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Abstract

An open conjecture by Harada from 1981 gives an easy characterization of the p-blocks of a finite group
in terms of the ordinary character table. Kiyota and Okuyama have shown that the conjecture holds for
p-solvable groups. In the present work we extend this result using a criterion on the decomposition matrix.
In this way we prove Harada’s Conjecture for several new families of defect groups and for all blocks of
sporadic simple groups. In the second part of the paper we present a dual approach to Harada’s Conjecture.
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1 New evidence for Harada’s Conjecture

Let G be a finite group, and let p be a prime. We use the notation from [26]. In particular, G0 is the set of
p-regular elements of G. Harada [9] proposed the following conjecture in 1981: If J ⊆ Irr(G) such that∑

χ∈J
χ(1)χ(g) = 0 ∀g ∈ G \G0,

then J is a union of p-blocks of G (see also [26, p. 53]). Harada has already observed that it suffices to consider
the following blockwise version.

Conjecture (Harada). Let B be a p-block of G and let ∅ 6= J ⊆ Irr(B) such that∑
χ∈J

χ(1)χ(g) = 0 ∀g ∈ G \G0. (1)

Then J = Irr(B).

In his article, Harada verified the conjecture for blocks with cyclic defect groups. After that only a few other
cases were considered in the literature and we will mention most of them in the course of this paper.

In this section we give some new evidence for Harada’s Conjecture. A cyclic group of order n is denoted by Cn
and for convenience let Cmn := Cn × . . . × Cn (m copies). Let (_,_) : Rn × Rn → R be the standard bilinear
form. The following lemma is probably well-known. It is related to the notion of residue sets introduced by
Ikeda [10, 11, 12, 13, 14, 16].

Lemma 1. Let B be a block of G with decomposition matrix Q. For J ⊆ Irr(B) the following assertions are
equivalent:

(i)
∑
χ∈J χ(1)χ(g) = 0 for all g ∈ G \G0.
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(ii) There exists a vector a ∈ Zl(B) such that for every row dχ of Q we have

(dχ, a) =

{
χ(1) if χ ∈ J,
0 if χ /∈ J.

Proof. Assume that (i) is true. By [26, Corollary 2.17] there are integers aϕ such that∑
χ∈J

χ(1)χ =
∑

ϕ∈IBr(B)

aϕΦϕ =
∑

ϕ∈IBr(B)

aϕ
∑

χ∈Irr(B)

dχϕχ =
∑

χ∈Irr(B)

( ∑
ϕ∈IBr(B)

aϕdχϕ

)
χ.

Since the irreducible characters of B are linearly independent, it follows that (a, dχ) = χ(1) if χ ∈ J and 0
otherwise.

Now assume conversely that (ii) holds. Then we have∑
χ∈J

χ(1)χ =
∑

χ∈Irr(B)

( ∑
ϕ∈IBr(B)

aϕdχϕ

)
χ =

∑
ϕ∈IBr(B)

aϕ
∑

χ∈Irr(B)

dχϕχ =
∑

ϕ∈IBr(B)

aϕΦϕ

and the claim follows.

Suppose that (1) is satisfied with |J | = 1. Then by [26, Theorem 3.18], B has defect 0 and therefore J = Irr(B).
The following corollary is a partial generalization.

Corollary 2. Let B be a counterexample to Harada’s Conjecture with J ( Irr(B) and |J | ≥ l(B). Then the
submatrix QJ of the decomposition matrix corresponding to the characters in J has rank less than l(B).

Proof. Suppose by way of contradiction that QJ has full rank. Let a ∈ Zl(B) be as in Lemma 1, and let
b := (ϕ(1) : ϕ ∈ IBr(B)). Then QJa = QJb and therefore a = b. However, this gives the contradiction
J = Irr(B).

In many cases the decomposition matrix of a block can be obtained from a block of a smaller group (for example
in the presence of Morita equivalence). Following Brauer, we call a Z-basis of Z IBr(B) a basic set of B (see
[26, Definition 7.3]). Replacing IBr(B) by a basic set transforms the decomposition matrix Q of B into QS
where S ∈ GL(l(B),Z). It is obvious that the condition in Lemma 1(ii) is invariant under change of basic sets
(replace a by S−1a). We say that decomposition matrices Q1 and Q2 of blocks B1 and B2 respectively coincide
up to basic sets if there exists some S ∈ GL(l(B1),Z) and a permutation matrix T such that Q1S = TQ2. It is
well-known that this happens if B1 and B2 are Morita equivalent (here S is also a permutation matrix). More
generally, the relation holds whenever there exists a perfect isometry with positive signs between B1 and B2.
In this sense, the following proposition extends a well-known result by Kiyota-Okuyama [22].

Proposition 3. Let B be a block of a finite group G and let B′ be a block of a p-solvable group. If B and B′
have the same decomposition matrices up to basic sets, then Harada’s Conjecture holds for B.

Proof. Let Q, J 6= ∅ and a as in Lemma 1. By the remark above, we may assume that Q is the decomposition
matrix of a block of a p-solvable group. By the Fong-Swan Theorem ([26, Theorem 10.1]), we can label the
characters of B in such a way that the first l := l(B) lines of Q form an identity matrix. This implies that a
consists of the degrees of the characters in X := {χ1, . . . , χl} ∩ J and zeros. In particular, a is non-negative.
Now let b := (ϕ(1) : ϕ ∈ IBr(B)). We claim (after permuting the rows and columns again) that Q has the form

Q =

(
AJ .
. AJ′

)
where AJ ∈ Z|J|×|X| corresponds to the characters in J . For, if dχ is a row of Q with χ ∈ J , then we have
(dχ, a) = χ(1) = (dχ, b). Since dχ is non-negative, it must be zero whenever a is. Now suppose that χ /∈ J .
Then (dχ, a) = 0 which implies that dχ is zero whenever a is non-zero. This proves the claim. Now by [26,
Corollary 3.10], Q is indecomposable and we conclude that J = Irr(B).
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The Basic Set Conjecture [8] asserts that there is always a basic set for B consisting of restrictions of ordinary
irreducible characters. The decomposition matrix Q of B with respect to this basic set contains an identity
matrix (hence the situation is similar as in the p-solvable case). It is also known by [31, Proposition 2] that
Q is still indecomposable in this context. However, the argument from Proposition 3 eventually fails in this
generality, because Q is not necessarily non-negative. For example, the decomposition matrix of the principal
2-block of A5 is

Q =


1 . .
. 1 .
. . 1
1 1 −1


up to basic sets. With χ1, χ3 ∈ Irr(B) the vector a = (χ1(1), 0, χ3(1)) in Lemma 1 seems possible. So we need
some additional knowledge of the character degrees in order to see that χ1(1) 6= χ3(1) and therefore a is not
feasible. These ideas are used in the next theorem which extends [21, Theorem 2’].

Theorem 4. Let B be a 2-block of G with defect group D. Then Harada’s Conjecture holds for B provided one
of the following conditions is satisfied:

(i) D is metacyclic or minimal non-abelian,

(ii) D is abelian of rank at most 3,

(iii) D ∼= C4
2 .

Proof. Suppose first that D is metacyclic. Then by [30, Theorem 8.1] there are only a few cases to consider.
If B is nilpotent, then l(B) = 1 and the claim follows directly from Lemma 1 (see also [21, Lemma 2]). Now
assume that B is not nilpotent. If D is dihedral (including the Klein four-group), semidihedral or quaternion,
then the claim has been shown in [21, Theorem 1’]. Finally, if D is abelian but not the Klein four-group, then
B is Morita equivalent to the principal block of DoC3 (see [30, Corollary 8.4]). Since DoC3 is 2-solvable, the
claim follows from Proposition 3.

Now assume that D is minimal non-abelian, but not metacyclic. Then by [30, Theorem 12.4] we need to discuss
two cases. If D ∼= MNA(r, r) for some r ≥ 2, then again B is Morita equivalent to the principal block of
D o C3 and the claim follows from Proposition 3. It remains to deal with D ∼= MNA(r, 1) where r ≥ 2. Here
the decomposition matrix Q of B up to basic sets is given explicitly, i. e. it does not depend on the group G.
In particular, B has the same decomposition matrix as the principal block of the 2-solvable group A4 o C2r

described in [30, Proposition 12.7]. Thus, the claim follows from Proposition 3.

Next let D be abelian of rank at most 3. Since abelian groups of rank 2 are metacyclic, we may assume that the
rank of D equals 3. The possible Morita equivalence classes of B were determined in [5]. Apart from 2-solvable
groups only the following groups occur: A5×C2n , SL(2, 8), J1 and Aut(SL(2, 8)). In the first case Q is obtained
from the decomposition matrix of the principal block of A5 by repeating every row 2n times. It follows that a
counterexample to Harada’s Conjecture would also give a counterexample for A5. However, A5 has a metacyclic
Sylow 2-subgroup and we are done by the first part of the proof. In case SL(2, 8) we have D ∼= C3

2 , k(B) = 8
and l(B) = 7. Here the claim follows from [21, Lemma 3]. Finally in the last two cases Q is given as follows (up
to basic sets):

J1 :



1 . . . .
. 1 . . .
. . 1 . .
. . . 1 .
. . . . 1
1 1 −1 . .
1 1 . −1 .
1 1 . . −1


, Aut(SL(2, 8)) :



1 . . . .
. 1 . . .
. . 1 . .
. . . 1 .
. . . . 1
1 −1 1 . .
1 −1 . 1 .
1 −1 . . 1


.

In both cases D ∼= C3
2 . To handle those cases we use the notation from Lemma 1. In the first case we may assume

that χ1 ∈ J . Suppose first that χ2 ∈ J . Then by row 6 of Q, we have χ1(1) +χ2(1)−χ3(1) = χ6(1). This forces
χ3 ∈ J , because otherwise we obtain the contradiction χ1(1) + χ2(1) = 0. By the same argument with row 7 of
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Q we obtain χ4 ∈ J and eventually J = Irr(B). Thus, we assume now that χ2 /∈ J . Then for i = 3, 4, 5 we either
have (χi ∈ J and χ1(1) = χi(1)) or (χi+3 ∈ J and χ1(1) = χi+3(1)). Hence, in any case J consists of exactly four
characters which have the same degree χ1(1). In particular χ1(1)

∑
χ∈J χ vanishes on the 2-singular elements

and so does
∑
χ∈J χ. By [26, Corollaries 2.14 and 2.17], we obtain 4χ1(1) ≡ 0 (mod |G|2). On the other hand,

an application of [30, Proposition 1.36] shows that all characters in Irr(B) have height 0 (this was also proved
in general in [20]). In particular, the 2-part of χ1(1) equals |G|2/8. This yields the contradiction 4χ1(1) 6≡ 0
(mod |G|2). Finally, the case G = Aut(SL(2, 8)) can be handled analogously and we omit the details.

It remains to prove the claim for D ∼= C4
2 . The possible Morita equivalence classes were computed by Eaton [4].

Arguing as above, we need to discuss only the classes coming from the principal bocks of A4×A5 and A5×A5.
Here, Q is a Kronecker product of the decomposition matrices of the factors (up to basic sets):

A4 ×A5 :


1 . .
. 1 .
. . 1
1 1 1

⊗


1 . .
. 1 .
. . 1
1 1 −1

 , A5 ×A5 :


1 . .
. 1 .
. . 1
1 1 −1

⊗


1 . .
. 1 .
. . 1
1 1 −1

 .

As usual let χ1 ∈ J . Since the principal block of A5 is not a counterexample, it follows easily that χ1, χ2, χ3, χ4 ∈
J . Assume that these are all the characters of J . Then by rows 5, 6, 7, 9, 10, 11 of Q, the vector a in Lemma 1
has the form a = (χ1(1), χ2(1), χ3(1), 0, . . . , 0). So the last row of Q yields the contradiction χ4(1) = χ1(1) +
χ2(1)− χ3(1) = 0. Hence, |J | > 4. If χ5 ∈ J , we also get χ6, χ7, χ8 ∈ J by looking at the rows 5, . . . , 8. In the
same way we obtain J = Irr(B) eventually.

Our next result extends [14, Proposition 5].

Theorem 5. Harada’s Conjecture holds for sporadic simple groups.

Proof. Let B be a p-block of a sporadic group G with l := l(B). Suppose that J ⊆ Irr(B) satisfies the hypothesis
of Lemma 1. By [9], we may assume that B has a non-cyclic defect group. As the reader might guess, the proof
relies on computer calculations with the character table library in GAP [7]. However, we cannot verify the
conjecture directly, because it would take too long to check all subsets of Irr(B). Instead we do the following.
Using the character table of G it is straight-forward to compute the decomposition matrix Q of B up to basic
sets. In accordance with the conjecture mentioned above, we first show that B has a basic set consisting of
restrictions of ordinary irreducible characters. Finding such a basic set is equivalent to finding l rows of Q such
that the corresponding submatrix has determinant ±1. By construction, Q has lower triangular shape. In many
cases we can extract a lower unitriangular matrix from that. In the remaining cases we use a backtracking
algorithm to enumerate linearly independent rows. In this way the desired basic set can be found with GAP.
We remark that basic sets for most of the sporadic groups were also constructed explicitly by hand in Ikeda’s
papers [15, 17, 18, 25, 19].

By choosing this basic set, we may assume that Q involves an identity matrix of size l × l. It follows that
the vector a = (a1, . . . , al) in Lemma 1 satisfies ai ∈ {0, χi(1)} where χi ∈ Irr(B) is uniquely determined
(i = 1, . . . , l). After replacing J by Irr(B) \ J if necessary, we may assume that χ1 ∈ J . Hence, there are 2l−1

possibilities for a. If l is relatively small (say l < 25), we can check the conjecture by testing all choices of a.

The blocks with l ≥ 25 are all principal. We list them below:

G Ly J4 Fi23 Co1 Fi′24 BM M
p 5 11 3 2 3 5 2 3 2 3 5 2 3 5 7 11 13
l 35 40 32 26 29 29 33 25 25 71 51 55 83 91 70 45 52

In these special cases we proceed as follows. For a row dχ = (d1, . . . , dl) of Q let Fχ := {1 ≤ i ≤ l : di 6= 0}.
There are always characters χ such that 1 < |Fχ| < 25. In order to check the condition (dχ, a) ∈ {0, χ(1)} we
only need to consider the entries ai with i ∈ Fχ. Hence, there are at most 224 cases to look at. In this way we
can show that the coefficients ai with i ∈ Fχ are either all zero or all non-zero. Thus, the set {χi : i ∈ Fχ} is
either disjoint to J or contained in J . In the next step we make {χi : i ∈ Fχ} bigger by choosing another row dψ
such that Fχ ∩Fψ 6= ∅. In order to check (dψ, a) ∈ {0, ψ(1)} it suffices to consider ai with i ∈ Fψ \Fχ, since we
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already know that the ai with i ∈ Fχ are not independent of each other. Therefore, the condition |Fψ| < 25 can
be replaced by |Fψ \Fχ| < 24. In this way we show that {χi : i ∈ Fχ∪Fψ} is either disjoint to J or contained in
J . Continuing in this way we obtain a covering of {1, . . . , l} and it follows eventually that χ1, . . . , χl ∈ J (recall
that χ1 ∈ J). Therefore ai 6= 0 for i = 1, . . . , l and J = Irr(B). In this procedure there is only one hard case,
namely the Monster in characteristic 5. Here the best choice for χ, ψ gives |Fχ| = 12 and |Fχ \ Fψ| = 27. This
is still doable in a matter of minutes.

For the sake of completeness, we mention that Miyamoto [24] managed to prove Harada’s Conjecture in a special
case using completely different methods.

2 Dualizing Harada’s Conjecture

In this section we consider a dual situation where characters are replaced by conjugacy classes. For motivational
purpose, we begin with some well-known results.

Theorem 6 ([26, Theorem 3.19]). The blocks of G are the connected components of a graph on Irr(G) such
that (χ, ψ) is an edge if and only if ∑

g∈G0

χ(g)ψ(g) 6= 0.

Theorem 7 ([6, Lemma IV.6.3(ii)]). If χ, ψ ∈ Irr(G) lie in different blocks, then∑
g∈S

χ(g)ψ(g) = 0

for every p-section S of G

Theorem 8 ([26, Corollary 5.11]). If g, h ∈ G lie in different p-sections, then∑
χ∈Irr(B)

χ(g)χ(h) = 0

for every block B of G.

The following converse is not so well-known. For the convenience of the reader we provide a proof.

Theorem 9 (Osima [28, Theorem 3]). Let J ⊆ Irr(G) such that∑
χ∈J

χ(g)χ(h) = 0 ∀g ∈ G0, h ∈ G \G0.

Then J is a union of blocks.

Proof. We fix g ∈ G0. Then, by [26, Theorem 2.13], there are complex numbers agϕ such that∑
χ∈J

χ(g)χ =
∑

ϕ∈IBr(G)

agϕΦϕ.

By [26, Corollary 2.14], we have |G|p | Φϕ(1) for all ϕ ∈ IBr(G). Moreover, [26, Lemma 2.15] implies that

agϕ =
[ ∑
µ∈IBr(G)

agµΦµ, ϕ
]0

=
[∑
χ∈J

χ(g)χ, ϕ
]0

=
∑
χ∈J

χ(g)[χ, ϕ̂] ∈ R

where R is the ring of algebraic integers in C. With the notation from [26, p. 16 and 51] we conclude that∑
χ∈J

eχ =
1

|G|
∑
χ∈J

χ(1)
∑
g∈G

χ(g−1)g =
∑
g∈G0

(∑
χ∈J

χ(1)χ(g−1)

|G|

)
g =

∑
g∈G0

( ∑
ϕ∈IBr(G)

ag
−1

ϕ Φϕ(1)

|G|

)
g ∈ Z(SG).

Now the claim follows from [26, Theorem 3.9].
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Note that Harada’s Conjecture is just a strengthening of Theorem 9. We remark also that Theorem 9 does not
work if G0 is replaced by a non-trivial p-section.

In order to interchange characters and conjugacy classes, we need to introduce a block distribution on the
classes. This has already been done by several authors (e. g. [3, 27]) in a non-canonically way. Here we mimic
Theorem 6 to give a more natural approach. At the same time we need to give up other properties (e. g. the
number of blocks of classes is not necessarily the number of blocks of characters).

Definition 10. The (p-)class blocks of G are the connected components of the graph on G where (g, h) is an
edge if and only if there is a (p-)block B of G such that∑

χ∈Irr(B)

χ(g)χ(h) 6= 0.

It is clear that class blocks are union of conjugacy classes. Also by Theorem 8, every class block lies in a p-section
of G, but the class blocks are usually finer than the p-sections. For example, if G has only one block, then every
class block is a conjugacy class by the second orthogonality relation (the converse is also true by Theorem 13
below). On the other hand:

Lemma 11. If G has a normal p-complement, then the class blocks are the p-sections.

Proof. Let x ∈ G be a p-element and let y, z ∈ CG(x)0. We need to show that xy and xz lie in the same class
block. By [26, Corollary 6.13] we have Irr(B0) = Irr(G/Op′(G)). It follows that∑

χ∈Irr(B0)

χ(xy)χ(xz) =
∑

χ∈Irr(G/Op′ (G))

χ(x)χ(x) 6= 0.

Here is a less trivial example: The classes (32), (32, 22), (6, 2) and (6, 4) form a (non-trivial) 3-section of the
alternating group A10. On the other hand, the first two and the last two form class blocks.

As another remark, the class blocks are generally not invariant under Aut(G). For example, there are p-groups
with automorphisms which do not preserve conjugacy classes. Similarly, the class blocks are not invariant under
Galois actions (g 7→ gi for some i with (i, |G|) = 1).

It happens frequently that a p-element x does not lie in any defect group apart from the whole Sylow p-subgroup.
Also, quite often the principal block is the only block with maximal defect. In that case the class blocks in the
p-section of x are all just conjugacy classes (see [26, Corollary 5.9]). This draws the focus on the distribution of
the p-regular elements into class blocks. Using the character table library in GAP [7] we obtain the following
examples:

Example 12. Let G be a simple group whose character table is stored in GAP (for example a sporadic group).
Let p be a prime such that G0 is not a class block. Then one of the following cases occurs:

G p comments
M11 3
M22 2 only one p-block
M23 2
M24 2 only one p-block
Co1 2
Co2 2
Co3 3
J4 2
BM 2
M 2

It is quite remarkable that only sporadic groups show up in the table above.
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The following generalizes Theorem 7.

Theorem 13. If χ, ψ ∈ Irr(G) lie in different blocks, then∑
g∈C

χ(g)ψ(g) = 0

for every class block C of G.

Proof. Let B be a block of G, and let Irr(B) = {χ1, . . . , χr}. Let g1, . . . , gk be a set of representatives for the
conjugacy classes of G. We may order these elements with respect to their class blocks. Let

A := (|CG(gj)|−
1
2χi(gj))i,j ∈ Cr×k

(the factors |CG(gj)|−
1
2 turn the character table into a unitary matrix). Then AtA is a block diagonal matrix

where the blocks correspond to the class blocks of G (note that the extra factor in the definition of A does
not matter here). On the other hand, the first orthogonality relation implies that AAt = 1r and AAtA = A.
Let Ai be the submatrix of A where we only take those columns corresponding to the i-th class block. Then
AiA

t
iAi = Ai and At

iAiA
t
i = At

i.

In a similar fashion we define
M := (|CG(gj)|−

1
2ψi(gj))i,j ∈ C(k−r)×k

where Irr(G) \ Irr(B) = {ψ1, . . . , ψk−r}. For the corresponding submatrix Mi we also have MiM
t
iMi = Mi. Our

task is to show that MiA
t
i = 0. The second orthogonality relation gives us At

iAi + M t
iMi = 1s where s is the

number of conjugacy classes in the i-th class block. Consequently,

MiA
t
i = Mi(A

t
iAi +M t

iMi)A
t
i = MiA

t
iAiA

t
i +MiM

t
iMiA

t
i = 2MiA

t
i,

and the claim follows.

There is a connection to the work of Belonogov [1, 2] which we introduce now. Let D be a union of conjugacy
classes of G. Then the D-blocks of G are the connected components of the graph on Irr(G) with vertices (χ, ψ)
such that

∑
g∈D χ(g)ψ(g) 6= 0. Thus, the G0-blocks are just the p-blocks. Now let D be the class block of the

identity element. Then Theorem 13 says that the p-blocks are unions of D-blocks. In fact, judging from examples
it seems that the D-blocks are the p-blocks. A similar concept can be found in [23, Section 1].

Now we prove a dual version of Osima’s Theorem 9.

Theorem 14. Let J be a union of conjugacy classes of G such that∑
g∈J

χ(g)ψ(g) = 0 ∀χ, ψ ∈ Irr(G) in different blocks.

Then J is a union of class blocks.

Proof. Let B be a block of G. We define the matrices A and M exactly as in Theorem 13. Moreover, let
AJ (respectively MJ) be the submatrix of A (respectively M) whose columns correspond to the classes in J .
Similarly, we define AJ′ and MJ′ where J ′ = G \ J . Then 1 = AAt = AJA

t
J + AJ′A

t
J′ . By hypothesis we

have MJA
t
J = 0 and AJM t

J = 0. By the first orthogonality relation, also MJ′A
t
J′ = 0. We have to prove that

At
J′AJ = 0. The second orthogonality relation implies that At

JAJ +M t
JMJ = 1 and At

J′AJ′ +M t
J′MJ′ = 1. We

conclude that AJ = AJ(At
JAJ + M t

JMJ) = AJA
t
JAJ and At

J′ = (At
J′AJ′ + M t

J′MJ′)A
t
J′ = At

J′AJ′A
t
J′ . Now

putting things together, we obtain

At
J′AJ = At

J′(AJA
t
J +AJ′A

t
J′)AJ = 2At

J′AJ .

The claim follows.
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Comparing Theorem 14 with Theorem 9 one might think it is enough to consider χ ∈ Irr(B0) and ψ ∈ Irr(G) \
Irr(B0) where B0 is the principal block of G. However, this is not true in general. A counterexample is given by
the group G = Co1 for p = 5. Nevertheless, one can adjust the definition of class blocks such that

(g, h) ∼
∑

χ∈Irr(B0)

χ(g)χ(h) 6= 0.

Then the mentioned variation of Theorem 14 would be true, but Theorem 13 would fail.

Eventually, for a dual version of Harada’s Conjecture we could set χ = 1 in Theorem 14, but this is again false
(even for the modified class block definition above, a counterexample is G = M11 for p = 3).
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