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Abstract

We give a lower bound on the Loewy length of a p-block of a finite group in terms of its defect. Afterwards
we discuss blocks with small Loewy length. Since blocks with Loewy length at most 3 are known, we focus
on blocks of Loewy length 4 and provide a relatively short list of possible defect groups. It turns out that
p-solvable groups can only admit blocks of Loewy length 4 if p = 2. However, we find (principal) blocks of
simple groups with Loewy length 4 and defect 1 for all p ≡ 1 (mod 3). We also consider sporadic, symmetric
and simple groups of Lie type in defining characteristic. Finally, we give stronger conditions on the Loewy
length of a block with cyclic defect group in terms of its Brauer tree.
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1 Introduction

Let F be an algebraically closed field of characteristic p > 0, and let B be a block of the group algebra FG of
a finite group G over F . Moreover, let D be a defect group of B. We denote the inertial index of B by e(B).

For a finite-dimensional F -algebra A, we denote by J(A) the Jacobson radical and by LL(A) the Loewy length
of A. Similarly, we denote by LL(M) the Loewy length of a finitely generated A-moduleM . For a finite p-group
P , we denote by r(P ) its rank and by exp(P ) its exponent.

One aim of this paper is to give a general lower bound on LL(B) in terms of the defect of B. This is established
in the next section by making use of work by Oppermann [40] and Külshammer [32]. Since this inequality is
usually very crude, we provide a different approach in terms of a certain fixed point algebra on Z(D). Here our
result on the Loewy length of a fixed point algebra might be of general interest. Finally, for blocks with cyclic
defect groups we express the Loewy length via Brauer trees.

The third section deals with blocks of small Loewy length. After stating the known result about Loewy length
at most 3, we determine the possible defect groups for blocks with Loewy length 4. For fixed p ≥ 5 we get
at most 12 isomorphism types of these groups. Since blocks of small Loewy length in solvable groups are well
understood, we turn to blocks of (almost) (quasi)simple groups. Symmetric (and thus also alternating) groups
can be completely handled, while for sporadic groups and simple groups of Lie type in defining characteristic
we restrict to principal blocks. Here we develop general methods and reductions.

2 Defect and Loewy length of blocks

Lemma 2.1. Let P be a finite p-group of order pδ, exponent pε and (normal) rank ρ. Then

δ ≤
(
ρ+ 1

2

)
(2ε− 1).
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Proof. Let A be a maximal abelian normal subgroup of P . Then |A| = pα where α ≤ ερ. Moreover, we have
A = CP (A), and P/A = P/CP (A) is isomorphic to a subgroup of Aut(A). By III.3.19 in [22], |Aut(A)| divides

pρ(α−ρ)(pρ − 1)(pρ − p) · · · (pρ − pρ−1).

Thus |P/A| = pσ where

σ ≤ ρ(α− ρ) + 1 + 2 + · · ·+ (ρ− 1) ≤ ρ2(ε− 1) +

(
ρ

2

)
.

Hence an elementary calculation shows that

δ = α+ σ ≤
(
ρ+ 1

2

)
(2ε− 1).

Lemma 2.2. Let B be a p-block with defect group D and Loewy length λ > 1. Then ρ ≤ λ − 1 and ε ≤
1 + blogp(λ− 1)c where pε = exp(D) and ρ = r(D).

Proof. The first inequality follows from Oppermann’s proof [40, Corollary 3] of a conjecture by Benson. More-
over, a result by Külshammer (see [32, K. Korollar] or [34, Equation (21)]) implies that exp(D)/p < λ. This
proves the second inequality.

Theorem 2.3. Let B be a p-block of defect δ and Loewy length λ > 1. Then

δ ≤
(
λ

2

)
(2blogp(λ− 1)c+ 1).

Proof. Let D be a defect group of B. Moreover, let exp(D) = pε and r(D) = ρ. Then the results above imply:

δ ≤
(
ρ+ 1

2

)
(2ε− 1) ≤

(
λ

2

)
(2blogp(λ− 1)c+ 1).

If G is p-solvable then, by a result of Koshitani [28, Theorem], we always have λ > δ(p − 1). However, this
bound is not valid for arbitrary finite groups as one can see from our examples in the last section of this paper.
We are wondering whether, in general, we have λ > δ.

Our next result gives a different bound for the Loewy length of a block.

Proposition 2.4. Let B be a p-block with defect group D and Loewy length λ. Moreover, let b be a p-block of
DCG(D) such that bG = B, and denote by T := NG(D, b) the inertial subgroup of b. Then T acts on Z(D), and
we have LL(FZ(D)T ) ≤ LL(Z(B)) ≤ λ where

FZ(D)T := {x ∈ FZ(D) : txt−1 = x for t ∈ T}

denotes the algebra of fixed points. In particular, if T acts trivially on Z(D) then LL(FZ(D)) ≤ λ.

Proof. Since J(Z(B)) ⊆ J(B) we have LL(Z(B)) ≤ LL(B) = λ. By a result of Broué [6, Proposition (III)1.1],
Z(B) has an ideal I (the kernel of the Brauer homomorphism) such that Z(B)/I is isomorphic to FZ(D)T ; in
particular, we have

LL(FZ(D)T ) = LL(Z(B)/I) ≤ LL(Z(B)) ≤ λ.

We are going to compare the Loewy lengths of FZ(D) and of FZ(D)T , in the situation of the proposition
above. In order to do this, we quote Lemma 2.3.1 in [38] which the authors attribute to D. J. Benson.

Lemma 2.5 (Benson). Let T be a finite group whose order is not divisible by p = char(F ), let A be a commutative
T -algebra over F , and let I be a T -stable ideal of A. Then I |T | ⊆ IT ·A.

We are going to apply this in the proof of the following result.
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Proposition 2.6. Let P be a finite abelian p-group, and let T be a p′-subgroup of Aut(P ). Then

LL(FPT ) ≥ LL(FP )− 1

|T |
+ 1.

Proof. We apply Benson’s Lemma with A := FP and I := J(FP ). Then we obtain J(FP )|T | ⊆ J(FP )T ·A =
J(FPT ) · FP . Thus

J(FP )|T |(λ−1) ⊆ J(FPT )(λ−1) · FP ⊆ Soc(FPT ) · FP
where λ := LL(FPT ). But FPT is a symmetric F -algebra (cf. Section 2 in [26], for example). Since FPT is a
local F -algebra, we have dim Soc(FPT ) = 1. Thus Soc(FPT ) = FP+ where P+ :=

∑
g∈P g. We conclude that

Soc(FPT ) · FP = P+ · FP = Soc(FP ), so that J(FP )|T |(λ−1)+1 = 0. Thus LL(FP ) ≤ |T |(λ− 1) + 1, and

LL(FP )− 1

|T |
≤ λ− 1 = LL(FPT )− 1.

The result follows.

The results above lead to the following consequence.

Corollary 2.7. Let B be a block with maximal Brauer pair (D, b) and inertial group T = NG(D, b). Moreover,
let T := T/CG(Z(D)). Then

LL(B) ≥ LL(Z(B)) ≥ LL(FZ(D)T ) ≥ LL(FZ(D))− 1

|T |
+ 1.

We recall that the Loewy length of the group algebra FZ(D) of the abelian group Z(D) can be computed
easily:

(i) If A1 and A2 are finite-dimensional F -algebras then, as is well known, we have

LL(A1 ⊗A2) = LL(A1) + LL(A2)− 1.

(ii) Now let P = Cpa1 × · · · × Cpar where a1, . . . , ar ∈ N. Then (i) implies that

LL(FP ) = pa1 + · · ·+ par − r + 1.

We also observe the following consequence of our results.

Corollary 2.8. Let B be a p-block with a cyclic defect group D. Then

LL(B) ≥ LL(Z(B)) =
|D| − 1

e(B)
+ 1.

Proof. It remains to prove that

LL(Z(B)) ≤ |D| − 1

e(B)
+ 1.

Let b be the Brauer correspondent of B in NG(D). Then, as is well known, the blocks B and b are perfectly
isometric; in particular, their centers are isomorphic. By a result of Külshammer [33, A. Theorem], b is Morita
equivalent to FH where H denotes the semidirect product of D and the inertial factor group T . Thus Z(B) ∼=
Z(b) ∼= Z(FH). Recall that dimZ(FH) = |D|−1

e(B) + e(B). It follows easily that

Z(FH) = FDT ⊕ I1(FH)

where I1(FH) is the subspace of Z(FH) spanned by all class sums of defect 0, an ideal in Z(FH) contained in
Soc(FH). We conclude that

LL(FDT ) = LL(Z(FH)) = LL(Z(b)) = LL(Z(B)) ≥ |D| − 1

e(B)
+ 1 = dimFDT ,

and the result follows.
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If in the situation of Corollary 2.8 the Brauer tree Γ of B is known, one can compute LL(B) explicitly as follows.
We attach to each vertex v of Γ a multiplicity mv which is |D|−1e(B) if v is exceptional and 1 otherwise. Also, each
vertex v of Γ has a degree dv which equals the number of edges with endpoint v. If S is a simple B-module and
v, w are the endpoints of the edge in Γ corresponding to S, then the Loewy length of the projective cover PS of
S satisfies

LL(PS) = max{dvmv + 1, dwmw + 1}.

Thus the Loewy length of B equals

LL(B) = max{dvmv + 1 : v vertex of Γ}. (1)

For later purpose we consider the Loewy length with respect to normal subgroups and quotients.

Proposition 2.9. Suppose that B dominates a block b of G/N where N is a normal subgroup of G. Then
LL(b) ≤ LL(B).

Proof. Let f : FG −→ F [G/N ] denote the canonical epimorphism. Then f(B) = b1 ⊕ · · · ⊕ br where b1 =
b, b2, . . . , br are the blocks of G/N dominated by B. Thus

f(J(B)) = J(f(B)) = J(b1 ⊕ · · · ⊕ br) = J(b1)⊕ · · · ⊕ J(br).

Let λ := LL(B). Then J(B)λ = 0, and

0 = f(J(B)λ) = f(J(B))λ = J(b1)λ ⊕ · · · ⊕ J(br)
λ.

Thus LL(bi) ≤ λ for i = 1, . . . , r.

Proposition 2.10. Suppose that B covers a block b of a normal subgroup H of G. Then LL(b) ≤ LL(B). Sim-
ilarly, we have LL(PFH

) ≤ LL(PFG
) where PFG

is the projective cover of the trivial FG-module FG. Moreover,
if p does not divide |G : H|, then LL(B) = LL(b).

Proof. Let V be an indecomposable projective b-module. Then V is a direct summand of ResGH(U) for an
indecomposable projective B-module U . Recall that J(FH) ⊆ J(FG). Thus, J(B)t = 0 implies that 0 =
J(FG)tU ⊇ J(FH)tU ⊇ J(b)tV . Thus J(b)t = 0.

It is clear that PFH
is a direct summand of PFG

. Let t := LL(PFG
). Then 0 = J(FG)tPFG

⊇ J(FH)tPFG
⊇

J(FH)tPFH
, so that LL(PFH

) ≤ t.

The last statement is a result of Koshitani and Miyachi [30, (4.1) Lemma(i)].

3 Blocks with small Loewy length

Theorem 2.3 gives a crude bound on the defect of a block if its Loewy length is given. If the Loewy length is
small, we have more precise results.

Proposition 3.1 (Okuyama [39, Theorem 1]). Let B be a p-block with defect δ and Loewy length λ. Then the
following holds:

(i) λ = 1 if and only if δ = 0.

(ii) λ = 2 if and only if δ = 1 and p = 2.

(iii) λ = 3 if and only if one of the following holds

(a) p = δ = 2 and B is Morita equivalent to F [C2 × C2] or to FA4,

(b) p > 2, δ = 1, e(B) ∈ {p− 1, (p− 1)/2} and the Brauer tree of B is a straight line with the exceptional
vertex at the end (if it exists).

Hence, we turn to blocks of Loewy length 4 in the following.
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Lemma 3.2. Let P be a finite p-group of exponent p and rank ρ ≤ 3 where p ≥ 5. Then P is isomorphic to one
of the following groups (p-powers of generators and not mentioned commutator relations between generators are
defined to be trivial):

(i) Cp, Cp × Cp, Cp × Cp × Cp or p1+2
+ (extraspecial of order p3),

(ii) Cp × p1+2
+ ,

(iii) 〈a, b, c, d | [b, d] = a, [c, d] = b〉,

(iv) p1+4
+ (extraspecial of order p5),

(v) 〈a, b, c, d, e | [d, e] = a, [a, d] = b = [e, c]〉,

(vi) 〈a, b, c, d, e | [d, e] = a, [a, d] = b, [a, e] = c〉,

(vii) 〈a, b, c, d, e | [d, e] = a, [a, d] = b, [a, e] = c = [b, d]〉,

(viii) 〈a, b, c, d, e, f | [b, a] = c, [c, a] = d, [d, a] = e, [d, b] = [e, b] = [c, d] = f〉 where p ≥ 7,

(ix) 〈a, b, c, d, e, f | [b, a] = c, [c, a] = d, [d, a] = e = [c, b], [d, b] = [e, b] = [c, d] = f〉 where p ≥ 7.

Proof. The result is obvious when |P | ≤ p3. The groups of order p4 can be found in III.12.6 of [22], for example.
The groups of order p5 can be found in a paper by Schreier [43, §6E], for example. The groups of order p6 and
exponent p can be found in a paper by Wilkinson [52, Table 1], for example. We slightly adjust the generators
and relations for sake of simplicity and uniformity.

Although the proof shows that the groups in Lemma 3.2 are pairwise non-isomorphic, it is often useful to know
some invariants which distinguish these groups:

• The groups in (ii) and (iii) have order p4. The one in (iii) has a cyclic center whereas the one in (ii) does
not.

• The groups in (iv) – (vii) have order p5. The one in (iv) has a derived subgroup of order p, the one in (v) a
derived subgroup of order p2, and the ones in (vi) and (vii) have derived subgroups of order p3. Moreover,
the group in (vii) has a cyclic center while the one in (vi) does not.

• The groups in (viii) and (ix) have both order p6. They have maximal nilpotency class and are exceptional in
the sense of Definition III.14.5 of [22]. Let P be one of these two groups, and set P1 := CP (K2(P )/K4(P )).
Then P1 = 〈b, c, d, e, f〉 is a characteristic maximal subgroup of P in both cases, and r(P1) = 3. If P is of
type (viii) then P1 is of type (iv), and if P is of type (ix) then P1 is of type (v).

We add some examples. A Sylow 5-subgroup of the sporadic simple group Co1 has exponent 5 and rank 3
(see [9] and Table 5.6.1 on p. 303 in [15]); it is the group appearing in Lemma 3.2(iii), for p = 5 (this follows
for example from the inclusion 51+2

+ o GL(2, 5) ≤ Co1, see Table 5.3 on p. 211 in [53]). Similarly, a Sylow
7-subgroup of the sporadic simple group M called the Monster has exponent 7 and rank 3; it is the group
appearing in Lemma 3.2(viii), for p = 7 (see Table 5.6 on p. 258 in [53]). Also, for p ≥ 7 the Sylow p-subgroups
of the exceptional groups of Lie type G2(p) are isomorphic to the groups in Lemma 3.2(viii) (follows from
G2(p) ≤ GL(7, p), Table 3.3.1 on p. 108 in [15] and Table 4.1 on p. 127 in [53]).

Proposition 3.3. Let B be a p-block of Loewy length 4 where p ≥ 5. Then the defect groups of B are isomorphic
to one of the p-groups appearing in Lemma 3.2.

Proof. Let D be a defect group of B. Then Theorem 2.3 implies that |D| ≤ p6. Moreover, Lemma 2.2 shows
that r(D) ≤ 3 and exp(D) ≤ p.
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Combining Theorem 2.3 and Proposition 3.3 gives the following bound on the defect δ of a block with Loewy
length 4:

δ ≤


18 if p ≤ 3,

5 if p = 5,

6 if p ≥ 7.

A result by Koshitani [27] implies that even δ ≤ 3 whenever p = 2 and B is the principal block (see Theorem 4.5
below). It is perhaps of interest that there are at most 12 possibilities for the isomorphism type of D when
p ≥ 7, and at most 10 possibilities for p = 5. We do not expect, however, that all these p-groups really occur as
defect groups of p-blocks of Loewy length 4. In fact, we only have examples for Cp whenever p > 2.

Suppose that B is a p-block with defect group D and Loewy length 4. Moreover, suppose that |Z(D)| = p. Then
4 ≥ (p − 1)/e(B) + 1 by Corollary 2.7, i.e. e(B) ≥ (p − 1)/3. Thus the inertial index has to be “large”. Now
suppose that Z(D) ∼= Cp × Cp. Then 4 ≥ 2(p − 1)/e(B) + 1, i.e. e(B) ≥ 2(p − 1)/3, and again e(B) has to be
“large”. We use this to impose further conditions on the list in Lemma 3.2.

Proposition 3.4. Let P be a p-group and ϕ : Aut(P ) → Aut(Z(P )) the restriction map. Then the following
holds:

(i) If P is one of the groups from Lemma 3.2(i),(iii),(iv),(v),(viii), then ϕ is surjective.

(ii) If P is the group from Lemma 3.2(ii), then ϕ(Aut(P )) ∼= (Cp o Cp−1)× Cp−1.

(iii) If P is the group from Lemma 3.2(vi), then

ϕ(Aut(P )) =

{
SL(2, p) o C(p−1)/3 if p ≡ 1 (mod 3),

Aut(Z(P )) ∼= GL(2, p) otherwise.

(iv) If P is the group from Lemma 3.2(vii), then

ϕ(Aut(P )) =

{
C(p−1)/5 if p ≡ 1 (mod 5),

Aut(Z(P )) ∼= Cp−1 otherwise.

(v) If P is the group from Lemma 3.2(ix), then

ϕ(Aut(P )) =

{
C(p−1)/7 if p ≡ 1 (mod 7),

Aut(Z(P )) ∼= Cp−1 otherwise.

Proof. If P is abelian, there is nothing to prove. If P is extraspecial, then the claim follows from [54, Theorem 1].
Now, let us assume that P is the group from Lemma 3.2(iii). Choose a primitive root ω modulo p. Then it is easy
to see that the map c 7→ cω, d 7→ d is an automorphism of P whose restriction generates Aut(Z(P )) = Aut(〈a〉).
In case of Lemma 3.2(v) we can use the automorphism c 7→ c, d 7→ d and e 7→ eω for the same conclusion. The
case (viii) will be handled later.

For the group P ∼= Cp × p1+2
+ we have Cp ∼= P ′ ≤ Z(P ) ∼= Cp × Cp. Thus, ϕ(Aut(P )) consists of triangular

matrices in GL(2, p). Obviously, ϕ(Aut(P )) contains all diagonal automorphisms. If we write P = 〈a, b, c, d |
[b, c] = d〉, then it is easy to see that the map a 7→ ad, b 7→ b and c 7→ c is an automorphism. This shows that
every triangular matrix lies in ϕ(Aut(P )).

Next assume that P is the group from Lemma 3.2(vi). Here the map α : d 7→ e, e 7→ d−1 is an automorphism
which acts on Z(P ) = 〈b, c〉 as α(b) = c and α(c) = b−1. Similarly, the map β defined by d 7→ de and e 7→ e
is an automorphism with β(b) = bc and β(c) = c. It is well-known that 〈α, β〉 ∼= SL(2, p) ≤ Aut(Z(P )) (see
Lemma 1.2.2 in [4] for example). Consider the automorphism γ : d 7→ dω, e 7→ e. Then γ(b) = bω

2

and γ(c) = cω.
Hence, γ corresponds to a matrix of determinant ω3 in GL(2, p) ∼= Aut(Z(P )). In particular, ϕ is surjective
if p 6≡ 1 (mod 3). Finally, in case p ≡ 1 (mod 3) it remains to show that ϕ(Aut(P )) cannot be larger than
〈α, β, γ〉. For this let τ ∈ Aut(P ) be arbitrary. Then τ(d) ≡ diej (mod P ′) and τ(e) ≡ dkel (mod P ′) for
some i, j, k, l ∈ Z. It follows that τ(a) ≡ [diej , dkel] ≡ ail−jk (mod Z(P )) by III.1.2 and III.1.3 in [22]. This
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implies τ(b) = bi(il−jk)cj(il−jk) and τ(c) = bk(il−jk)cl(il−jk). Thus the corresponding element of GL(2, p) has
determinant (il − jk)3. This proves the claim in case of Lemma 3.2(vi).

Now let P be the group from Lemma 3.2(vii). Then P ′ = 〈a, b, c〉, K3(P ) = [P ′, P ] = 〈b, c〉 and Z(P ) = 〈c〉. In
particular, P has maximal class and P1 := CP (P ′/Z(P )) = CP (K3(P )) = 〈a, b, c, e〉 is characteristic in P . Let
α(d) = dω and α(e) = eω

2

. As usual, one can prove that α is an automorphism such that α(c) = cω
5

. Therefore,
in case p 6≡ 1 (mod 5) we are done. For p ≡ 1 (mod 5) we take an arbitrary automorphism β ∈ Aut(P ). Since P1

is characteristic, we may write β(d) ≡ diej (mod P ′) and β(e) = ek (mod P ′) for some i, j, k ∈ Z. By III.1.2 and
III.1.3 in [22] we get β(a) ≡ aik (mod K3(P )). Moreover, β(b) ≡ bi

2k (mod Z(P )) and β(c) = β([a, e]) = cik
2

.
On the other hand, β(c) = β([b, d]) = ci

3k. Thus, k ≡ i2 (mod p) and β(c) = ci
5

.

Finally, we turn to the groups of order p6. First, let P be the group from Lemma 3.2(viii). For i, j ∈ Z such
that i 6≡ 0 6≡ j (mod p) we define a map α by α(a) = ai and α(b) = bjcj(1−i)dk where k := j(1− 6i+ 5i2)/12.
Since 12 is invertible modulo p, we can regard k as an integer. We have α(c) ≡ cij (mod K3(P )), α(d) ≡ di

2j

(mod K4(P )), α(e) = ei
3j (mod Z(P )) and α(f) = α([d, b]) = f i

2j2−i2j2(1−i) = f i
3j2 . Also, α(f) = α([e, b]) =

α([c, d]) = f i
3j2 . Hence, the set of generators α(a), . . . , α(f) also satisfies the given relations. In order to prove

that also the (not mentioned) trivial commutator relations in α(a), . . . , α(f) are fulfilled, we need to be more
precise. The only difficult part is to show [α(b), α(c)] = 1. For this we need to determine α(c) (mod Z(P )).
Since P/Z(P ) ∼= (Cp ×Cp ×Cp ×Cp) oCp, we can regard α(c) (mod Z(P )) as an element of the vector space
with basis b, c, d, e. The action of a is given by the matrix

1 . . .
1 1 . .
. 1 1 .
. . 1 1

 .

Hence, α(c) = α([b, a]) = [bjcj(1−i)dk, ai] (mod Z(P )) corresponds to the vector
1 . . .
i 1 . .(
i
2

)
i 1 .(

i
3

) (
i
2

)
i 1




j
j(1− i)

k
.

−


j
j(1− i)

k
.

 =


.
ij

ij(1− i)/2
ij(i2 − 1)/12

 .

Since both α(b) and α(c) lie in the extraspecial group 〈b, c, d, e, f〉, the equation [α(b), α(c)] = 1 is just an
elementary arithmetic expression in the involved exponents (this is the only place where we need the definition
of k). Thus, α ∈ Aut(P ). Now by taking (i, j) = (ω, 1) and (i, j) = (1, ω) we see that ϕ is surjective.

Now assume that P is the group from Lemma 3.2(ix). Let α ∈ Aut(P ) arbitrary. Since P is an exceptional
group of maximal class, we have two characteristic maximal subgroups P1 := CP (P ′/K4(P )) = 〈b, c, d, e, f〉
and P ∗1 := CP (K4(P )) = 〈a, c, d, e, f〉. Hence, we may write α(a) ≡ ai (mod P ′) and α(b) ≡ bj (mod P ′)

for some i 6≡ 0 6≡ j (mod p). It follows that α(c) ≡ cij (mod K3(P )), α(d) ≡ di
2j (mod K4(P )) and α(e) =

α([c, b]) ≡ eij
2

(mod Z(P )). On the other hand, α(e) = α([d, a]) ≡ ei
3j (mod Z(P )). Thus, j ≡ i2 (mod p).

Finally, α(f) = α([c, d]) = f i
3j2 = f i

7

. It remains to show that ϕ(Aut(P )) cannot be smaller. We start by
defining α(a) := aω and α(b) := bω

2

dk where k := −7ω2(ω2 − 1)/12 (mod p). Then a tedious calculation gives
α(c) = [α(b), α(a)] ≡ ci

3

di
3(i−1)/2e(7i

5−6i4−i3)/12 (mod Z(P )). Now one can show as before that the images of
the generators under α satisfy the same relations. Hence, α ∈ Aut(P ). Moreover, α(f) = fω

7

. This completes
the proof.

Corollary 3.5. If p ≡ 1 (mod 5) (respectively p ≡ 1 (mod 7)), then the group from Lemma 3.2(vii) (respectively
(ix)) cannot occur as a defect group of a p-block with Loewy length 4.

Proposition 3.6. Let P be a finite p-group. Then the following holds:

(i) LL(FP ) = 1 if and only if P = 1.

(ii) LL(FP ) = 2 if and only if P = C2.

(iii) LL(FP ) = 3 if and only if P = C3 or P = C2 × C2.

(iv) LL(FP ) = 4 if and only if P = C4 or P = C2 × C2 × C2.
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Proof. This follows from a result of Jennings [25, Theorems 3.7 and 5.5].

Proposition 3.7. Let G be p-solvable, and let B be a block of FG with defect group D and Loewy length 4.
Then p = 2, and one of the following holds:

(i) D ∼= C4,

(ii) D ∼= C2 × C2 × C2,

(iii) D ∼= D8 and l(B) = 2.

Proof. Let δ be the defect of B. By a result of Koshitani [28, Theorem], we have 4 = LL(B) ≥ δ(p − 1) + 1,
i.e. 3 ≥ δ(p − 1). Thus p ≤ 3. Moreover, if p = 3 then δ = 1. But then B is Morita equivalent to FC3 or
FS3 which have both Loewy length 3, a contradiction. Thus we must have p = 2 and δ ≤ 3. If D is abelian
or quaternion then we have LL(B) = LL(FD), and the result follows from Proposition 3.6. So we can assume
that D is dihedral of order 8. In this case B is Morita equivalent to FD or FS4, and the result follows.

For principal 2-blocks with Loewy length 4 the same defect groups occur as in Proposition 3.7 (see Theorem 4.5
below).

Corollary 3.8. Let B be nilpotent with LL(B) = 4. Then D ∼= C4 or D ∼= C2 × C2 × C2.

Proof. This follows from a result of Puig [41], in connection with Proposition 3.6.

For cyclic defect groups we obtain the following consequence of Equation (1).

Corollary 3.9. Let B be a p-block with cyclic defect group D and Brauer tree Γ. Then B has Loewy length 4
if and only if |D| = p > 3 and one of the following holds:

(i) e(B) = p− 1, and the valency of Γ is 3.

(ii) e(B) = p−1
2 , the exceptional vertex is a leaf, and the valency of Γ is 3.

(iii) e(B) = p−1
3 , the exceptional vertex is a leaf, and the valency of Γ is at most 3.

Proof. By previous results, |D| = p > 3 and e(B) ≥ p−1
3 . Now, Equation (1) implies the result.

Suppose that B is a tame block of defect δ and Loewy length 4. Then p = 2, and the defect groups of B have
order 2δ and exponent 2δ−1. Thus Lemma 2.2 implies that δ ≤ 3. The symmetric group S4 of degree 4 shows
that this bound is sharp.

Now, let B be a 2-block with a metacyclic defect group D, and suppose that B has Loewy length 4. By a result
of Sambale [42, Theorem 2], B is either nilpotent or tame, or D is homocyclic. If B is nilpotent, then D ∼= C4

by Corollary 3.8. If B is tame, then |D| ≤ 8 as we just proved. And if D is homocyclic of order 22ε > 4, then,
by a recent result of C. W. Eaton, R. Kessar, B. Külshammer and B. Sambale [11], B is Morita equivalent to
its Brauer correspondent. In particular, we have 4 = LL(B) = LL(FD) = 2 · 2ε − 1, a contradiction. Thus
altogether |D| ≤ 8.

As another example we consider blocks of symmetric groups.

Theorem 3.10. Let B be a p-block of the symmetric group Sn with Loewy length 4. Then n = 4 and B is the
principal 2-block.
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Proof. Let w be the weight of B. Then the defect groups of B are Sylow p-subgroups of Spw. Since their rank
is at most 3, we must have w ≤ 3. Assume first that p ≥ 5. Then B has defect at most 3 and the defect groups
are abelian. Now J. Scopes [44, Theorem 1] has proved that all blocks of symmetric groups of defect 2 have
Loewy length 5, and K. M. Tan [47, Theorem 4.4] has proved that all blocks of symmetric groups of defect 3
and abelian defect groups have Loewy length 7. Thus we conclude that B has defect 1. Here by 6.3.9 in [24] the
Brauer tree of B is a straight line and e(B) = p− 1. This contradicts Corollary 3.9.

Now let p = 2, and let D be a defect group of B. If w = 1, then D ∼= C2, and B is Morita equivalent to FD.
This is a contradiction, since LL(B) = 4. Suppose next that w = 2. Then D is a dihedral group of order 8.
The 2-core of B has the form κ = (x, x − 1, . . . , 2, 1) for some x ∈ N0. If x ≥ w − 1 = 1, then B is Scopes
equivalent to the 2-block B1 with 2-core (1) and weight 2, i.e. to the principal 2-block of S5. Since LL(B1) > 4,
this is a contradiction. Thus we must have x = 0, and B is the only 2-block of S4. It remains to deal with the
case w = 3. Let again κ = (x, x − 1, . . . , 2, 1) be the 2-core of B. If x ≥ 2, then B is Scopes equivalent to the
2-block B2 with 2-core (2, 1) and 2-weight 3. This is a non-principal 2-block of S9. But results by Benson [3,
Theorem 2] in connection with Proposition 2.10 imply that LL(B2) > 4. Suppose next that x = 1. Then B is the
principal 2-block B1 of S7. However, as one can see from Benson’s paper [2, Section 1.2], we have LL(B1) > 4,
a contradiction. It remains to consider the case x = 0. Then B is the principal 2-block of S6. Again one can see
from Benson’s paper [2, Section 1.3] that this is a contradiction.

Finally, assume p = 3. One can check with GAP [13] that there are no examples among principal blocks. In the
non-principal cases calculations by Susanne Danz [10] show that the 3-blocks of weight 3 in symmetric groups
do not have Loewy length 4. (There are twelve Scopes equivalence classes of such blocks which have weight 3.)
Again, the 3-blocks of weight 2 can be excluded by [44, Theorem 1]. The case w = 1 is excluded by Corollary 3.9.
Hence, there are no such blocks for p = 3.

Note that Theorem 3.10 also handles the blocks of alternating groups by Proposition 2.10.

4 Principal blocks of Loewy length 4

We start with an easy consequence of Proposition 2.10.

Corollary 4.1. Let B be the principal block of FG, and let b be the principal block of FH where H is a normal
subgroup of G. Then LL(b) ≤ LL(B).

Corollary 4.2. Suppose that B is the principal block and that LL(B) = 4. Then LL(FP ) ≤ 4 where P :=
Op(G). In particular, we have P = 1 whenever p > 3.

Proof. Corollary 4.1 implies that LL(FP ) ≤ 4. Thus Proposition 3.6 implies that P = 1 whenever p > 3.

Next we state some results about projective covers.

Proposition 4.3 (Koshitani [29, Corollary]). If the projective cover of the trivial FG-module has Loewy length
4, then p = 2.

Proposition 4.4 (Okuyama [39, Theorem 2]). If p = 2 and if the projective cover of the trivial FG-module has
Loewy length 3, then the Sylow 2-subgroups of G are dihedral.

The principal 2-blocks of Loewy length 4 are completely described by the following theorem.

Theorem 4.5 (Koshitani [27, Theorem 1.3]). The principal 2-block of a finite group G has Loewy length 4 if
and only if O2′(G/O2′(G)) is one of the following groups:

(i) C4,

(ii) C2 × C2 × C2,

(iii) C2 × PSL(2, q) for q ≡ 3 (mod 8),

(iv) PGL(2, q) for q ≡ 3 (mod 8).
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Therefore, we concentrate on odd primes p in the following.

Proposition 4.6. Let B be the principal block, and suppose that p > 2 and LL(B) = 4. Then the projective
cover U of the trivial FG-module F is uniserial of length 3, i.e.

U =

FS
F


where S is a non-trivial simple B-module. In particular, the Cartan matrix C of B has the following form:

C =


2 1 0 · · · 0
1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

...
0 ∗ ∗ · · · ∗

 .

Proof. We have LL(U) ≤ LL(B) = 4. However, Proposition 4.3 implies that LL(U) ≤ 3. By a theorem of Webb
[48, Theorem E], Rad(U)/Soc(U) is indecomposable. Since Rad(U)/ Soc(U) is also semisimple, we conclude
that Rad(U)/ Soc(U) is simple. Thus U has the desired form. This also gives the shape of C.

Corollary 4.7. In the situation above, the decomposition matrix of B has the form

D =


1 0 0 · · · 0
1 1 0 · · · 0
0 ∗ ∗ · · · ∗
...

...
...

...
0 ∗ ∗ · · · ∗

 .

In particular, G has an irreducible character χ such that χ(x) = −1 for every p-singular x ∈ G.

Proof. The first row corresponds to the trivial character of G, and the first column corresponds to the trivial
FG-module. Thus, the first row of D has the desired form. Since the first Cartan invariant c11 = 2, we may
assume that the first column of D has the desired form. Since the Cartan invariant c12 = 1, we then get the
shape of the second column of D. Since c1i = 0 for i > 2 we get the zeroes in the second row of the decomposition
matrix. The last statement follows by looking at the first column of D.

Proposition 4.8 (Brauer-Nesbitt [5, Theorem 12]). The first Cartan invariant c11 of FG satisfies c11 ≥ |G|
|Gp′ |

.

Moreover, if c11 = |G|
|Gp′ |

, then G is p-nilpotent.

Our next aim is a reduction to simple groups.

Lemma 4.9 (Koshitani-Miyachi [30, (4.2) Lemma(i)]). Let X and Y be finite groups, and set G := X ×Y . We
denote the principal blocks of G, X and Y by B, BX and BY , respectively. Then LL(B) = LL(BX)+LL(BY )−1.

Proposition 4.10. Suppose that p ≥ 5, that Op′(G) = 1 and that the principal block of G has Loewy length 4.
Then E(G) = Op

′
(G) is simple.

Proof. We show first that N := E(G) is simple. Let B (respectively b) be the principal block of FG (respectively
FN). Then LL(b) ≤ 4 by Corollary 4.1. Moreover, we have Op(G) = 1 = Op′(G) by Corollary 4.2. Thus
N = S1 × · · · × Sn with simple groups S1, . . . , Sn. For i = 1, . . . , n, let bi be the principal block of FSi. Then
b = b1 ⊗ · · · ⊗ bn. By Lemma 4.9, we have

4 ≥ LL(b) =

n∑
i=1

LL(bi)− n+ 1.
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Since p > 2, we have LL(bi) ≥ 3 for i = 1, . . . , n. Hence 4 ≥ 3n − n + 1 = 2n + 1, so that n = 1. This proves
that E(G) is simple.

Since by Proposition 2.10 the principal block of Op
′
(G) does also have Loewy length 4, we may assume G =

Op
′
(G) in order to prove that Op

′
(G) is simple. Assume that G has a proper normal subgroup N 6= 1. Then,

by a result of Alperin, Collins and Sibley [1, 1. Introduction], the projective cover P of the trivial FG-module
has a filtration P = P0 ⊇ P1 ⊇ . . . ⊇ Pn = 0 with n ≥ 2 such that P/P1 and Pn−1 are both isomorphic to
the inflation of Q where Q denotes the projective cover of the trivial F [G/N ]-module. Thus we obtain c11 ≥ 4
which contradicts Proposition 4.6. Hence Op

′
(G) is simple and we must have E(G) = Op

′
(G).

In the situation above, we may assume that G is simple. This allows one to use the classification of the finite
simple groups.

Proposition 4.11. Let B be the principal p-block of a sporadic simple group G where p ≥ 3. Then LL(B) 6= 4.

Proof. For the blocks of defect 1 we translate Corollary 3.9 into a statement about the decomposition matrix.
Then a computation with GAP [13] excludes most possibilities. If the decomposition matrix is not available
(in GAP), we check [17]. Finally, for the Monster group in characteristic 29 the possible Brauer trees can be
found in [36, Section 2.7]. For the blocks of larger defect we use Proposition 4.6. In case G = Fi′24 and p = 5
the Cartan matrix is not available (in GAP) and there is indeed a character χ which takes the value −1 on the
5-singular elements. However, the restriction of 1 + χ onto Fi23 is not a projective character. Thus, this case
cannot occur. In case G = M and p = 11 a slightly more involved computation by Jürgen Müller [35] shows
LL(B) 6= 4. The other cases can be handled similarly.

Proposition 4.12. Let B be the principal p-block of a finite simple group G of Lie type in characteristic p ≥ 3.
Then LL(B) 6= 4.

Proof. Let D be a defect group of B. By Lemma 2.2, r(D) ≤ 3 and |D| ≤ p18. Moreover, |D| ≤ p6 for p ≥ 5.
Now we consider G by going through the classification of finite simple groups. For the order of G we refer to
Table 1 on p. 8 in [14]. The p-ranks of G can be found in Table 3.3.1 on p. 108 in [15].

Case 1: G = PSL(n, ps).
Here r(D) =

[
n2

4

]
s implies (n, s) ∈ {(2, 1), (2, 2), (2, 3), (3, 1)}. Since Z(SL(n, ps)) is always a p′-group, B

is isomorphic to the principal block of F [SL(n, ps)]. In particular the first Cartan invariant c11 is given in
Section 11.12 on p. 108 in [21]. In case n = 2 we have c11 = 2s, and in case n = 3 and p ≥ 5 we get c11 = 8. For
n = p = 3 one can find c11 = 10 in Section 11.13 on p. 109 in [21]. Now Proposition 4.6 implies (n, s) = (2, 1).
Here however, all projective indecomposable modules have Loewy length 3 (see the Proposition on p. 131 in
[21]). Since B is the direct sum of some of the projective indecomposable modules, we must have LL(B) = 3 in
this case.

Case 2: G = PSU(n, ps).
Here r(D) depends on the parity of n. In any case we get (n, s) = (3, 1) and G = PSU(3, p). Again the first
Cartan invariant of B can be found on p. 109 in [21]. For p = 3 we have c11 = 10, for p = 5 we have c11 = 12
while for p ≥ 7 it holds that c11 = 8. Proposition 4.6 gives a contradiction.

Case 3: G = PSp(2n, ps).
Here r(D) =

(
n+1
2

)
s gives (n, s) = (2, 1). Hence, G = PSp(4, p). We have c11 = 7 (respectively 21, 16 and 14)

for p = 3 (respectively 5, 7 and ≥ 11). Proposition 4.6 yields to a contradiction.

If G = PΩ(2n+ 1, ps), then again (n, s) = (2, 1). Hence, we are in Case 3.

For G = PΩ+(2n, ps) one gets (n, s) = (3, 1). However, then G = PΩ+(6, p) ∼= PSL(4, p) which was already
excluded. For similar reasons G = PΩ−(2n, ps) is also impossible. Also for G = 3D4(q) the rank of D is too
large.

Case 4: G = G2(ps).
Here p ≥ 5 and s = 1 by p. 108 in [15]. Hence, |D| = p6 and Proposition 3.3 implies p ≥ 7. On the other hand,
c11 = 168 for p ≥ 17 (see p. 109 in [21]). This is also true for p = 11 and p = 13 by Remark 1 in [20]. Hence,
p = 7. Here it follows from the generic character table [8] that G does not contain an irreducible character which
takes the value −1 on the p-singular elements.
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Case 5: G = 2G2(32n−1).
Here n = 1 and G′ is simple of order 504. Then D is cyclic of order 9 which contradicts Corollary 3.9.

For the other simple groups of Lie type it is easy to see that |D| is too large.

By a result of Koshitani and Miyachi [30, (0.3) Theorem], we have LL(B) ≥ 5 for every principal block B with
defect group C3 × C3. We generalize this result.

Proposition 4.13. Let B be a principal 3-block with abelian defect groups. Then LL(B) 6= 4.

Proof. Let B be the principal 3-block of a finite group G with abelian Sylow 3-subgroup P . By Proposition 2.10,
we may assume O3′(G) = G and O3′(G) = 1. Then, by a list due to P. Fong (see [31, Proposition 4.3]), G is a
direct product of 3-groups and certain simple groups. Suppose first that G can be written as a direct product
G = G1 × G2 such that G1 6= 1 6= G2. Then by Lemma 4.9 and Proposition 3.1 we derive the contradiction
LL(B) ≥ 5. By Proposition 3.6, G is not a 3-group. Hence, we conclude that G is one of the simple groups
occurring in [31, Proposition 4.3]. By Corollary 3.9, P is not cyclic. It follows from Proposition 4.11 that G
is not a sporadic group. According to Remark 4.4 in [31], Lemma 2.2 and the remark above, we may assume
that P ∼= C9 × C9. In particular, G is not of type (i)–(iv). In cases (v) and (vi) the first Cartan invariant is 4
contradicting Proposition 4.6 (see [49, Theorem 4.1 and 4.2] and [51, Theorem 2.2 and 3.2]). Assume next that
G is of type (vii) or (ix). Since (q − 1, 3) = 1, we may assume that G = GL(4, q) or G = GL(5, q) respectively.
Then the first Cartan invariant for G is at least 3 (see [23, Appendix 1]). Contradiction. If G is of type (viii)
or (x), then [31, Lemma 3.7] says that LL(b) = LL(B) = 4 where b is the principal block of NG(P ). However,
this contradicts Proposition 3.7. Finally, the case (xi) for G was already excluded by Proposition 4.12.

The next result is in the same spirit.

Proposition 4.14. Let p > 2, and let G be a group with Sylow p-subgroup p1+2
+ . Then the principal block of G

does not have Loewy length 4.

Proof. First we reduce to simple groups G. For p ≥ 5 this is clear by Proposition 4.10. Now let p = 3. If we
follow the proof of Proposition 4.10 carefully, it turns out that the only thing which can happen is |O3(G)| = 3.
In this case the principal block B of G dominates the principal block B of G/O3(G) which has defect group
C3 × C3. Here Proposition 2.9 and the remark above give the contradiction LL(B) ≥ LL(B) ≥ 5.

Hence, for the remainder of the proof we may assume that G is simple (and p > 2). Then the possibilities for
G are listed in Theorem 31 in [37]. For p ≥ 5 we only get sporadic groups and groups of Lie type in defining
characteristic. These were handled in Propositions 4.11 and 4.12. For p = 3 it remains to consider G2(q) and
2F4(q). The decomposition matrix of the principal 3-block of G2(q) can be found in Table I and II in [19]. By
Corollary 4.7 this block does not have Loewy length 4. For the groups 2F4(q) we look up the character table of
the principal 3-block in Appendix A in [37]. Here it turns out that no irreducible character takes the value −1
on the 3-singular element t4. Therefore, this case cannot occur either.

5 Examples

We tracked down the following principal blocks of Loewy length 4:

(i) p = 2 and G = C4, C2 × C2 × C2, C2 × PSL(2, q) and PGL(2, q) for q ≡ 3 (mod 8) (see Theorem 4.5).

(ii) p ≡ 1 (mod 3), n := (p− 1)/3 and G = PSL(n, q) if q has order n modulo p, but not modulo p2 (see [12]).

(iii) p = 5 and G = Sz(22n+1) if n ≡ k (mod 20) for some k ∈ {1, 5, 6, 9, 10, 13, 14, 18} (see [7, (2.1)]).

Let p ≡ 1 (mod 3) be a prime, and let ω be a primitive root modulo p. Then by Dirichlet’s Theorem, there is
always a prime q such that q ≡ p+ω3 (mod p2). Hence, we get examples for infinitely many primes p from (ii).
The same conclusion might be true for other groups of Lie type.

We also found arbitrary p-blocks of Loewy length 4 and defect 1 in the following groups:
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(i) p = 7 and G = E6(q) if 7 | q + 1, but 49 - q + 1 (see [18, Theorem 3.1(2)]).

(ii) p = 13 and G = E6(q) if 13 | q2 + 1, but 132 - q2 + 1 (see [18, Theorem 3.1(4)]).

(iii) p = 7 and G = G2(q) if 7 | q + 1, but 49 - q + 1 (see [46, Section 3.3] and [45, Section 2.2]).

(iv) p = 7 and G = 2G2(32n+1) if n ≡ k (mod 21) for some k ∈ {1, 4, 7, 13, 16, 19} (see [16, Theorem 4.2(b)]).

(v) p = 7 and G = Sp(4, q) if 7 | q + 1, but 49 - q + 1 (see [50, Theorem 2.6]).

(vi) p ∈ {5, 7, 11} and G = 12.M22 (see [17, Section 6.4]).

(vii) p ∈ {5, 7} and G = 6.A7 (see GAP [13]).

(viii) p = 5 and G = 3.O′N (see [17, Section 6.14]).

(ix) p = 7 and G = Ru or G = 2.Ru (see [17, Section 6.12]).

(x) p = 7 and G = 2.Sz(8) (see GAP [13]).

(xi) p = 7 and G = 12.PSL(3, 4) ( = AtlasGroup("12_1.L3(4)") in GAP).

We do not expect that this is the exhaustive list of examples among (quasi)simple groups. However, it seems
not unreasonable that for p > 2 all p-blocks of Loewy length 4 have defect 1. We also note that all three types
of Brauer trees in Corollary 3.9 occur. Moreover, we do not know a single example for p = 3.
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