2

45 C4 × C3
2 known controlled Theorem 4.1

46 D8 × C2
2

47 Q8 × C2
2 controlled

48 (D8 ∗C4)× C2 controlled
49 D8 ∗D8 controlled
50 D8 ∗Q8 controlled
51 C5

2 controlled

We apply these results to Theorem 2.2.

Theorem 4.9. Let D be a cyclic central extension of one of the following groups
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(i) a metacyclic group,

(ii) a minimal nonabelian group,

(iii) a group of order at most 16,

(iv)
∏n
i=1 C2mi where |{mi : i = 1, . . . , n}| ≥ n− 1,

(v) M × C where M has maximal class and C is cyclic,

(vi) M ∗C where M has maximal class and C is cyclic,

(vii) D2n o C2m , Q2n o C2m and D2n .C2m as in Theorem 3.1, 3.3 and 3.2,

(viii) SmallGroup(32, q) for q ∈ {11, 22, 28, 29, 33, 34},

(ix) a group which admits only the nilpotent fusion system.

Then Brauer’s k(B)-Conjecture holds for every 2-block with defect group D.

Proof. The case (iii) follows from Theorem 4.4. In case (viii) the result follows from the propositions 4.2, 4.7
and 4.8 and [25]. In all other cases it suffices to show l(B) ≤ 3 for every block B with defect group given in
the remaining list of the statement. For the abelian defect group

∏n
i=1 C2mi where |{mi : i = 1, . . . , n}| ≥ n− 1

it is easy to see that the inertial index e(B) is at most 3. Thus, results of Puig-Usami [53] imply Alperin’s
Weight Conjecture in this case. Now l(B) ≤ 3 follows easily. For the remaining cases the claim was shown in
[48, 13, 46, 47, 50, 49] and the present paper.

One can show with GAP that Theorem 4.9 suffices to verify Brauer’s k(B)-Conjecture for 244 of the 267 defect
groups of order 64. Here we also use the following elementary observation: Let z ∈ Z(D) such that every fusion
system on D/〈z〉 is controlled. If CAut(D)(z) is a 2-group, then Brauer’s k(B)-Conjecture holds for every block
with defect group D.

For the group D ∼= SmallGroup(64, 265) we can argue even more subtle. Every block B with defect group D
fulfills e(B) ∈ {1, 3, 5}. In case e(B) = 3 we find an element z ∈ Z(D) such that D/〈z〉 is elementary abelian.
Then [53] implies k(B) ≤ 64. On the other hand if e(B) = 5, we choose z ∈ Z(D) such that D/〈z〉 ∼= D8 ∗Q8.
Here the k(B)-Conjecture follows from Proposition 4.3.

For the purpose of further research we state all indices q such that Brauer’s k(B)-Conjecture for the defect
group SmallGroup(64, q) is not known so far:

134, 135, 136, 137, 138, 139, 202, 224, 229, 230, 231, 238, 239, 242, 254, 255, 257, 258, 259, 261, 262, 264, 267.

This implies the following corollary.

Corollary 4.10. Let B be a 2-block with defect group D of order at most 64. If D is generated by two elements,
then Brauer’s k(B)-Conjecture holds for B.

One can also formulate a version of Theorem 4.9 for k0(B) using Theorem 2.4. Compare also with Theorem 2.5
in [20].

Corollary 4.11. Let D be a 2-group containing a cyclic subgroup of index at most 4. Then Brauer’s k(B)-
Conjecture holds for every block with defect group D.

Proof. We may assume that D is not metacyclic. In particular, |D|/ expD = 4. If D is abelian, the result
follows from Corollary 2 in [46]. Hence, let us assume that D is nonabelian. Then D is one of the groups given
in Theorem 2 in [34]. We will consider this list of groups case by case and apply Theorem 4.9. We remark that
the terms “quasi-dihedral” and “semidihedral” have different meanings in [34].

The group G1 is metacyclic. For the groups G2 and G3 we even know the block invariants precisely. Now consider
G4. Here the element a lies in the center. In particular the group is a cyclic central extension of a group of order
4. The k(B)-Conjecture follows. For the group G5 the element b lies in the center. Moreover, G5/〈b〉 is abelian
and has a cyclic subgroup of index 2. Again the claim holds. The groups G6, G7, G8 and G9 are metacyclic.
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The groups G10 and G11 are cyclic central extensions of metacyclic groups. In G12 the subgroup 〈a〉 is normal;
in particular a2m−3 ∈ Z(G12). Moreover, b is central in G12/〈a2m−3〉 and G12/〈a2m−3〉 ∼= D2m−2 ×C2. The claim
follows. In G13 and G14 we see that b is central and the corresponding quotient is certainly metacyclic. Next,
a2m−3 ∈ Z(G15) and G15/〈a2m−3〉 ∼= D2m−2 × C2. Exactly the same argument applies to G16. For G17 we have
c−1a2c = abab = a2+2m−3

and a4 ∈ Z(G17). Since G17/〈a4〉 has order 16, the claim follows.

The group G18 is slightly more complicated. In general, the core of 〈a〉 has index at most 8. Thus, a2m−3

is
always central (in all of these groups). Adjusting notation slightly gives

G18/〈a2m−3

〉 ∼= 〈a, b, c | a2m−3

= b2 = c2 = [a, b] = 1, cac = a−1b〉.

We define new elements in this quotient by ṽ := a2b, x̃ := bc and ã := ac. Then ṽ2m−4

= 1, ã2 = b and
ã4 = 1. Moreover, cbc = c(acac)c = b. It follows that x̃2 = 1 and x̃ṽx̃ = ṽ−1. Hence, 〈ṽ, x̃〉 ∼= D2m−3 . Now
ãṽã−1 = ca2bc = a−2b = ṽ−1 and finally ãx̃ã−1 = a2c = ṽx̃. Since G18/〈a2m−3〉 = 〈ṽ, x̃, ã〉, we see that this is
precisely the group from Theorem 3.1. The claim follows.

The groups G19, G20 and G21 are metacyclic. In G22 the element a4 is central and G22/〈a4〉 has order 16. Let
us consider G23. Similarly as above we have

G23/〈a2m−3

〉 ∼= 〈a, b, c | a2m−3

= b2 = c2 = [a, b] = 1, cac = a−1+2m−4

b〉

(observe that the relation [b, c] ≡ 1 (mod 〈a2m−3〉) follows from b ≡ a1+2m−4

cac). Here we define ṽ := a2+2m−4

b,
x̃ := bc and ã := ac. Then again 〈ṽ, x̃〉 ∼= D2m−3 . Moreover, ã2 = a2m−4

b, ã4 = 1 and ãx̃ã−1 = bca−1cac =

a2+2m−4

c = ṽx̃. So G23/〈a2m−3〉 is the group from Theorem 3.1. Now it is easy to see that G24/〈a2m−3〉 ∼=
G25/〈a2m−3〉 ∼= G23/〈a2m−3〉. Finally the group G26 has order 32; so also here the k(B)-Conjecture holds. This
completes the proof.

For every integer n ≥ 6 there are exactly 33 groups of order 2n satisfying the hypothesis of Corollary 4.11.

5 Olsson’s Conjecture

We have seen in [20] that Olsson’s Conjecture holds for all controlled 2-blocks of defect at most 5. Using the
table above, we remove the controlled condition.

Theorem 5.1. Olsson’s Conjecture holds for all 2-blocks of defect at most 5.

Proof. By the remark above it suffices to consider only the defect groups D := SmallGroup(32,m) where
m ∈ {27, 43, 44, 46}. Let B be a block with defect group D and fusion system F . Then we can find (with GAP)
an element u ∈ D such that |CD(u)| = |D : D′|. Moreover, we can choose u such that every element v ∈ D of
the same order also satisfies |CD(u)| = |D : D′|. Hence, the subgroup 〈u〉 is fully F-centralized. In particular
CD(u) is a defect group of the block bu. Now the claim follows from Proposition 2.5(ii) in [20].

In [20] we also verified Olsson’s Conjecture for defect groups of p-rank 2 provided p > 3. We use the opportunity
to explore the case p = 3 in more detail.

Theorem 5.2. Let B be a 3-block of a finite group G with defect group D. Assume that D has 3-rank 2, but
not maximal class. Then Olsson’s Conjecture holds for B.

Proof. By Theorem 5.6 in [20] we may assume that the fusion system F of B is not controlled. Then |D| ≥ 34,
since D does not have maximal class. By Theorem 4.1 and 4.2 in [11] it remains to handle the groups D =
G(3, r; ε) of order 3r where r ≥ 5 and ε ∈ {±1} as in Theorem 4.7 in [11] (by Remark A.3 in [11], G(3, 4; ε)
has maximal class). Assume that D is given by generators and relations as in Theorem A.1 of the same paper.
Consider the element x := ac. By Lemma A.8 in [11], x is not contained in the unique F-essential (F-Alperin)
subgroup C(3, r − 1) = 〈a, b, c3〉. In particular, 〈x〉 is fully F-centralized, and the block bx of the subsection
(x, bx) has defect group CD(x). It is easy to see that D′ = 〈b, c3r−3〉 ∼= Cp×Cp. It follows that x3r−4 ≡ c3r−4 6≡ 1
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(mod D′) and |〈x〉| ≥ 3r−3. As usual we have |CD(x)| ≥ |D : D′| = 3r−2. In case |CD(x)| ≥ 3r−1 we get the
contradiction b ∈ D′ ⊆ CD(x). Hence, |CD(x)| = |D : D′| and CD(x)/〈x〉 is cyclic. Now Olsson’s Conjecture for
B follows from Proposition 2.5 in [20].

Theorem 5.3. Let B be a 3-block of a finite group with defect group D of order at least 34. Assume that D has
maximal class, but is not isomorphic to the group

B(3, r; 0, 0, 0) = 〈s, s1, . . . , sr−1 | s3 = s3
r−2 = s3

r−1 = [s1, s2] = . . . = [s1, sr−1] =

= s3
1s

3
2s3 = . . . = s3

r−3s
3
r−2sr−1 = 1, si = [si−1, s] for i = 2, . . . , r − 1〉

of order 3r. Then Olsson’s Conjecture holds for B.

Proof. By Theorem 5.6 in [20] we may assume that the fusion system F of B is not controlled. Then F is
given as in Theorem 5.10 in [11]1. In particular D = B(3, r; 0, γ, 0) is given by generators and relations as in
Theorem A.2 in [11] where γ ∈ {1, 2}. Let D1 as in Definition III.14.3 in [21]. Observe that in the notation
of [11, 4] we have D1 = γ1(D). Proposition A.9 in [11] shows x := ss1 /∈ D1. Moreover, we have x3 6= 1 also
by Proposition A.9 in [11]. Then by Lemma A.15 in [11], x does not lie in one of the centric subgroups D1,
Ei or Vi for i ∈ {−1, 0, 1}. This, shows that x is not F-conjugate to an element in D1. By Satz III.14.17 in
[21], D is not an exceptional group. In particular, Hilfssatz III.14.13 in [21] implies |CD(y)| = 9 = |D : D′| for
all y ∈ D \D1. Hence, 〈x〉 is fully F-centralized. Thus, the block bx of the subsection (x, bx) has defect group
CD(x). Now Olsson’s Conjecture follows from Proposition 2.5 in [20].

We remark that the method in Theorem 5.3 does not work for the groups B(3, r; 0, 0, 0). For example, every
block of a subsection of the principal 3-block of 3D4(2) has defect at least 3 (here r = 4). However, |D : D′| = 32

for every 3-group of maximal class.
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