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Abstract

We call a finite group irrational if none of its elements is conjugate to a distinct power of itself. We
prove that those groups are solvable and describe certain classes of these groups, where the above
property is only required for p-elements, for p from a prescribed set of primes.
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1 Introduction

All groups considered in this article are finite. A classical theme in finite group theory is the investigation
of rational groups. These are groups G such that x, y ∈ G are conjugate whenever 〈x〉 = 〈y〉. Prominent
examples of rational groups are symmetric groups. In this paper we study groups with the opposite
property, that is we call G irrational if 〈xyx−1〉 = 〈y〉 implies xyx−1 = y for all x, y ∈ G; that is no
element of G is conjugate to a distinct power of itself. This property can be rephrased in terms of the
character table. Somewhat surprisingly, it seems that this condition has not been systematically studied
in the literature so far (see [2, Research Problem 344]). It is easy to see that all abelian groups and all
nilpotent group with squarefree exponent are irrational. Since there are many p-groups with exponent
p > 2, there is no hope to classify irrational groups completely. Even for p = 2 there are already 656
irrational groups of order 29.

To make things more accessible we define π-irrational groups for a set of primes π in the next section. We
will show that p-irrational groups are p-solvable provided p ≥ 5. It follows easily that 2′-irrational groups
are solvable. On the other hand, we classify the simple 2-irrational groups. Finally, we provide examples
to show that the structure of irrational groups is quite unrestricted.

2 General results

Our notation is fairly standard and follows [9] for instance. For a set of primes π we say that a finite
group G is π-irrational if

CG(x) = NG(〈x〉) for all π-elements x ∈ G.

Of course we say p-irrational instead of {p}-irrational. It is easy to see that G is π-irrational if and only if
G is p-irrational for all p ∈ π. Finally, G is called irrational if G is π(G)-irrational. This is easily seen to be
equivalent to the definition given in the introduction. For g ∈ G we denote Q(g) := Q(χ(g) : χ ∈ Irr(G)).
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The n-th cyclotomic field is denoted by Qn. Using [12, Theorem 4], one can show that G is π-irrational
if and only if

Q(x) = Q|〈x〉| for all π-elements x ∈ G.

Obviously, subgroups and direct products of π-irrational group are π-irrational. However, quotients of
π-irrational groups are not always π-irrational. For example SmallGroup(16, 3) from the small groups
library [8] (which is of the form (C4 ×C2) oC2) is irrational, but has a quotient of type D8. Recall that
in comparison quotients of rational groups are rational, but subgroups of rational groups in general fail
to be rational.

Lemma 1. If G is π-irrational and N is a normal π′-subgroup of G. Then G/N is π-irrational.

Proof. Let gN ∈ G/N be a π-element. We may assume that g is a π-element. By the Schur-Zassenhaus
theorem, the subgroups of order |〈g〉| in 〈g〉N are conjugate under N . Hence, the Frattini argument yields

NG/N (〈gN〉) ≤ NG(〈g〉N)/N = NG(〈g〉)N/N = CG(g)N/N ≤ CG/N (gN) ≤ NG/N (〈gN〉).

Theorem 2. Let p ≥ 5 be a prime. Then every p-irrational group is p-solvable.

Proof. Let G be p-irrational. In order to show that G is p-solvable, we may assume that O2′(G) =

G = Op′
(G). By Lemma 1, we can also assume that Op′(G) = 1. Since G is p-irrational, it follows that

G does not contain any real elements of order p. By [6, Theorem A], we conclude that G is a direct
product of certain simple groups. Hence, we may assume that G itself is simple. If G has cyclic Sylow
p-subgroups, we obtain a contradiction via Burnside’s transfer theorem. Consequently, [6, Theorem 2.1]
yields G ∼= PSL(2, p2f+1) and p ≡ 3 (mod 4). In particular, the upper unitriangular matrices form
an elementary abelian Sylow p-subgroup P and NG(P ) is the set of upper triangular matrices with
determinant 1 (modulo 〈−I2〉 of course). It follows that G has only two conjugacy classes of non-trivial
p-elements. Hence, G can only be p-irrational if p− 1 ≤ 2. However this was explicitly excluded.

Theorem 3. Every 2′-irrational group has a normal Sylow 2-subgroup. In particular, 2′-irrational groups
are solvable.

Proof. The claim follows from a more general result in [7, Proposition 6.4]. For the convenience of the
reader we present the proof. Let G be 2′-irrational and P ∈ Syl2(G). Arguing by induction on |P |, we may
assume that P 6= 1. Let x ∈ P be an involution and g ∈ G. Then 〈x, gxg−1〉 is a dihedral group and since
G is 2′-irrational, 〈x, gxg−1〉 must be a 2-group. Therefore, Baer’s theorem [9, Theorem 3.8.2] implies
x ∈ O2(G) 6= 1. By Lemma 1, G/O2(G) is 2′-irrational and induction shows P/O2(G) E G/O2(G). It
follows that PEG. The last claim is a consequence of the Feit-Thompson Theorem (or of Theorem 2).

If G is irrational (instead of 2′-irrational), then the involutions in G form an elementary abelian normal
subgroup.

By [6, Theorem C], the 3-irrational non-abelian simple groups are precisely PSL(2, 32f+1) with f ≥ 1
and the Suzuki groups Sz(q) (the only non-abelian simple groups whose order is not divisible by 3). We
now aim to describe the simple groups that are 2-irrational.

Lemma 4. Let P ∈ Syl2(G). Then G is 2-irrational if and only if P is irrational.

Proof. If G is 2-irrational, then clearly P ≤ G is irrational. Assume conversely that P is irrational. Let
x ∈ G be a 2-element and y ∈ NG(〈x〉). Since Aut(〈x〉) is a 2-group, we may replace y by its 2-part. Then
〈x, y〉 is a 2-group and after conjugation we have x, y ∈ P . Now the assumption gives y ∈ CP (x) ⊆ CG(x).
Hence, G is 2-irrational.

Walter’s description [15] of all non-solvable groups with abelian Sylow 2-subgroups provides many exam-
ples of non-solvable 2-irrational groups. Our next lemma gives a necessary condition for 2-irrationality.
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Lemma 5. Let P be an irrational 2-group. Let s be the number of conjugacy classes of involutions of P ,
and let d be the minimal number of generators of P . Then 2d ≤ s+ 1. In particular, |Ω(P )| ≥ |P/Φ(P )|
where Ω(P ) := 〈x ∈ P : x2 = 1〉.

Proof. By Brauer’s permutation lemma, P has exactly 1 + s real irreducible characters. On the other
hand, all the inflations of the elementary abelian group P/Φ(P ) are real. Now the first claim follows from
|P/Φ(P )| = 2d. The second claim follows, because Ω(P ) contains all involutions plus the identity and
therefore |Ω(P )| ≥ s+ 1.

Theorem 6. Let G be a finite non-abelian simple group. Then G is 2-irrational if and only if G is one
of the following:

• PSL(2, q) with q ≡ 0, 3, 5 (mod 8),

• Sz(q),

• 2G2(q),

• J1.

Proof. We use the classification of the finite simple groups. By Lemma 4 it suffices to decide whether a
Sylow 2-subgroup is irrational. Throughout q will denote a power of a prime p.

Clearly A5 is 2-irrational, whereas A6 is not as it contains a dihedral group of order 8. Hence the only
non-abelian simple alternating group that is 2-irrational is A5

∼= PSL(2, 5).

Now we consider the groups PSL(2, q) and PSL(3, q). The groups PSL(2, 2f ) are always 2-irrational, as
they have elementary abelian Sylow 2-subgroups (note that PSL(2, 4) ∼= PSL(2, 5)). The groups PSL(2, q),
q odd, have dihedral Sylow 2-subgroups, so they happen to be 2-irrational if and only if the Sylow 2-
subgroups are abelian, i. e. they have order 4 and this happens if and only if q is congruent to 3 or 5
modulo 8. A group PSL(3, q) can never be 2-irrational: Note first that the Sylow 2-subgroups of PSL(3, q)
and SL(3, q) are isomorphic. Clearly, if q is even, then the upper triangular matrices contain a subgroup
isomorphic to a dihedral group of order 8. If q is odd, SL(3, q) contains the elements

s =

0 −1 0
1 0 0
0 0 1

 and t =

0 1 0
1 0 0
0 0 −1

 (1)

of order 4 and 2, respectively. As conjugation by t inverts s, they generate together a dihedral group of
order 8.

Next we consider general simple groups of Lie type. In the proof of [1, Theorem 1], they exhibit in
each simple group of Lie type a subgroup isomorphic to SL(3, q), PSL(3, q) or SL(2, q2) which is not
2-irrational, except in the following cases:

A1(q), C2(q), 2A2(q2), 2A3(22m), 2A4(22m), 2B2(22f+1), 2F4(22f+1), 2G2(32f+1).

A1(q) = PSL(2, q): We already handled these groups.

C2(q) = PSp(4, q): For odd q it is known that the Sylow 2-subgroups of Sp(4, q) are isomorphic to
P = Q oC2, where Q is a Sylow 2-subgroup of Sp(2, q) ∼= SL(2, q), which is quaternion of order at least 8
(see [3]). Now P̄ ∈ Syl2(PSp(4, q)) is isomorphic to P/(Z(Sp(4, q))∩P ), where Z(Sp(4, q)) = 〈−I4〉. Taking
an element x of order 4 in Q, then it can be checked that the image of (x, 1) under Q×Q ↪→ Q oC2 � P̄
is also of order 4 and conjugate to its inverse. So PSp(4, q), q odd, cannot be 2-irrational.
If q is even we have that PSp(4, 2) ∼= S6 which is not 2-irrational, embeds into PSp(4, q) and we are done.
2A2(q2) = PSU(3, q): If q is odd, the matrices s and t in (1) are matrices of SU(3, q) that generate a
subgroup D ∼= D8. Note that Z(SU(3, q)) ∩D = 1, so that PSU(3, q) is not 2-irrational.
Now assume that q is even. By [4], a Sylow 2-subgroup P of PSU(3, q) is given by the matrices

M(x, y) =

1 0 0
x 1 0
y xq 1

 , x, y ∈ Fq2 , y + yq = x1+q.
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Taking x = 1 and let y = ζ ∈ Fq2 be any solution of Xq + X + 1 = 0 (which exists since the trace map
Fq2 → Fq, a 7→ a + aq is surjective), we get an element A = M(1, ζ) ∈ P of order 4. Now let ξ ∈ Fq2 be
any root of Xq +X + ζ1+q (which exists), then B = M(ζ, ξ) ∈ P and it is straight forward to verify that
AB = A−1. Thus P cannot be 2-irrational.
2An(22m) = PSU(n+ 1, 2m), n ∈ {3, 4}: A Sylow 2-subgroup of PSU(3, 2m) embeds into PSU(4, 2m) and
into PSU(5, 2m) (note that the center of SU(n, 2m) always has odd order), so these groups cannot be
2-irrational.
2B2(22f+1) = Sz(22f+1): The Suzuki groups are 2-irrational: This can either be seen from their generic
character table or as their Sylow 2-subgroups of exponent 4 are irrational, as none of the elements of
order 4 is conjugate to its inverse (see [14]).
2F4(22f+1): By Malle’s description [11] of the maximal subgroups of 2F4(22f+1), the group contains a
GL(2, 3), which is not irrational.
2G2(32f+1): The small Ree groups are 2-irrational as they have elementary abelian Sylow 2-subgroups of
order 8.

For the sporadic simple groups we consult the ATLAS [5] or the character tables in GAP [8]. This reveals
that J1 is indeed the only 2-irrational sporadic simple group.

So all irrational groups that are Sylow 2-subgroups of simple groups are elementary abelian or Suzuki 2-
groups. Unfortunately, not every non-abelian composition factor of a 2-irrational group belongs to the list
in Theorem 6. For example, the 2-irrational group G := PerfectGroup(212325, 19) satisfies G/F(G) ∼= A6

(this can be checked with GAP).

In the following we consider special families of irrational groups.

Proposition 7.

(i) Every irrational metacyclic group is abelian.

(ii) Every irrational supersolvable group is nilpotent.

Proof.

(i) Let G be an irrational metacyclic group with cyclic N = 〈x〉EG such that G/N is also cyclic. Take
y ∈ G, then xy ∈ 〈x〉, and hence [x, y] = 1, so that N ≤ Z(G). But then G/Z(G) is cyclic and hence
G is abelian.

(ii) Let G be irrational and supersolvable. Let NEG be a maximal normal subgroup. Since G is solvable,
|G : N | = p is a prime. By induction on |G|, we may assume that N is nilpotent. Let g ∈ G \N be
a p-element, and let Q be a Sylow q-subgroup of N for some prime q 6= p. It suffices to show that
g acts trivially on Q. We may assume that Q 6= 1. By hypothesis, Q contains a 〈g〉-stable maximal
subgroup Q1. By induction, g acts trivially on Q1. If q = 2, then 〈g〉 clearly acts trivially on Q/Q1

and therefore also on Q. Now let q > 2. By a result of Thompson (see [9, Theorem 5.3.13]), we may
assume that Q has exponent q. The number of non-trivial subgroups which intersect Q1 trivially is
(qt− qt−1)/(q− 1) = qt−1 where |Q| = qt. Since p 6= q, at least one of these subgroups is normalized
by 〈g〉. By irrationality, it must even by centralized. This implies the claim.

Proposition 8. Let G be an irrational Frobenius group with complement K. Then K is cyclic of odd
order. Conversely, every cyclic group of odd order occurs as a complement in an irrational Frobenius
group.

Proof. By Theorem 3, K has odd order. It follows from the theory of Frobenius groups that all Sylow
subgroups of K are cyclic and K must be metacyclic (see [9, Theorem 10.3.1]). As an irrational group,
K itself must be cyclic by Proposition 7.

Conversely, let K be any cyclic group of odd order. Let n be the order of 2 modulo |K|. Then 2n ≡ 1
(mod |K|) and K can be embedded in a Singer cycle of GL(n, 2). Since the Singer cycle acts fixed point
freely, G := Cn

2 oK is a Frobenius group. Obviously, G is irrational.

4



One cannot say much about kernels in irrational Frobenius groups (apart from Thompson’s Theorem that
they are nilpotent). There are examples where the kernel is neither abelian nor a p-group. For instance
take (P × C2

13) o C7 where P ∈ Syl2(Sz(8)) and C7 acts diagonally on P and C2
13.

3 Examples

In this section we illustrate by examples that the structure of (solvable) irrational groups can be rather
wild. By Theorem 3, it is natural to study irrational groups G of odd order. Here it is no longer true
that G has a normal Sylow p-subgroup for some prime p. This can be seen from the direct product of the
irrational groups C2

5 o C3 and C4
3 o C5. This can even happen for indecomposable groups as the central

product of 51+2
+ o C3 and C4

3 o 51+2
+ shows (the centers of order 5 in both factors are identified).

The Sylow p-subgroup of GL(p, p) of exponent p shows that neither the derived length nor the nilpotency
class of (nilpotent) irrational groups can be bounded. The following construction shows that there are
irrational groups with arbitrary large Fitting length. Suppose we have given an irrational group G of odd
order n (for example G = Cn). By Dirichlet’s prime number theorem, there exists an odd prime p ≡ 2
(mod n). Clearly, n is not divisible by p and (p− 1, n) = 1. Let V be any finite-dimensional faithful FpG-
module (for example the regular module). Then the semidirect product Ĝ := V oG satisfies F(Ĝ) = V ,
so that the Fitting length of Ĝ exceeds that of G. Now let g ∈ Ĝ. If two powers of g are conjugate in Ĝ,
then the corresponding cosets are conjugate in Ĝ/V ∼= G. Hence, if g is p-regular, then NĜ(〈g〉) = CĜ(g).
Now assume that g ∈ V , so that g has order at most p. Since (p− 1, n) = 1, g is not conjugate to any of
its distinct powers. Thus again, NĜ(〈g〉) = CĜ(g) and Ĝ is irrational. Now we can repeat the process by
replacing G with Ĝ.

In this way we obtain irrational groups with abelian Sylow p-subgroups. The following modification
gives irrational groups with non-abelian Sylow p-subgroups. It is well-known that G embeds into the
symmetric group Sn and Sn embeds into the symplectic group Sp(2n, p) (sending a permutation matrix
M to M ⊕M). By Winter [16, Theorem 1], G acts faithfully on the extraspecial group V of order p1+2n

and exponent p. This gives Ĝ := V oG with the desired properties.

From the examples above it seems that every irrational group has p-length 1 for every prime p. This is
unfortunately not true in general: The group C2

5 oC3 acts faithfully on C12
3 , but the semidirect product

C12
3 o (C2

5 oC3) is not irrational, since it contains C3 oC3. Nevertheless there exists an irrational central
extension of type C13

3 .(C2
5 o C3) of 3-length 2 (this can be checked with GAP).

Since abelian groups are irrational, we finally describe the minimal non-abelian groups G that are ir-
rational (that is, every proper subgroup is abelian). First by Proposition 7, we know that G is not
metacyclic. It turns out that this is the only constraint. Let x ∈ G and y ∈ NG(〈x〉). Since G is not meta-
cyclic, 〈x, y〉 < G and 〈x, y〉 is abelian. This implies y ∈ CG(x). Hence by the classification of minimal
non-abelian groups (see e. g. [10, Aufgabe III.5.14] and [13, Theorem 12.2]), G is either a p-group of the
form

〈x, y | xp
r

= yp
s

= [x, y]p = [x, x, y] = [y, x, y] = 1〉

with r ≥ s ≥ 1 or a group of the form Cr
q oCps for two distinct primes p, q and r ≥ 2, where a generator

of Cps acts on the elementary abelian q-group by a companion matrix of an irreducible divisor of Xp−1
X−1

of degree r.
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