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Introduction

The classification of the finite simple groups is considered as one of the greatest achievements
in mathematics of the 20th century. The result provides the most basic pieces every finite
group is composed of, and thus, leads to a better understanding of symmetries arising from
nature. The extremely long proof of the classification brings together the work of many
mathematicians from different fields. One of the main contributors was Richard Brauer
who introduced several innovative notions which became research topics on their own.

One of Brauer’s ideas was to distribute the indecomposable representations of a finite
group into its blocks. These blocks are algebras defined over an algebraically closed field of
prime characteristic p. This shifts many problems about finite groups to questions about
their blocks which are “smaller speaking of dimensions. As an example, block theory was
essentially used in Glauberman’s famous Z*-Theorem which in turn is a major ingredient
in the proof of the classification mentioned above.

The present work focuses on numerical invariants of blocks and how they are determined
by means of local data. Thus, we usually consider a block B of an arbitrary finite group G.
Then it is a challenging task to determine the number k(B) of irreducible representations
of G in B. This global invariant is strongly influenced by a piece of local information called
the defect group D of B. Here, D is a p-subgroup of G which is uniquely determined up to
isomorphism. This raises the following natural question which will be our main theme:

What can be said about k(B) and other invariants if D is given?

Brauer himself conjectured that the inequality k(B) < |D| should be true (here |D| is the
order of D). This problem, now known as Brauer’s k(B)-Conjecture has been unproved for
almost 60 years. In this work we will give a proof of this conjecture under different types of
additional hypotheses. These hypotheses often take the embedding of D in G into account.
Therefore, we make extensive use of the language of fusion systems — a notion originally
invented by Puig under the name Frobenius categories. In many instances the combination
of old methods by Brauer and Olsson using decomposition numbers together with new
accomplishments from the theory of fusion systems turns out to be very successful.

Another even stronger conjecture from block theory, proposed by Alperin in 1986, makes
a precise statement about the number [(B) of simple modules of B in terms of so-called
weights. We are able to obtain a proof of Alperin’s Weight Conjecture for several infinite
families of defect groups. In fact, these are the first new results of that kind after Brauer
[46], Dade [75] and Olsson [235] settled blocks with finite and tame representation type over
twenty years ago. Similarly, we provide evidence for Robinson’s Ordinary Weight Conjecture
which predicts the numbers k;(B) of irreducible characters of a given height ¢ > 0. Note
that k(B) is the sum over the k;(B) (i =0,1,2,...).

In some favorable cases we answer a more subtle question: What are the possible Morita
equivalence classes of a block with a given defect group? If this can be done, we get an
example of Donovan’s Conjecture which asserts that there are only finitely many of these
Morita equivalence classes. Here again our work represents the first advance after Puig’s
work [245] about nilpotent blocks and Erdmann’s results [92] for the tame cases — both
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from the eighties. The verification of Donovan’s Conjecture relies on the classification of the
finite simple groups and thus fits in a recent development started by An, Eaton, Kessar,
Malle and others (e.g. [9, 165]). In summary, the present work develops several powerful
methods in order to tackle long-standing open conjectures in modular representation theory.
The tools are far from being complete, but we hope to give a significant contribution which
inspires further research.

We now describe the content of the book in detail. Of course, the first part serves as an
introduction to the fundamentals of block theory of finite groups. In particular, we state
Brauer’s three main theorems, and we give a modern account on the notion of subpairs
and subsections via fusion systems. Afterwards we present many open conjectures which all
play a role in the following parts. comprehends more sophisticated methods. The
first section starts by introducing the notion of basic sets and other features attached to
quadratic forms. Afterwards, I present the following general bound on k(B) in terms of
Cartan invariants:

1(bw) I(bu)—1
k(B) < Cii — Z Ciit1-

i=1 i=1
Here (u, by,) is a so-called major subsection and (c;;) is the Cartan matrix of b, (for a more
general version see . This bound, proved in [127], together with a practicable
algorithm for computing Cartan matrices amounts to the “Cartan method” — one of the
main tools for the upcoming applications. We also discuss as special cases Cartan matrices
of small dimensions where our results still apply to arbitrary blocks. As an example, we
obtain the implication

l(by) <2= k(B) <|D|

where (u, b,) is again a major subsection for B. This result from [277] generalizes an old
theorem by Olsson [239] for the case u = 1. For the prime p = 2 we also prove Brauer’s
k(B)-Conjecture under the weaker hypothesis I(b,) < 3. Now let p > 2, and let (u,b,) be
an arbitrary subsection such that {(b,) = 1 and b,, has defect ¢q. Using the structure of the
fusion system F of B we prove

(0] + 92— 1)
ol = gl

where |[Autz((u))| = p®r such that p{r and s > 0. Here, ko(B) can be replaced by k(B)
whenever (u, b,) is major. Finally, we take the opportunity to recall a less-known inequality
by Brauer using the inverse of the Cartan matrix.

p? < p?

As another topic from this part we state Alperin’s Fusion Theorem and deduce important
properties of essential subgroups by invoking the classification of strongly p-embedded
subgroups. These results are new for p > 2 and appeared in [282] in case p = 2. Afterwards,
we collect material from the literature about the representation theory of finite simple
groups. Here we indicate how to replace the arbitrary finite group G by a quasisimple
group under suitable circumstances. The second part closes with a survey about p-blocks of
p-solvable groups where we update an old structure result by Kiilshammer [I80].

The third part of the present work gives applications to specific defect groups and represents
the main contribution to the field. Its content assembles many recent papers of the present
author, but also includes new results which have not appeared elsewhere. The content of
these articles is strongly connected and we will freely arrange the material in order to
improve readability. The chapter starts with the determination of the block invariants for
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metacyclic defect groups in case p = 2. This was mostly done in my dissertation (based on
work by Brauer and Olsson). But as a new result, we add a proof of Donovan’s Conjecture
for the abelian metacyclic defect groups which illustrates the power of the classification of
the finite simple groups. Even more, this leads to infinitely many new examples supporting
Broué’s Abelian Defect Group Conjecture. Many of the other new results are likewise
centered around defect groups which share properties of metacyclic groups. For odd primes
p it is essentially harder to obtain the precise block invariants for metacyclic defect groups.
However, as a consequence of a new result by Watanabe, Alperin’s Weight Conjecture
holds for all non-abelian metacyclic defect groups. Moreover, we are able to verify Brauer’s
Height Zero Conjecture which boils down to the inequality ko(B) < k(B) for non-abelian
defect groups. This extends former results by Gao [100, 10I], Hendren [121], Yang [318]
and Holloway-Koshitani-Kunugi [133].

An obvious generalization of a metacyclic group is a bicyclic group, i.e. a group which
can be written in the form P = (x)(y) for some x,y € P. It turns out that only for
p = 2 we get new p-groups. Using a paper by Janko [I54], we classify all fusion systems on
bicyclic 2-groups. This leads to an interesting new result which states that a finite group is
2-nilpotent (and thus solvable) provided it has a bicyclic Sylow 2-subgroup P such that the
commutator subgroup P’ is non-cyclic. With the list of all possible fusion systems in hand,
we establish Olsson’s Conjecture (i.e. ko(B) < |D : D'|) for all blocks with bicyclic defect
groups.

Another project started in my dissertation focuses on minimal non-abelian defect groups
D. Here D is non-abelian, but every proper subgroup of D is abelian. Using Rédei’s
classification [267] of these groups, we are able to complete the determination of the block
invariants at least in case p = 2. As a byproduct we also reveal another example of
Donovan’s Conjecture for an infinite family of 2-groups. The proof of this result relies on
the classification of the finite simple groups. For arbitrary primes p we show that Olsson’s
Conjecture holds for all blocks with minimal non-abelian defect groups, except possibly
the extraspecial defect group of order 27 and exponent 3. This is also related to a theorem
about controlled blocks with defect groups of p-rank 2 achieved in a different chapter.

Concerning Alperin’s Weight Conjecture and Robinson’s Ordinary Weight Conjecture, we
give further evidence for several classes of 2-groups which are direct or central products of
cyclic groups and groups of maximal class. Speaking of representation type these defect
groups might be described as “finite times tame”. We emphasize that apart from a small
case the classification of the finite simple groups is not needed at this point. For sake of
completeness, we carry out computations for small defect groups as far as possible. The
main achievement here is a proof of Brauer’s k(B)-Conjecture and Olsson’s Conjecture for
the 2-blocks of defect at most 5. The former conjecture also holds for the 3-blocks of defect
at most 3.

In we collect many cases where the block invariants are known. Here we use the
following abbreviations for three classes of bicyclic 2-groups:

DC(m,n) = (v,z,a | v =22 =" =1, Tv=% =071, %= vx) = Dont+1 X Com,
DC*(m,n) = (v,z,a | v¥" =1, a®" =2 = ¥ Ty =0y =7l 0y = vT)
= D2n+1.02’m = QQTH—I.CQ"TL,
QC(m,n) = (v, z,a| v =d*" =1, 22 = ¥ Ty =Gy =yl A = vT)

= Q2n+1 X Cgm.
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Moreover, I(B) = Outz(D) denotes the inertial quotient of the block B with defect group
D.

P ‘ D | I(B) | classification used? references |
arbitrary cyclic arbitrary no Thm. I%l
arbitrary metacyclic, arbitrary no Thm. M

minimal non-abelian
arbitrary abelian e(B) <4 no [295], 2511, 250]
arbitrary abelian S3 1no [296]
> 7 abelian Cy x Oy no [298]
¢ {2,7} abelian C? no [297]

2 metacyclic arbitrary no Thm. 8 1

2 maximal class * cyclic, arbitrary only for D = C} 18

incl. * = x ’-1%

2 minimal non-abelian arbitrary | only for one family Thm. 1

where |D| = 227 +1

2 minimal non-metacyclic | arbitrary only for D = Cj Thm. |13.19

2 DC(m,n) for m,n >2 | arbitrary no Thm. [10.23

2 DC*(m,n) for arbitrary no Thm. 10.24

m,n>2 m#n

2 QC(m,n) for m,n > 2 | arbitrary no Thm. [10.25

2 Con x C3,m > 2 arbitrary yes Thm. [13.10

2 |D| < 16 arbitrary yes Thn. [13.4]

2 Cy1Cy arbitrary no [179]

2 Dg * Qg Cs yes [277]

2 SmallGroup(32,22) arbitrary no Prop. |13.11

2 SmallGroup(32, 28) arbitrary no Prop. |13.12

2 SmallGroup(32,29) arbitrary no Prop. |13.12

3 C3 ¢ {Cs,Qs} no [167, 313]

Table 1.: Cases where the block invariants are known

As it is often the case, the study of these special cases leads to new ideas and general
insights. This can be clearly seen in where we improve the famous Brauer-Feit
bound on k(B) for abelian defect groups. The proof makes use of a recent result by Halasi
and Podoski [115] about coprime actions. As a consequence, we are able to verify the
k(B)-Conjecture for abelian defect groups of rank at most 5 (resp. 3) in case p = 2 (resp.
p € {3,5}). In the same spirit we show that Brauer’s Conjecture remains true for arbitrary
abelian defect groups whenever the inertial index of the block does not exceed 255. This
result depends on perfect isometries constructed by Usami and Puig (e. g. [295], 251]) which
reflect Broué’s Abelian Defect Group Conjecture on the level of characters.

In the final chapter we address an inverse problem, i.e. we ask what can be said about defect
groups D of B if the number k(B) is given. Brauer’s Problem 21 claims that there are only
finitely many choices for D. An analysis of the situation k(B) = 3 leads to an interesting
question about fusion systems with few conjugacy classes. We show that k(B) = 3 implies
|D| = 3 provided the Alperin-McKay Conjecture holds. We also classify finite groups G
such that all non-trivial p-elements in G are conjugate. Recently, blocks with small Loewy
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length have been investigated in [230], [174] 278]. However, these results are not contained
in the present book.

The present book has outgrown my habilitation thesis which was finished in 2013. I like
to thank Prof. Dr. Burkhard Kiilshammer for his constant support and encouragement.
Further thanks go to Charles W. Eaton, Alexander Hulpke, Radha Kessar, Shigeo Koshitani,
Jorn B. Olsson, Geoffrey Robinson, Ronald Solomon, Atumi Watanabe, and Robert Wilson
for answering me specific questions. I am also grateful to Ines Spilling for her assistance
in administrative tasks and to René Reichenbach for pointing out typos. Last but not
least, I thank my mom for picking me up from the train station when I came back from
California.

This work was supported by the German Research Foundation (DFG), the German Aca-
demic Exchange Service (DAAD), the Carl Zeiss Foundation, and the Daimler and Benz
Foundation.
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1. Definitions and facts

Most of the material presented in this chapter can be found in standard text books on
representation theory of finite groups. We often adapt the notation from Feit’s book [93]
or from the book of Nagao and Tsushima [2I5]. However, usually we do not give precise
references here. We try to keep this chapter as brief as possible. In particular, we omit
technical definitions if they are not explicitly needed.

Unless otherwise stated, groups are always finite and modules are finitely generated left
modules. Moreover, every algebra has a unity element. For elements z,y, z of a group G we
write [x,y] = zyz~ty~L, [x,y, 2] := [z, [y, 2]] and sometimes Ty = xyx~!. The members of
the lower (resp. upper) central series of G are denoted by K;(G) (resp. Z;(G)). In particular,
Ky(G) = G’ is the commutator subgroup of G. For a p-group P, let ;(P) := (z € P :
2P = 1) and U;(P) := (zP" : x € P) for i > 0. For convenience, let Q(P) := Q;(P) and
U(P) := U1(P). The rank r of P is the minimal number of generators, i.e. |P : ®(P)| = p”
where ®(P) is the Frattini subgroup of P. The largest rank of an abelian subgroup of P
is called the p-rank of P. For a finite group G the set of p-elements (resp. p’-elements) is
denoted by G, (resp. Gj). For a natural number n let n, (resp. n,) be the p-part (resp.
p/-part) of n.

A cyclic group of order n € N is denoted by C,,. Moreover, we set CF := C,, x ... x C,, (k
factors). A homocyclic group has the form C2. A dihedral (resp. semidihedral, quaternion)
group of order 2" is denoted by Dan (resp. SDan, Qon). A group extension with normal
subgroup N is denoted by N.H. If the extension splits, we write N x H for the semidirect
product. A central product is denoted by N x H where it will be usually clear which
subgroup of Z(N) is merged with a subgroup of Z(H).

1.1. Group algebras and blocks

Let G be a finite group, and let p be a prime number. We fix a so-called p-modular system
(K, O, F) consisting of the following three objects:

e a splitting field K for G of characteristic 0,

e a complete discrete valuation ring O with quotient field K,

e an algebraically closed field F' of characteristic p such that F'= O/ Rad O.
The group algebra OG decomposes into a direct sum

of indecomposable (twosided) ideals By, ..., By,.

Definition 1.1. The By, ..., B, are the (p-)blocks of OG (or just G).

13



1. Definitions and facts

An important observation is that every block B of G is itself an algebra. The corresponding
unity element ep is a primitive, central idempotent, i.e. it cannot be written non-trivially
as a sum of two idempotents in the center Z(OG).

The canonical map from O to F' induces a bijection between the corresponding sets of
blocks of G. Hence, most of the time we will identify the blocks of OG with the blocks of
FG. In contrast to that, theorems by Maschke and Wedderburn show that K G splits as
direct sum of full matrix algebras over K. Thus, a block decomposition over K would not
be very interesting.

Let M be an indecomposable OG-module. Then there is exactly one block B of G such
that B- M = M. In this case we say that M belongs to B. One can also regard M as a
B-module in the natural way.

Definition 1.2. The trivial OG-module belongs to the principal block of G denoted by
By(0G).
The principal block of OG corresponds to the principal block of F'G.

1.2. Defect groups and characters

The algebra structure of a block of a finite group is strongly influenced by its defect group
which we will define in the following.

Definition 1.3. Let G be a finite group with p-subgroup ). Then the map

Brg : Z(FG) — Z(F Cg(Q)), Zagg — Z ayg
gea 9€Ca(Q)

is called the Brauer homomorphism with respect to Q.

Definition 1.4. Let B be a p-block of F'G with unity element ep. A maximal p-subgroup
D < @ such that Brp(ep) # 0 is called defect group of B.

We list the most important properties of defect groups.

Proposition 1.5. Let B be a p-block of G with defect group D. Then D is unique up to
conjugation in G. Moreover, Op(G) € D = SNT for some S,T € Syl,(G). If |D| = p?,
then d is called the defect of B. In case D € Sylp(G), B has maximal defect. The principal
block has maximal defect.

As a rule of thumb, the defect of a block measures the simplicity of the block algebra. In
particular, the block is a simple algebra if and only if the defect is 0. The defect of a block
can also be determined by certain character degrees as we will see in the following.

In order to distribute the irreducible characters of G into blocks, we introduce the central
characters. We denote the set of irreducible characters of G over K (i.e. the ordinary
characters) by Irr(G). Note that k(G) := |Irr(G)| is the number of conjugacy classes of
G.

14



1.2. Defect groups and characters

Definition 1.6. Let x € Irr(G). Then the map

_ x(9)
wy 1 Z(FG) — F, Zagg — Zagm +Rad O
geG geG

is a homomorphism of algebras. There exists exactly one block B of F'G with unity element
ep such that wy (ep) = 1. In this case we say that x belongs to B. If ¢ € Irr(G) also belongs
to B, then w, = wy and wp := wy is called the central character of B.

Definition 1.7. The set of irreducible ordinary characters belonging to the block B of
G is denoted by Irr(B). Its cardinality is k(B) := |Irr(B)|. For every x € Irr(B) there is
an integer h(x) > 0 such that p"X)|G : D|, = x(1), where D is a defect group of B. The
number h(x) is called the height of x. We set Irr;(B) := {x € Irr(B) : h(x) = i} and
ki(B) := |Irr;(B)| for i > 0.

One can show that ko(B) > 2 unless B has defect 0 where ko(B) = k(B) =1(B) =1 (see
[239]). Therefore, the defect of B is determined by the character degrees. If B is a block of
F@, the number k(B) can also be expressed as k(B) = dimp Z(B). In particular, k(B) is
an invariant of the algebra B. If B has defect d > 0, then k;(B) =0 for i > d — 1.

As we have seen above, every simple OG-module can be assigned to a uniquely determined
block of G. Accordingly, the set of irreducible Brauer characters IBr(G) of G splits into
blocks. Recall that Brauer characters are only defined on the p-regular conjugacy classes of

G.

Definition 1.8. The set of irreducible Brauer characters belonging to the block B of G is
denoted by IBr(B). Its cardinality is [(B) := |IBr(B)|.

Here again, [(B) as the number of simple B-modules is actually an invariant of the algebra
structure. Also, [(G) := |IBr(G)| is the number of p-regular conjugacy classes in G.

The connection between ordinary characters and Brauer characters is established by (gener-
alized) decomposition numbers.

Definition 1.9. Let u € G,, and let x € Irr(G). Then there exist algebraic integers
dy, € Z[e*™ /W] C O for every ¢ € IBr(Cg(u)) such that

x(uv) = Z dy,p(v) for all v € Cg(u),y .
p€IBr(Ca(u))

These numbers are called generalized decomposition numbers. In case u = 1 we speak just
of (ordinary) decomposition numbers.

Let @Q;, be the n-th cyclotomic field over Q. Let G be the Galois group of Qg with fixed
field Qi) ,- Restriction gives an isomorphism G = Gal(Qg,|Q) = (Z/|G|pZ)*, and we
will often identify these groups. Then G acts on the irreducible characters, the generalized
decomposition numbers, and on the set of p-elements of GG. Here the following important
relation holds

y(dy,) = dy,, = dv,
for v € G. Characters x and 7y # x are called p-conjugate. It can be seen that p-conjugate
characters lie in the same block and have the same height. If Vx = x for all v € G, then
x is called p-rational. In this case the numbers dy, for all p-elements v € G and all
¢ € IBr(Cg(u)) are (rational) integers.

15



1. Definitions and facts
1.3. Brauer’s main theorems

In order to simplify computations one tries to replace the group G by smaller subgroups.
It is crucial to understand how blocks behave under this substitution. Here the notion of
Brauer correspondence gives an answer.

Definition 1.10. Let B and b be blocks of G and H < G with central characters wg and

wyp, respectively. If
s (3 8) = (X o)

geqG geH

for all >~ agg € Z(F'G), then b is a Brauer correspondent of B and conversely. We also
write B = bC.

Proposition 1.11. FEvery defect group D of b (in the situation above) is contained in
a defect group of b&. If Cq(D) C H, then b¥ is always defined. Moreover, the Brauer
correspondence is transitive.

Brauer’s three main theorems relate specific sets of blocks via Brauer correspondence.
Theorem 1.12 (Brauer’s First Main Theorem). Let P < G be a p-subgroup of G, and let

Ng(P) < H < G. Then Brauer correspondence gives a bijection between the set of blocks of
G with defect group P and the set of blocks of H with defect group P.

Theorem 1.13 (Brauer’s Second Main Theorem). Let u € G, and let x € Irr(G). Assume
that ¢ € IBr(Cg(u)) lies in a block b of Ca(u). If x ¢ Irr(b¥), then dy, = 0.

Observe that b in [Theorem 1.13|is always defined by [Proposition 1.11] The Second Main
Theorem allows us to arrange the generalized decomposition numbers of G in a block shape

Qf 0

matrix

Q" =
0 Qm

Each @} corresponds to a block B; of G. It is an invertible k(B;) x k(B;) matrix, called the
generalized decomposition matriz of B;. Doing the same with the ordinary decomposition
numbers leads to the (ordinary) decomposition matriz @ of a block B. Here @) is an integral
k(B) x I(B) matrix and C := QTQ is the Cartan matriz of B (as an algebra). By definition,
C is symmetric and positive definite. Moreover, if B has defect d, then all elementary
divisors of C' divide p?, and just one of them is p?. In particular, p? < det C' is a p-power.

As for ordinary character tables we have orthogonality relations of decomposition numbers.

Theorem 1.14 (Orthogonality relations). Let B be a block of G, and let R be a set of
representatives of the conjugacy classes of p-elements of G. Choose u,v € R, blocks b, and
by, of Cq(u) resp. Cq(v), and ¢ € IBr(b,) and ¢ € IBr(b,). Then

Z g — Cop Ifu=10, by =b, cmdbg:B
XeTxw otherwise

x€lrr(B)

where cpy is the Cartan invariant of by, = b, corresponding to ¢, € IBr(b,).

16



1.4. Covering and domination

Theorem 1.15 (Brauer’s Third Main Theorem). Let H < G, and let b be a block of H
with defect group D such that Cq(D) C H. Then b is the principal block of H if and only
if b is the principal block of G.

1.4. Covering and domination

If the subgroup in the last section happens to be normal, things turn out to be easier.

Definition 1.16. Let N < G, and let b (resp. B) be a block of N (resp. G). If Bb # 0, we
say that B covers b.

For explicit calculations it is more convenient to have a characterization in terms of
characters.

Proposition 1.17. Let N <G, and let b (resp. B) be a block of N (resp. G). Then the
following assertions are equivalent:

(i) B covers b.
(ii) There exist characters x € Irr(B) and ¢ € Irr(b) such that (xn,¥)n # 1.
(iii) For every x € Irr(B) there exists some 1) € Irr(b) such that (xn,¥)n # 1.

If b is covered by B, then B has a defect group D such that D N N is a defect group of b.
If b is defined in the situation of Definition then b¢ covers b. The group G acts by
conjugation on the set of blocks of N. The corresponding stabilizer of b is the inertial group
Ng(N,b) of b. Since blocks are ideals, we always have N C Ng(N,b). If N is an arbitrary
subgroup of G and b is a block of M <INg(N), we define Ng(N,b) := Ny, (v) (M, b). If b is
covered by B, then the same is true for every block in the orbit of b under G. We deduce
an extended version of Brauer’s First Main Theorem.

Theorem 1.18 (Extended First Main Theorem). Let P be a p-subgroup of G. Then the
Brauer correspondence induces a bijection between the blocks of G with defect group P and
the Ng(P)-conjugacy classes of blocks b of Cq(P)P with defect group P and |[Ng(P,b) :
Ca(P)P|#0 (mod p).

In the situation of [Theorem 1.18 we define I(B) := Ng(P,b)/ Cq(P)P and e(B) := |I(B)|
for B := b%. Then I(B) is called inertial quotient and e(B) is called the inertial index of
B. Of course, these invariants do not depend on the choice of b. It is known that e(B) is
not divisible by p. In particular, the Schur-Zassenhaus Theorem allows us to regard I(B)
as a subgroup of Aut(D).

The following important result often allows to replace G by Ng(N,b).
Theorem 1.19 (Fong-Reynolds). Let b be a block of N<G. Then the Brauer correspondence
induces a bijection « between the set of blocks of Ng(N,b) covering b and the set of blocks

of G covering b. Moreover, a preserves defect groups, the numbers k(B), k;(B) and l[(B),
and decomposition and Cartan matrices.

If N happens to be a defect group of B, the structure of B is well understood by a theorem
of Kiilshammer.
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1. Definitions and facts

Theorem 1.20 (Kiilshammer [I82]). Let B be a block of a finite group G with normal
defect group D. Then B is Morita equivalent to a twisted group algebra

01D % I(B)]

where v € H2(I(B), 0*) = H*(I(B),C>).

Recall that two rings are called Morita equivalent if their module categories are equivalent.
Morita equivalence of blocks preserves the numbers k(B), k;(B) and [(B) as well as
Cartan and decomposition matrices up to ordering. Recall that the Schur multiplier
H%(G,C*) = Hy(G, Z) is the largest group Z such that there exists a finite group L with
L/Z =2 G and Z C L' NZ(L). For further properties of the Schur multiplier we refer
to Karpilovsky’s book [I56]. Observe that O,G = OG whenever 7 is trivial. For our
applications we often have H?(G,C*) = 1. One can replace the inconvenient twisted group
algebra with the following result (see Proposition 5.15 in [246] or Proposition IV.5.37 in
[21] for the statement over F'; also cf. Theorem 6 in [252]).

Proposition 1.21. Let G be a finite group, and let 1 # v € Oy (H*(G, 0*)). Then there
exists a central extension
1-7Z—-H—-G—1

such that every block of O,G is isomorphic to a non-principal block of H. Moreover, Z is a
cyclic p'-group.

More results on twisted group algebras can be found in Conlon’s paper [68].
It is also useful to go over to quotient groups.
Definition 1.22. Let B be a block of G, and let N < G. Then the image of B under the

canonical epimorphism G — G/N is a (possibly trivial) sum of blocks of G/N. Each block
occurring as a summand is dominated by B.

In a rather special case the domination of blocks is bijective.
Theorem 1.23. Suppose that N <G is a p-subgroup and G/ Cg(N) is a p-group. Then
every block B of G dominates ezactly one block B of G/N. If D is a defect group of B,

then D/N is a defect group of B. Moreover, the Cartan matrices satisfy Cp = |N|Cg. In
particular [(B) = I(B).

In the opposite case where N is a p’-group we have at least an injective map.
Theorem 1.24. Suppose that N QG is a p'-subgroup. Then every block B of G/N is

dominated by exactly one block B of G. Moreover, the blocks B and B are isomorphic as
algebras and have isomorphic defect groups.
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1.5. Fusion systems
1.5. Fusion systems

The notion of fusion systems was first formed by Puig in the eighties under the name
Frobenius categories (see [248]). Later Levi, Oliver and others gave a modern approach. We
refer to the books by Craven [71] and Aschbacher-Kessar-Oliver [21], as well as to a survey
article by Linckelmann [203].

Definition 1.25. A (saturated) fusion system on a finite p-group P is a category F whose
objects are the subgroups of P, and whose morphisms are group monomorphisms with the
usual composition such that the following properties hold:

(1) For S,T < P we have

Homp(S,T):={¢:S =T :3y € P:p(x) =Yz Ve € S} CHomz(S,T).

(2) For ¢ € Homz(S,T) we have ¢ € Homz(S,(S)) and ¢! € Homz(¢(S), S).

(3) For S < P there exists a morphism 1 : S — P such that T := () has the following
properties:

(a) Np(T)/ Cp(T) € Syl, (Autr(T)).
(b) Every isomorphism ¢ : R — T in F can be extended to

N, :={y e Np(R) : 3z e Np(T) : p(2¥) = ¢(x)* Yz € R}.

Part in [Definition 1.25|is the saturation property. Since our fusion systems are always

saturated, we will omit the word “saturated” from now on. Observe that in we have
RCp(R) € N, C Np(R). We call subgroups S,T" < P F-conjugate if there exists an
isomorphism ¢ : § — T in F.

If G is a finite group with Sylow p-subgroup P, then we get a fusion system Fp(G) on P by

defining Hom £ (S, T') := Homg(S,T) for S, T < P. A fusion system which does not arise in
this way is called exotic. We say that F is trivial or nilpotent if F = Fp(P).

Definition 1.26. Two fusion systems F and F’ on a finite p-group P are isomorphic if
there is an automorphism v € Aut(P) such that

Homz(7(5),7(T)) = v(Homz(S,T)) := {yopoy~" : p € Homz (S, T)}
for all subgroups S,T < P.

Observe that if v is an inner automorphism of P, then Homz(y(S),v(T")) = v(Homz(S,T))
for all S, T < P.

Now let B be a p-block of G with defect group D. For every subgroup @ < D there
exists a Brauer correspondent bg of B in Cg(Q). The pair (Q, bg) is called (B-)subpair. If
Q = D, we sometimes say Sylow subpair of B. These objects were developed in articles by
Alperin-Broué [6] and Olsson [240]. One can show that bg is covered by a unique block bg

of QCq(Q).
~TCg(9)

For two subpairs (S,bg) and (T,br) we write (S,bs) < (T, br) if S < T and bg =
—~TCqg(S
bp o ). Let < be the transitive closure of < (for subpairs). The group G acts on the
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set of subpairs in the obvious way: 9(Q,bg) = (YQ,9bg). In the following we fix a Sylow
B-subpair (D,bp). Then it can be shown that there is exactly one subpair (@, bg) such
that (Q,bg) < (D,bp) for every Q < D.

Definition 1.27. The fusion system F := Fp(B) on D is defined by
Homzg(S,T):={p: S —=T:3g € G:9(S,bs) < (T,br) N @(x) =9z Vrec S}

for S, T < D.

If B is the principal block of G, we get Fp(B) = Fp(G) (remember D € Syl,(G)).
Conversely, it is not known if every block fusion system is the fusion system of a finite group.
Setting F := Fp(B) we observe that Autz(D) = Ng(D,bp)/ Cq(D) and Outz(D) = I(B).
A fusion system F on a finite p-group P (or the corresponding block) is called controlled
if 7 = Fp(P x A) for a p/-subgroup A < Aut(P). If P is abelian, then F is always

controlled.

As another example, the bijection from the Fong-Reynolds Theorem also
preserves the fusion systems of the blocks.

In the special case where @ is cyclic, say @ = (u), we get a (B-)subsection (u,b,) where
bu = bQ.

In the following we need some more concepts concerning fusion systems.

Definition 1.28. Let F be a fusion system on a finite p-group P, and let Q@ < P.
o () is called fully F-centralized if |Cp(R)| < |Cp(Q)] for all R < P which are F-

isomorphic to Q.
o @ is called fully F-normalized if [INp(R)| < |[Np(Q)| for all R < P which are F-
isomorphic to Q.
o () is called F-centric if Cp(R) = Z(R) for all R < P which are F-isomorphic to Q.
e ( is called F-radical if O,(Outr(Q)) = 1.

Observe that an F-centric subgroup is also fully F-centralized. Moreover, by Proposition 1.2.5
in [21], fully F-normalized implies fully F-centralized. We take the opportunity to introduce
two important subsystems of fusion systems.

Proposition 1.29. Let F be a fusion system on a finite p-group P.

(i) If Q < P is fully F-centralized, then there is a fusion system Cx(Q) on Cp(Q) defined
as follows: a morphism ¢ : R — S (R,S < Cp(Q)) belongs to Cx(Q) if there exists a
morphism ¢ : QR — QS in F such that g =idg and Yr = .

(i1) If Q < P is fully F-normalized, then there is a fusion system Nz(Q) on Np(Q) defined
as follows: a morphism ¢ : R — S (R, S < Np(Q)) belongs to Nx(Q) if there exists a
morphism 1 : QR — QS in F such that (Q) = Q and Y|r = .
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If Q is cyclic, say Q = (u), we will often write Cz(u) instead of Cx((u)). A fusion system
F on P is constrained if it has the form F = Nz(Q) for an F-centric subgroup @ < P.
It is known that every constrained fusion system is non-exotic (Theorem III.5.10 in [21]).
Note that every controlled fusion system is constrained by taking @ = P.

If F is the fusion system of a block B, and ) < P is fully F-centralized, then the block bg
defined above has defect group Cp(Q) and fusion system Cr(Q) (see Theorem IV.3.19 in

211).

Definition 1.30. Let F be a fusion system on a finite p-group P. The largest subgroup
Q < Z(P) such that Cx(Q) = F is called the center Z(F) of F. Accordingly, we say, F is
centerfree if Z(F) = 1. The largest subgroup @ < P such that Nz(Q) = F is denoted by
Op(F). Obviously, Z(F) C Op(F).

A less technical characterization of the center is given by

Z(F) ={x € P : x is fixed by every morphism in F}.

Proposition 1.31. Let F be a fusion system on a finite p-group P. If Q < Z(F), then
there is a fusion system F/Q on P/Q defined as follows: a morphism ¢ : R/Q — S/Q
(Q < R,S < P) belongs to F/Q if there exists a morphism 1 : R — S in F such that
(xQ) = Y(x)Q for all x € R. Moreover, Outz(P) = Outz,o(P/Q).

A fusion system F is constrained if and only if Cp(O,(F)) € O,(F). The following major
result is needed at several places.

Theorem 1.32 (Puig [245]). Let B be a block of a finite group with defect group D and
trivial fusion system (i. e. B is nilpotent). Then B = (OD)™*™ for some n > 1. In particular
B and OD are Morita equivalent.

Let B be a nilpotent block with defect group D. Then it follows from that
ki(B) = k;(D) is the number of irreducible characters of D of degree p’ for i > 0. In
particular ko(B) = |D : D’| and k(B) is the number of conjugacy classes of D. Moreover,
[(B) = 1. As an example, every block B with abelian defect groups and e(B) = 1 is
nilpotent.

Similarly to the theory of finite groups, one can define the focal subgroup foc(B) of B (or of
F) by
joc(B) = (f(x)a ' x € Q< D, f € Autr(Q)).

Obviously, D’ C foc(B) C D. It can be seen that D/foc(B) acts freely on Irrg(B) by the
so-called *-construction (see [263]). As a consequence we get information on ko(B) as
follows.

Proposition 1.33 (Robinson [263], Landrock [195], Gow [112]). Let B be a p-block of G
with defect d > 0. Then the following holds:
(i) |D : foc(B)| | ko(B).
(i6) Ifp <3, then p | ko(B).
(iii) If e(B) =1, then p | ko(B).
(iv) If p=2 and d > 2, then 4 | ko(B).
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(v) If p=2 and d > 3, then ko(B) + 4k1(B) =0 (mod 8).
(vi) If p=2 and kq—2(B) # 0, then ko(B) =4 and kq_2o(B) < 3.

A recent result along these lines gives another description of nilpotent blocks.

Proposition 1.34 (Kessar-Linckelmann-Navarro [164]). A block B of a finite group with
defect group D is nilpotent if and only if ko(B) = |D : foc(B)|.

One can also define the hyperfocal subgroup of B (or of F) as follows
byp(B) := (f(zx)z™ ' 1z € Q < D, f € OP(Autx(Q))).

As a consequence of Alperin’s Fusion Theorem (see|Theorem 6.2|below), foc(B) = D’bhyp(B).
Moreover, B is nilpotent if and only if hyp(B) = 1. Recently, Watanabe obtained the

following very strong result which gives information for odd primes p.

Theorem 1.35 (Watanabe [314]). Let B be a p-block of a finite group with defect group
D such that byp(B) is cyclic. Then B is controlled and 1(B) is cyclic. Moreover, I(B) =
e(B)|p—1 and k(B) = k(D x I(B)). The elementary divisors of the Cartan matriz of B
are |D| and |Cp(I(B))| where |Cp(I(B))| occurs with multiplicity e(B) — 1.

The proof of [Theorem 1.35|uses a structure result on the source algebra of B by Puig [247].

1.6. Subsections and contributions

Now let F be again the fusion system of a block B. The following lemma describes the
conjugation action on the subsections. I was unable to find this result in the literature.
Hence, a proof is given.

Lemma 1.36. Let R be a set of representatives for the F-conjugacy classes of elements of
D such that () is fully F-normalized for o € R (R always exists). Then

{(a,bs) : v € R}

18 a set of representatives for the G-conjugacy classes of B-subsections, where b, has defect
group Cp(a) and fusion system Cz(a). Moreover, b, dominates a block b, of Ca(a)/{a)
with defect group Cp(a)/{a) and fusion system Cx(a)/(c). If C is the Cartan matriz of
by, then [(a)|C is the Cartan matriz of by. In particular, 1(by) = l(bs). Also,

I(ba) = 1(ba) = Coutr(Cp(a)) (@)-

Proof. Let («,b) be an arbitrary B-subsection. Then ({«), b) is a B-subpair which lies in
some Sylow B-subpair. Since all Sylow B-subpairs are conjugate in F, we may assume
((«),b) < (D,bp). This shows b = b,. By the definition of R there exists a morphism f
in F such that g := f(«) € R. Now the definition of F implies that f corresponds to an
element g € G such that 9(c, b) = (3, bg). It is also easy to see that we can always choose a
representative « such that () is fully F-normalized.

Now suppose that (a, by) and (3,bg) with a, 5 € R are conjugate by g € G. Then (with a
slight abuse of notation) we have g € Homz({(«), (58)). Hence, a = §3.
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By Proposition 1.2.5 in [21], («) for @ € R is also fully F-centralized. Hence Theorem IV.3.19
in [21] implies that b, has defect group Cp(a) and fusion system Cz(c). By [Theorem 1.23]
b, dominates a unique block b, and it suffices to show the claim about the fusion system of
by, For this, we may assume that o € Z(G). Then b, = B, Cp(a) = D and Cx(a) = F. For
H < G we write H := H(a)/(a). We fix a Sylow B-subpair (D, bp). For every subgroup
(a) < @Q < D there exists a unique B-subpair (Q,bg) such that (Q bg) < (D,bp). Let
Ca(Q) = Cg with C(Q) < Cg < Ng(Q). Moreover, let g = bQ , and let Bg be the
unique block of Cz(Q) dominated by Sg. We claim that (Q, Bg) is a B-subpair. To prove
this, we need to show that %G = B. Let ep be the block idempotent of B with respect
to F. Let § : FG — FG be the canonical epimorphism. Then 6(ep) = eg. Let wg, be
the central character of q. Then, by [2I5] Lemma 5.8.5], the central character wz— 5 of Bo
satisfies wg, = wg; o 0 where 0 is identified with its restriction to Z(FCgq). Let

Z(FG) = Z(FCg), Zagg»—> Z ayg (ag € F).
geG QGCQ

Then the analogous map 7 : Z(FG) — Z(F Cx(Q)) is the Brauer homomorphism. Moreover,
(e

wa, (N(ep)) = wg(M(0(en))) = wz,(0(n(ep))) = wsqy (nlep)) = wplep) = 1.

This shows that %G = B and (Q, 8g) is a B-subpair. In particular, (D, 8p) is a Sylow

B-subpair. Suppose that (R,bgr) < (S,bs) for some subgroups () < R<S < D. Then

bgG(R)S = bgG(R) . As we have seen above,

ECE(E)S F BCRS _ bcRs bgRS BCRS F — B Ce(R)S

(observe that Cg(R)S < CrS < @). This implies (R, Br) < (S, Bs). Therefore the poset
of B-subpairs (Q,bg) < (D,bp) such that o € @ is in one-to-one correspondence with
the poset of B-subpairs via Brauer correspondence and 6. Let F’ be the fusion system of
B. Suppose that p : R — S is a morphism in F’ for (o) < R, S < D. Then there exists
a g € G such that g(R, BR)*_l < (S Bs) and B(z) = gzg ! for all T € R. Obviously, we

have gRg~! < S. Moreover, g8rg~! = gBrg ' = = Bgrg—1 and

—1\C _ C — —
(gbrg™ ") oma™t = g(bpR)g ™" = gBrg ™" = Byrg—1 = bg}%};g

It follows that there exists an element h € Cyp,—1 < Ng(gRg™!) such that hgbrg~th™! =
byrg—1 and B(T) = hgzg='h~! for T € R. Therefore, hg(R,br)g 'h™! < (S,bs) and the
map ¢ : R — S such that ¢(z) := hgrg='h~! for 2 € R is a morphism in F. Conversely,
if o : R — S is given in F, then it is easy to see that the corresponding map @ lies in F.
Consequently, 7/ = F /(). Finally, the last claim follows from [Proposition 1.31} O

replaces Brauer’s notion of double chains and nets. In applications it would
usually be enough to assume that («) is fully F-centralized. However, it is sometimes easier
to prove that («) is fully F-normalized. A subsection (u,b,) is major if b, also has defect
group D. Thus, by we usually assume u € Z(D) for a major subsection (u, by,).
Obviously, every subsection is major if D is abelian. However, the converse is false (cf.
Chapter 15)).

In order to compute invariants of blocks, the following theorem is rather important.
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Theorem 1.37 (Brauer). Let B be a block of a finite group, and let R be a set of
representatives for the conjugacy classes of B-subsections. Then

k(B)= > 1(ba).

(u,bu)ER

As a consequence, we see that the difference k(B)—1(B) is locally determined. Theorem 1.37

is related to the fact that the generalized decomposition matrix of B has square shape.

Now we introduce the contribution of a subsection (u, b,); a notion introduced by Brauer
[44]. Let Q. be the part of the generalized decomposition matrix consisting of the entries
dy, where x € Irr(B) and ¢ € IBr(b,). Assume that b, has defect ¢ and Cartan matrix Cy.
Then the contribution matriz of (u,b,) is defined as

u u 1~ T
M*" = (mxw)x,wEIrr(B) = p1QuC, 1Qu .

Since p?C, ! is integral, the contributions m;w are algebraic integers. Hence, we may view
them as elements of O. By definition, M*M" = p?M™. Moreover, tr M" = p?l(b,) where tr
denotes the trace.

The following technical divisibility relations are quite useful. They first appeared in
Broué [49] and were later generalized by Murai [212].

Proposition 1.38. Let (u,by,) be a B-subsection, and let x,v € Irr(B). Then the following
holds:

(i) my,, € O* if and only if h(x) = h(y) = 0. In particular, (dy, : ¢ € IBr(by,)) # 0 for
x € Irro(B).
1) Assume that (u,by) is major. Then v(m® ) > h(x) were v is the p-adic valuation.
XY

Here equality holds if and only if h(v)) = 0. In particular, (dy, : ¢ € IBr(by)) # 0 for
all x € Irr(B).

In case I(b,) = 1 this has direct consequences for the generalized decomposition numbers.
Let [{(u)| = p*, and let ¢ be a primitive p*-th root of unity. Let IBr(b,) = {¢,}. Since d¥,
is an algebraic integer, we can write

e(p*)—1

dyp, = Y at()¢ (1.1)

=0

with a¥(x) € Z (see Satz 1.10.2 in [224]). Here ¢(p*) denotes Euler’s totient function.

Lemma 1.39. Let (u,b,) be a B-subsection with |(u)| = p* and I(b,) = 1.
(i) For x € Irrg(B) we have

p(p*)-1
> al(x)#0 (mod p).
i=0
(i) If (u,by) is major and x € Irr(B), then p") | a¥(x) fori=0,...,0(p") — 1 and

e(p*)-1

D a0 #0 (mod p"T),

—0

~
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1.7. Centrally controlled blocks

Proof.

(i) Since I(by) = 1, we have my, = dy,, di, . Hence, |Pr0position 1.38 gives dy,, # 0

(mod Rad ©). Since ( =1 (mod Rad O), the claim follows from |(1.1)]
(ii) Let ¢ € Irrg(B). Then [Proposition 1.38| implies

h(x) = v(myy) = v(dy,,) +v(df, ),

where v is the p-adic valuation. Thus, h(x) = v(dY,,) by [)} Now the claim is easy

to see. O

1.7. Centrally controlled blocks

In this short section we describe the notion of centrally controlled blocks which is little-
known. The results are given in [I87].

Theorem 1.40 (Kiilshammer-Okuyama [I87]). Let B be a block with fusion system F. Let
(u,by) be a B-subsection such that u € Z(F). Then k(B) > k(by,) and I(B) > 1(by).

Fusion systems controlled by centralizers also play a role in the Z*-Theorem. In the special
case where the defect group is abelian, we have the following stronger result by Watanabe

(observe that the last assertion is also a consequence of [Theorem 1.40)).

Theorem 1.41 (Watanabe [311], B10]). Let D be abelian, and let (u,b,) be a B-subsection
such that u € Z(F). Then k(B) = k(by) and l(B) = l(b,). Moreover, the Cartan matrices
of B and b, have the same elementary divisors (counting multiplicities), and Z(B) and
Z(by,) are isomorphic as F-algebras.

Observe that in the situation of [Theorem 1.41f we have D = Z(F) x foc(B).

1.8. Lower defect groups

The notion of lower defect groups allows us to determine the elementary divisors of the
Cartan matrix of a block locally. Unfortunately, the theory is quite opaque. We collect only
the results which are necessary for the present work. We refer to [238], 54] [309] 93].

Let B be a p-block of a finite group G with defect group D and Cartan matrix C. We
denote the multiplicity of an integer a as elementary divisor of C' by m(a). Then m(a) =0
unless a is a p-power. It is well-known that m(|D]) = 1.

Definition 1.42. For a p-block B of G and a p-subgroup R < G let

Jr(B)i={ " ayg € Z(B) : 0y # 0 = 3Q € Syl (Calg)) w € G 2Qa™" < R},
gEGp/

J<r(B):=>_ Jo(B).

Q<R

Then
m\WV(R) := dimp(Jr(B)) — dimp (J<r(B))
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is called the 1-multiplicity of R as a lower defect group of B. In case mg)(R) >0, Ris
called a lower defect group of B (this is actually a bit stronger than the usual definition).

Brauer [45] expressed m(p™) (n > 0) in terms of mg)(R) as follows:

m(p”) = > my)(R) (12)

ReR

where R is a set of representatives for the G-conjugacy classes of subgroups of G of order p”.
It is known that every lower defect group is conjugate to a subgroup of D. Since m(|D|) = 1,
D is always a lower defect group of B. Later [Equation (1.2)| was refined by Broué and
Olsson by invoking the fusion system F of B.

Proposition 1.43 (Broué-Olsson [54]). For n > 0 we have

m(p") =Y my (R, br)
RER

where R is a set of representatives for the F-conjugacy classes of subgroups R < D of order
22

p".
Proof. This is (2S) of [54]. O

For the definition of the numbers mg)(R, br) we refer to the next lemma.

Lemma 1.44. For R < D and Bp := bgG(R’bR) we have mg)(R, br) = mgl)%(R). If R is
fully F-normalized, then Br has defect group Np(R) and fusion system Nz(R).

Proof. The first claim follows from (2Q) in [54]. For the second claim we refer to Theo-
rem 1V.3.19 in [21]. O

Since we may always assume that R € R is fully F-normalized, the calculation of mg) (R,br)
can be done in the smaller group Ng(R,br). Especially if the Cartan matrix of Bp is
known, we may apply [Proposition 1.43| with Bp instead of B. Another important reduction
is given by the following lemma.

Lemma 1.45. For R < D we have ) ocp mg;(Q) < I(br) where R is a set of representa-
tives for the Ng (R, br)-conjugacy classes of subgroups @ such that R < Q < Np(R).

Proof. This is implied by Theorem 5.11 in [238] and the remark following it. Notice that in
Theorem 5.11 it should read B € BI(G) instead of B € BI(Q). O

In the local situation for Bg also the next lemma is useful.

Lemma 1.46. If R is a lower defect group of B, then O,(Z(G)) C R.

Proof. See Corollary 3.7 in [238]. O
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1.8. Lower defect groups

Proposition 1.47 (Watanabe [309]). Let v € Q < D. Let R be the set of Brauer
correspondents of B in Cg(u) whose defect group is larger than |Q|. Then

m Q) <Y mM(Q).

beR

In special situations the elementary divisors of the Cartan matrix are given by the following
result which is a consequence of [Proposition 1.47]

Proposition 1.48 (Fujii [98]). Let B be a p-block of a finite group with defect d and
Cartan matriz C. Suppose that [(b,) = 1 for every non-trivial B-subsection (u,b,). Then
det C = p®. In particular, p® is the only non-trivial elementary divisor of C.

Usually, it is very hard to compute m(1), since this number is not locally determined.

However, if the focal subgroup of B is small, one can show that m(1) = 0.

Proposition 1.49 (Robinson [263]). Let B be a block of a finite group with defect group
D. Then the Cartan invariants of B are divisible by |Z(D) : Z(D) Nfoc(B)|. In particular
m(p™) =0 if p" < |Z(D) : Z(D) N foc(B)|.

Finally, we give a result in the opposite direction.

Proposition 1.50 (Brauer-Nesbitt [48]). For a block B of a finite group we have m(1) >
2(B) — k(B).

It is a much harder problem to determine the eigenvalues of Cartan matrices, since these
numbers are not invariant under change of basic sets. Nevertheless, one can find results in
this direction in [231] [177), 306, 305} 168, 304, [303], 302, 169, [322], [176].
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2. Open conjectures

A main theme of this work is to prove conjectures of modular representation theory in
special situations. Most of these conjectures concern the relationship between local and
global invariants of blocks. The first one is probably the oldest one, and will play a special
role in this work.

Conjecture 2.1 (Brauer’s k(B)-Conjecture, 1954 [40]). For a block B of a finite group
with defect group D we have k(B) < |D|.

Conjecture 2.2 (Olsson, 1975 [235]). For a block B of a finite group with defect group D
we have ko(B) < |D : D'|.

One direction of the following conjecture is known to hold (see [Theorem 7.14]).

Conjecture 2.3 (Brauer’s Height Zero Conjecture, 1956 [39]). A block B of a finite group
has abelian defect groups if and only if k(B) = ko(B).

Conjecture 2.4 (Alperin-McKay Conjecture, 1975 [2]). Let B be a block of a finite group
G with defect group D. Then ko(B) = ko(b) where b is the Brauer correspondent of B in
Na(D).

In a specific situation we will also consider the following refinement of the Alperin-McKay
Conjecture which was proposed by Isaacs and Navarro.

Conjecture 2.5 (Galois-Alperin-McKay Conjecture, 2002 [148]). Let B and b be as in
Congecture 2.4 Then for every p-automorphism v € Gal(Q‘G|\Q‘G|p,) we have

[{x € Irrg(B) = "x = x} = {x € Trro(b) : "x = x}.

Later Navarro [219] extended the conjecture to allow not only all automorphisms of
Gal(Qg ’Q|G\p/ ), but also certain other automorphisms which fix Irr(B) as a set. As another
refinement Isaacs and Navarro also proposed a congruence version of the Alperin-McKay
Conjecture which takes the precise character degrees into account. Since in our setting the
precise degrees are usually unavailable, we will not consider this refinement.

Brauer [41] also provided a list of problems which became famous.

The following version of Alperin’s Weight Conjecture [4] is particularly useful in our setting.
It can be found in Section IV.5.7 in |2I]. Here for a finite-dimensional F-algebra A, z(A)
denotes the number of (isomorphism classes of) simple projective A-modules. Let B be a
block with defect group D and fusion system JF. Then for every F-centric subgroup Q < D
the block bg has defect group Cp(Q) C Q (see . Thus, by dominates a block
bq of Ca(Q)Q/Q with trivial defect. Moreover, Bg := by,® @) dominates a block Bg of
Na(Q,bg)/Q which covers bg. Hence, we are in a position to apply below
which gives us the Kiilshammer-Puig class 7g. For an explicit description of ¢ in our
special situation one can also consult Section IV.5.5 in [21].
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2. Open conjectures

Conjecture 2.6 (Alperin’s Weight Conjecture (AWC), 1986 [4, 21]). Let B be a block of a
finite group with defect group D and fusion system F. Then

(B) =) 2(Fy, Outz(Q))

QER

where R is a set of representatives for the F-conjugacy classes of F-centric, F-radical sub-

groups of D and vg € H*(Out#(Q), F*) is the Kiilshammer-Puig class (see|Theorem 17.5).

If B is a controlled block, it can be seen that AWC reduces to I[(B) = z(F,,I(B)). If
in addition I(B) has trivial Schur multiplier, AWC reduces further to I(B) = k({(B)).
Recently, Spath [288] 220] 289] (and coauthors) has reduced the Alperin-McKay Conjecture,
Brauer’s Height Zero Conjecture and Alperin’s Weight Conjecture to a (more involved)
question about finite simple groups only.

The Ordinary Weight Conjecture, proposed by Robinson [258] and described below expresses
the block invariants k;(B) locally. For this let B be a block with defect group D and
fusion system F. For an F-centric, F-radical subgroup @ < D let Ny be the set of
chains 0 : 1 = R; < Ry < ... < Ry of p-subgroups of Outz(Q) such that R; < R; for
i=1,...,0. Let |o] := I. The group Outx(Q) acts naturally on Ny and on Irr(Q). For
o € Ng (resp. x € Irr(Q)) let I(o) < Outz(Q) (resp. I(x)) be the corresponding stabilizer.
Then we can restrict the Kiilshammer-Puig class yg to I(o,x) := I(c) N I(x). Define
I (Q) == {x € Irr(Q) : x(1)p? = |Q|} for d > 0. Assume that B has defect d. Then
k*(B) := kq_;(B) is the number of characters of defect i > 0.

Conjecture 2.7 (Ordinary Weight Conjecture (OWC), 1996 [258, 21]). With the notation
of ComecTare 2.8 we have

FB)=> > (=)t Y 2(ByIo,)

QER oeNg/Out£(Q) x€Irrt(Q)/1(o)
fori>0.
For the convenience of the reader we include two abbreviations from [21]: w(Q, o, x) =

2(Fy,I(o,x)) and

w(Q,i):= Y. (=D >y w(@0,x).

oeNg/Out£(Q) X€Irrt(Q)/1(o)

It is known that the Ordinary Weight Conjecture (for all blocks) implies Alperin’s Weight
Conjecture (see [260]). Also, the Ordinary Weight Conjecture is equivalent to Dade’s
Projective Conjecture (see [83]). We do not state the numerous versions of Dade’s Conjecture
here (ordinary, projective, invariant, ... ).

The next conjecture on our list is of a different nature and usually harder to prove (for
special cases).

Conjecture 2.8 (Donovan, 1980 [3]). For a given p-group D there are only finitely many
Morita equivalence classes of p-blocks with defect group D.
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In Donovan’s Conjecture it is sometimes important to specify the ring (F' or O) over which
the blocks are defined. Occasionally we will also mention Broué’s Abelian Defect Group
Conjecture which, however, will never be the objective of a proof. For this reason we go
without the precise definition of Broué¢’s Conjecture and refer to [52] instead.

Our next conjecture was proposed by Linckelmann and is also of a different nature. We will

not go in the category theoretical details here.

Conjecture 2.9 (Gluing Problem, 2004 [202]). Let B be a block with defect group D and
fusion system F. Let F be the orbit category of F, and let F° be the subcategory of F-centric
subgroups. Then there exists v € Hz(}"c, F*) such that the Kilshammer-Puig classes yq in

‘'onjecture 2.6| are restrictions of .

In many cases it turns out that the 2-cocycle v in the Gluing Problem is uniquely determined.
However, this is not true in general by an example of Park [242].

Finally we list some more recent (and not so well-known) numerical conjectures. The first
one unifies the k(B)-Conjecture and Olsson’s Conjecture.

Conjecture 2.10 (Eaton, 2003 [82]). For a p-block B with defect group D we have

> ki(B) <) ki(D)p*
1=0 =0

for allmn > 0.

The following conjecture strengthens the Height Zero Conjecture (together with
rem 7.14).

Conjecture 2.11 (Eaton-Moreto, 2014 [87]). For a block B with non-abelian defect group
D we have
min{i > 1: k;(D) > 0} =inf{i > 1: k;(B) > 0}.

Conjecture 2.12 (Malle-Navarro, 2006 [205]). For a block B with defect group D we have

k(B)/ko(B) < k(D') and k(B)/I(B) < k(D).

[Conjecture 2.12]is known to hold for abelian defect groups by and Theo-
rem V.9.17(i) in [93]. The next conjecture is explicitly stated as Conjecture 4.14.7 in [204].
It would be a consequence of the Ordinary Weight Conjecture.

Conjecture 2.13 (Robinson, 1996 [258|). If B is a p-block with non-abelian defect group
D, then
" < |D:7Z(D)|

for all x € Irr(B).

Our last conjecture only applies for p = 2. Here a finite group is called rational, if its
character table is integral.

Conjecture 2.14 (Gluck, 2011 [105]). Let B be a 2-block with rational defect group of
nilpotency class at most 2. Then every character in Irr(B) is 2-rational.
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Part II.

General results and methods
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3. Quadratic forms

Let B be a p-block of a finite group G. Then the Cartan matrix C' of B gives rise to an
integral, positive definite, symmetric quadratic form ¢ : Z‘®) — Z, z — 2TCz. In this
section we will briefly explore some features of ¢ which will eventually lead to restrictions
on k(B). The results are taken from [270].

It is well-known that C' is indecomposable as integral matrix, i.e. there is no arrangement
of the indecomposable projective modules such that C' splits into a direct sum of smaller
matrices. However, it appears to be an open question if this is still true under more general
modifications.

Question A. Do there exist a Cartan matrix C of a block B and a matrix S € GL(I(B),Z)
such that STCS is decomposable?

The transformation C' +— STCS describes precisely Brauer’s notion of basic set (see [42]).
Recall that a basic sets is a basis for the Z-module of generalized Brauer characters of B.
For a given block it is much easier to calculate C only up to basic sets. For example, C' can
be obtained up to basic sets from the ordinary character table of G, i.e. the knowledge of
Brauer characters is not necessary. Later we will compute C' up to basic sets by means of
local data.

Obviously, a change of basic sets does not affect the elementary divisors (and thus the
determinant) of C. So far, we have not found an example for Nevertheless, the
following example shows that the answer might be not so easy. The matrix A = (% %) is

indecomposable, but (§ 7! )TA([I) 1) =($9) is not.

The motivation for comes from the fact that k(B) can be bounded in terms of
Cartan invariants (see below). These bounds are usually invariant under change
of basic sets. The point is that the inequalities are significantly sharper for indecomposable
matrices. We illustrate this fact with an example. Let I(B) = 2 and assume that the
elementary divisors of C' are 2 and 16. Then C has the form

2 0 6 2
0 16) > \2 6
up to basic sets. In the first case one can deduce k(B) < 18, while in the second case

k(B) < 10 holds (see [I91] or [Theorem 4.2/ below).
We give an answer to in two special cases.

Lemma 3.1. Let G be p-solvable and l := [(B) > 2. Then there is no matriz S € GL(l,7Z)
such that STCS = (%d 001) with C, € Z4=VxU=1) " In particular C is not a diagonal matriz
up to basic sets.

Proof. Assume the contrary, i.e. there is a matrix S = (s;;) € GL(l,Z) such that

d
—(py— T (P° 0
C=(cj)=45 <0 01>S
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3. Quadratic forms

with €} € ZU-DX=D Let s; := (59, 834, ..., ) for i = 1,...,1. By Theorem (3H) in [95]
we have
psh + siCis) = cii < p*

for ¢ = 1,...,1. Since S is invertible, there exists ¢ such that s;; # 0. We may assume
s11 # 0. Then s;; = £1 and s7 = (0,...,0), because C is positive definite. Now all other
columns of S are linearly independent of the first column. This gives s1; =0 for i =2,...,1[.
Hence, S has the form S = (%1 é)l) with S; € GL(l — 1,Z). But then C also has the form

(%d 692) with Cy € ZU-DxU=1) "3 contradiction. The second claim follows at once, since p?

is always an elementary divisor of C. O

The bound ¢;; < p? for Cartan invariants ¢i; used in the proof appeared as Problem 22
in Brauer’s list [4I]. Unfortunately it does not hold for arbitrary finite groups, since
Landrock [192] gave a counterexample.

As an application, assume that the block B has abelian defect group and Cartan matrix C'.
Then Broué’s Abelian Defect Group Conjecture would imply that C is the Cartan matrix
of a block of a p-solvable group (see [Theorem 1.20| and [Proposition 1.21)). Thus,
applies for C.

Lemma 3.2. Let B be a p-block with defect d and Cartan matriz C. If det C = p?, then
for every S € GL(I(B), Z) the matriz STCS is indecomposable.

Proof. Again assume the contrary, i.e. there is a matrix S € GL(I(B),Z) such that

ot (C1 0
C—S<O 025

with C; € Z™*™ and Cy € ZU=m)*(=m) where | := I(B) and 1 < m < [. In particular
| < k(B) =: k, because | > 2. Since det C' = p?, the elementary divisors of C are 1 and p?,
where p? occurs with multiplicity one. W.1. 0. g. we may assume det C; = 1. Let Q = (¢ij) be
the corresponding part of the decomposition matrix, i.e. QTQ = C. By the Binet-Cauchy
formula (see e.g. page 27 in [99]) we have

l=detCi= Y  detQyQv,

VL, k},
[V]=m
where Qv is the m x m submatrix consisting of the entries {¢;; : i € V, j € {1,...,m}}.
Since det Q‘T/QV > 0, one summand is 1 while the others are all 0. Thus we may assume,
that the first m rows q1,...,q, of @ are linearly independent. Now consider a row g;
for i € {m +1,...,k}. Then ¢; is a rational linear combination of ga,...,gmn, because
q2, - - -,qm,q; are linearly dependent. By the same argument, g; is also a linear combination
of gi,...,¢j—1,¢j+1,--,qm for j =2,...,m. This forces ¢; = (0,...,0). Hence, all the rows
Gm+1, - - -, Qi vanish. Now consider a column d(u) of generalized decomposition numbers,

where u is a nontrivial element of a defect group of B. By the orthogonality relations
the scalar product of d(u) and an arbitrary column of @ vanishes. This means the first
m entries of d(u) must be zero. Since this holds for all columns d(u) with u # 1, there
exists an irreducible character of B which vanishes on the p-singular elements of G. It is
well-known that this is equivalent to d = 0. But this contradicts [ > 2. O
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More generally, the matrix C' = (¢;;) cannot have a submatrix Cy = (cji;);jev for V. C
{1,...,1(B)} such that det Cy = 1.

As an example, we have det C = p? whenever I(b) = 1 for all B-subsections (u,b) # (1, B)
(Proposition 1.48|). This in turn is satisfied for instance if D is abelian and D x I(B) is a
Frobenius group. This is true for all cyclic defect groups. In general det C' can be determined

locally by considering lower defect groups (see [Section 1.8)).

One often tries to choose a basic set such that C' has a “nice” shape. One way to do this is
given by the reduction theory of quadratic forms.

Definition 3.3. A positive definite integral quadratic form ¢ corresponding to a symmetric
matrix (auj)1<ij<; is called reduced (in the sense of Minkowski) if a;;41 > 0 for i =
1,...,0—1andfori=1,...,] we have

i < q(x1,. .., 1)
whenever ged(z;, ..., 2z;) = 1.
Apart from Minkowski’s reduction there are several other approaches. For instances, the
so-called LLL algorithm is much faster, but provides weaker properties.

A 2 x 2 matrix C' = (¢;;) is reduced (i.e. its quadratic form is reduced) if and only if
0 < 2c12 < c11 < cag (see e.g. [301]). Then it is easy to see that 4ciicoe — 2 < 4det C.

Now

5 detC detC +5
c11 + 2 < Ve + <

3.1
1 2 (3.1)
follows (see proof of Theorem 1 in [270]). This will be used later. Barnes [23] has obtained
similar inequalities for dimensions 3 and 4.

Every quadratic form can be reduced in the sense above. However, equivalent quadratic
forms may have distinct reductions. Therefore, it is a hard problem (especially in large
dimensions) to decide if two given quadratic forms are equivalent. In small dimensions
lists of pairwise non-equivalent reduced quadratic forms according to their determinant
appeared in book form [30], 227]. The content of these books is also available online [223].

Most of the time we will not work with reduced matrices, but usually we will choose
a basic set such that C' = (¢;;) has “small” entries. In particular, we may assume that
2|c;j| < min(cey, ¢j;) for i # j and ¢11 < ... < ¢y where | := [(B). Additionally, we try to
minimize the number of negative entries.

The next theorem is an application of [Lemma 3.2 Barnes’ results [23], and a work of
Kiilshammer and Wada [191] which we will generalize in the upcoming chapter.

Theorem 3.4. Let B be a p-block of a finite group with defect d and Cartan matriz C. If
I(B) <4 and det C = p?, then

Moreover, this bound is sharp.
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3. Quadratic forms

Proof. For [ :=1(B) = 1 the assertion is clear (see e.g. Corollary 5 in [239]). So let I > 2. Let
A = (a;j) be a reduced matrix in the sense above which is equivalent to C' as a quadratic
form. In particular we have 2|a;;| < min{a;,aj;} and 1 < a1 < age < ... < ay. For
convenience we write « := aq1, 8 := as2 and so on.

We are going to apply equation (xx) in [I91]. In order to do so, we will bound the trace of
A from above and the sum a2 + a23 + ... 4+ a;—1,; from below.

Let I(B) = 2. By we have a9 # 0 and a2 > 0 after a suitable change of signs
(ie. replacing A by an equivalent matrix). By [23] we have 4a8 — a? < 4p?, so that

d
a+tp< %a + % — f(a). (3.2)

Since 2|a;j| < min{a;;,aj;}, we have 2 < «a, and a < f yields a < 24/p?/3. The convex
function f(«) takes its maximal value in the interval [2,2+/p?/3] on one of the two borders.
An easy calculation shows (p? + 5)/2 = f(2) > f(2/p?/3) for p? > 9. In case p? < 6 only
a = 2 is possible. In the remaining cases we have a 4+ 5 < f(2) for all feasible pairs («, f3)
(we call a pair (a, ) feasible if it satisfies inequality [(3.2)). Equation () in [I91] yields

_ -1

k(B)§a+ﬁ—a12§f(2)—1 l(B)

+1(B).

Let {(B) = 3. The same discussion leads to ajs + a3 > 2 after a suitable (simultaneous)
permutation of rows and columns (i. e. replacing A by PT AP with a permutation matrix
P). It is not always possible to achieve o < 8 < ~ additionally. But since the trace of A is
symmetric in «, 8 and ~, we may assume 2 < a < § <« nevertheless. The inequality in
[23] reads

4aBy — af? — o’y =208y + aB(y - B) + ay(8 — a) < 4",
so that 4 )
dp® +af®
daf—a® [l B).
We describe a set which contains all feasible points. Since 2o < 2a8y+aB(y— ) +ay(3 —
a) < 4p? we get 2 < a < {/2p?. Similarly 48?2 < 4p? and a < 8 < /pd. Thus all feasible
points are contained in the convex polygon

F={(a,B):2<a<v2p?, a<B< \/]ﬁ}

It can be shown (with the help of Maple [208]) that f is convex on F. Hence, the maximal
value of f on F will be attained on one of the 3 vertices:

at+B+y<a+pB+

Vl = (272)7
Va = (2,Vp?),
Vs = (V/2p7, ¥/2p9).

One can check that (p?+14)/3 = f(V1) > f(Va) for p? > 10 and f(V1) > f(V3) for p? > 12.
If p? < 10, then V; is the only feasible point. In the remaining case p = 11 there is only
one more feasible pair (a, 5) = (2,3). Then v = 3 and o+ S+ < f(V1). Now () in [191]
takes the form

p' -1

k(B)§a+5+’y—a12—a23gf(vl)_gz l(B)

+1(B).
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Finally, let I(B) = 4. By permuting rows and columns and changing signs, we can reach

(using [Lemma 3.2) at least one of the two arrangements
(i) ai2 + a3 + asq > 3,
(ii) a12 + a3+ ayq > 3.

In case |(1)| we can use equation (x%) as before. Since the matrix

e )
O O N
O N O =
N OO -

is positive definite, we can use Theorem A in [I91] for case Thus, for the rest of the
proof we will assume that case occurs. As before, we will also assume 2 < a < <~y <§
and

1
4aBy0 — a®y6 — af? — afy’ + a’(y - B)?

= a6+ ard(8 — @) + B3y — ) +afr(d — 1) + 10y — B <

(3.3)

by [23]. We search for the maximum of the function
4p? + apy’ — 10’ (y = B)’
4afy — a?y — af?

on a suitable convex polyhedron. Since a* < 4p? we have 2 < o < /4p9. In a similar way,
we obtain the set

Fi={(a,f,7):2<a < Vaph a << Y2p?, B<vy <V},

which contains all feasible points. It can be shown that f is in fact convex on F. The
vertices of F are

fla,B,7) i=a+ B+ +

Vi = (2,2,2),

Vo= (2,2,/p%),

Vs = (2, ¥/2p7, V/2p),
V= (W, Vape, W)

We fix the value m := (p? 4+ 27)/4. A calculation shows f(V3) < m for p? > 22, f(V3) <m
for p? > 20, and f(V4) < m for p? > 23. If p? < 12, then V; is the only feasible point. If
p? < 17, there is only one other feasible point (a, 3,7) = (2,2,3) beside V;. In this case
£(2,2,3) < m for p? > 14. For p? = 13 we have

13—-1

4
For p? < 20 there is one additional point («, 8,7) = (2, 3,3), which satisfies f(2,3,3) < m.
In the remaining cases there is another additional point (a, 3,7) = (3,3, 3). For this we get
f(3,3,3) < m if p? > 22. Since 21 is no prime power, we can consider f(V1) = p?/4 +7
now. If p > 2, then p?/4 is no integer. In this case

at+f+y+o—aiz—anu—azu<T7= +4.

d
-1
a+6+fy+(5—a13—a14—a34§[f(Vl)]—?):p 1 + 4,
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3. Quadratic forms

where [f(V1)] is the largest integer below f(Vi). Thus, let us assume § = p?/4 4+ 1 (and
p = 2). With the help of a computer one can show that up to equivalence only the possibility

~1
(3.4)

O = N
=N = O
S = O

has the right determinant (see also the remark following the proof). By considering the
corresponding decomposition matrix, one can easily deduce:

Now it remains to check, that f does not exceed m on other points of F (this is necessary,
since f(V1) > m). For that, we exclude V; from F and form a smaller polyhedron. Since
only integral values for «, 5,y are allowed, we get three new vertices:

Vs 1= (27 2, 3)7
Ve = (27 3, 3))
V7= (37 3, 3)

But these points were already considered. This finishes the first part of the proof. The
second part follows easily, since for blocks with cyclic defect groups equality holds. O

In the case [(B) = 5 there is no inequality like [(3.3)] However, one can use the so called
“fundamental inequality” of quadratic forms

apfyde < 8p*

(see [23]). Of course, the complexity increases rapidly with I(B).

Very recently, |Theorem 3.4] has been greatly generalized in [28]].
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4. The Cartan method

4.1. An inequality

In this section we are going to develop certain bounds on k(B) for a block B of a finite
group in terms of Cartan invariants. The material comes partly from [127] and partly from
[277].

We begin with a result by Brandt.

Proposition 4.1 (Brandt [37]). Let B be a block with Cartan matriz C' = (c;j). Then

1(B)
K(B)<1-1(B)+ Y ci
=1

The disadvantage of [Proposition 4.1]is that C' is usually only known up to basic sets.

The following theorem was first proved by Kiilshammer and Wada [191] in the special case
u = 1. A version for p = 2 appeared in the author’s dissertation [269]. The present form
was proved in [I127]. However, the proof in the latter article was incorrect (certain numbers
were not algebraic integers as claimed), and we take the opportunity to give a new proof.

Theorem 4.2. Let B be a p-block of G, and let (u,b,) be a B-subsection. Let Cy, = (c;5) be
the Cartan matriz of by up to basic sets. Then for every positive definite, integral quadratic

form q(x1,...,214,)) = Zlgz’gjgl(bu) ¢ijrix; we have
ko(B) < Z ijCij -
1<i<j<I(b)

In particular
U(bu) I

bu)—1
ko(B) < Z Cii — Z Cijitl-
i=1 i=1
If (u,by) is major, we can replace ko(B) by k(B) in these formulas.

Proof. First of all, assume that C,, is the Cartan matrix of b, (not only up to basic sets!).
Let IBr(by) = {¢1, ..., w1} where [ :=[(b,). Then we have rows dy := (dy,,...,dy,,) for
X € Irr(B). Let Q = (gij)} ;—, with

- Ja; iti=y,
qij ‘= o . .
qij/2 if i # j.
Then we have

Z QijCij = Z Gijcij = Z Z aijd;i%

1<i<;j<l 1<i,j<l 1<i,j<l xelrr(B)
—T —T
= Y dQd, = > dQdy ,

x€lrr(B) Xx€lrrg(B)
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4. The Cartan method

since () is positive definite. Thus, it suffices to show

Z de@T > kO(B)'

x€lIrrg(B)

For this, let p™ be the order of u. Then d;; is an integer of the p™-th cyclotomic field Q(()
for ¢ := e*™/P" Tt is known that 1,¢,¢2,..., ¢/ with f :=p"~1(p — 1) — 1 form a basis for
the ring of integers of Q(¢). We fix a character x € Irrg(B) and set d := d,. Then there are
integral rows a,, € Z' (m =0,..., f) such that d = Z%:o amC™. By |Pr0position 1.38| at
least one of the rows a,, does not vanish.

Let G be the Galois group of Q(¢) over Q. Then it is known that for every v € G there is a
character x" € Irr(B) such that v(d) = d,s. Thus, it suffices to show

S A d@yd) =Y dQd') > || = f +1.

yEG =Y

We have

f f=J
S ") Zv(Z QT+ 3" 3 an@al, (¢4 T >>

veg &Y =0 j=1m=0
J o=
Z%Qa 23> amQan; 3 V().
j=1m=0 v€G

The p™-th cyclotomic polynomial ®,= has the form

m—1

By = XPTT0m) P02 g P

This gives

Z,}/ C] {_ nfl ifpnfl ‘]

otherwise
yeG

for j € {1,..., f}. It follows that

n—1

p—2 f—jp

f
S dQd) = (F +1)Y aiQa —2p™! Z Z amQal i

v€G =0
p=2 f—jp"!
_ ( ) ZaZQa Y ¥ amQam+pn1> m

For p = 2 the claim follows immediately, since then f + 1 = 2771, Thus, suppose p > 2.
Then we have

{0,1,....f—jp"  JU{lp—1-p" L(p—1—5p" ' +1,....f} ={0,1,..., f}

for all j € {1,...,p — 2}. This shows that every row a,, occurs exactly p — 2 times in the
second sum of |(4.1)| Hence,

p—2 f—jp" !
Z'y(dQET) = (Z a;Qa} +Z Z —amﬂpn1)Q(am—am+jpn1)T>.

yEG
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4.1. An inequality

Now assume that a,, does not vanish for some m € {0,..., f}. Then we have a,,Qa;}, > 1,
since () is positive definite. Again, a,, occurs exactly p — 2 times in the second sum. Let
Ay — Ay (T€SP. Ay — Gpy) be such an occurrence. Then we have

am’Qa;[‘n/ + (am — am/)Q(am — am/)T > 1.

Now the first inequality of the theorem follows easily.

The result does not depend on the basic set for C,, since changing the basic set is essentially
the same as taking another quadratic form ¢ (see [I91]). For the second claim we take the
quadratic form corresponding to the Dynkin diagram of type A; for ¢. If (u,b,) is major,
then all rows d, for x € Irr(B) do not vanish (see [Proposition 1.38). Hence, we can replace
ko(B) by k(B). O

We use the opportunity to present a first application of

Proposition 4.3. Let (u,b,) be a B-subsection such that b, has defect group Q and Q/{u)
1s cyclic. Then
Q/(w)] =1

L= i) <G

ko(B) < (

Proof. As usual, b, dominates a block b, of Cg(u)/(u) with cyclic defect group Q/{u)

and [(b,) = I(by). By [Theorem 8.6 below, the Cartan matrix b, has the form |{u)|(m +

0ij)1<i,j<i(bs) UP to equivalence where m := (|Q/(u)| — 1)/1(by) is the multiplicity of by.
Now the claim follows from [Theorem 4.2 O

Kiilshammer and Wada [191] have shown that there is not always a positive definite
quadratic form ¢ such that we have equality in [Theorem 4.2| (for u = 1). However, it is not

clear if there is always a quadratic form ¢ such that

Z qijcij < p° (4.2)
1<i<j<U(B)

where d is the defect of the block B. (This would imply the k(B)-Conjecture in general.)

We consider an example. Let D = C4, S € Syl;(Aut(D)), G = D x S and B = By(OG).
Then k(B) = 16, I(B) = |S| = 9, and the decomposition matrix ) and the Cartan matrix
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4. The Cartan method

C of B are

O

Il

Q

Il
NN = =N N
N = =N =N RN
DN = === N RN DN
NN~ N~ N~
DN NN ===
NN A =N DN
N R NN~ =N
o= NN N N
=N NN ==

B |
111111111

We will see that in this case there is no positive definite quadratic form ¢ such that
Inequality is satisfied. In order to do so, we assume that ¢ is given by the matrix %A
with A = (a;;) € Z°%°. Since A is symmetric, we only consider the upper triangular half of
A. Then the rows of @ are 1-roots of ¢, i.e. rAr™T = 2 for every row r of Q (see Corollary B
in [191]). If we take the first nine rows of @, it follows that a; =2 for i = 1,...,9. Now
assume |ajz| > 2. Then

(1,—sgnai2,0,...,0)A(1, —sgnaya,0, ... ,O)T <0,

and ¢ is not positive definite. The same argument shows a;; € {—1,0,1} for ¢ # j. In
particular there are only finitely many possibilities for g. Now the next row of ) shows

(a12, ais, a23) S {(—1, —1,0), (—1, 0, —1), (0, —1, —1)}.

The same holds for the following triples

(a16, a17, a67), (Q46,a48,a68), (as7,asy,arg), (azs,ass,ass), (asa,asy,asy).

Finally the last row of ) shows that the remaining entries add up to 4:

a14 + a1 + a18 + a9 + agq + ags + agr + agg + ass+
+ age + azr + asg + ass + asr + ase + agy + ars + agg = 4.

These are too many possibilities to check by hand. So we try to find a positive definite
form ¢ with GAP [103]. To decrease the computational effort, we enumerate all positive
definite 7 x 7 left upper submatrices of A first. There are 140428 of them, but none can be
completed to a positive definite 9 x 9 matrix with the given constraints.

On the positive side, one can show that any solution C = QT Q; with Q1 € Z¥*? satisfies
k < 16. For the general case, we will see later that one can get a good bound on k(B) by
using a different approach which I like to call the “inverse Cartan method”. But first we

explain the Cartan method which is an application of [Theorem 4.2
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4.2. An algorithm
4.2. An algorithm

We explain the practical importance of For this let B be a block with defect
group D and subsection (u b,). After conjugation if necessary, we may assume that b,
has defect group Cp(u) (see |Lemma 1.36) m Let C, be the Cartan matrix of b,. Then b,
dominates a block b, Wlth Cartan matrix T )|C by Since b, has defect

group Cp(u)/(u), we can often apply induction on the defect of B in order to compute C,.

Then [Theorem 4.2| gives a bound on ky(B) (or on k(B)).

In the following we provide an algorithm which allows us to compute even the Cartan
matrix C' (up to basic sets) of B in the situation above. Let R be a set of representatives for
the conjugacy classes of B-subsections. Let (1, B) # (u,b,) € R such that b, has Cartan
matrix C,. As above we may assume that (), is known at least up to basic sets. Let Q.
be the part of the generalized decomposition matrix consisting of the numbers dy, for
x € Irr(B) and ¢ € IBr(b,). Then the orthogonality relations imply C, = QL Q,. Since the
entries of ), are algebraic integers, there are only finitely many possibilities for @), and
we can list them by computer in favorable cases. Here it is often convenient to choose a
basis for the ring of algebraic integers so that we actually only need to deal with rational
integers. Then one can also give a refined version of the orthogonality relations by studying
the action of the Galois group of a cyclotomic field (see . More information can
be gained by taking the heights of the characters and the contributions into account (see
[Proposition 1.38)). Also, for the integral factorization of C, one can use an algorithm from
[244] which is implemented in GAP.

Suppose that we know all the possibilities for Q,, for all (1, B) # (u, b,) € R. This means we
know the generalized decomposition matrix @) except the ordinary part. Write Q = (Q1, Q2)
where @ is the ordinary decomposition matrix. Strictly speaking, we only know (2 up
to a transformation Q2 — Q25 where S € GL(k(B) — l(B),Z), since the matrices C,, are
only known up to basic sets. However, this does not make much difference, since in the end
we get C' also only up to basic sets. It is on the other hand crucial that the numbers k(B)
and [(B) are usually not uniquely determined by the matrices C,.

We are now looking for integral solutions z € Z*B) of the equation Q3Fz = 0. By choosing
a basis for the ring of algebraic integers as above we may replace Q2 by an integral matrix
Q2 for this purpose. Then the set of solutions of the equation above forms a free Z-module
M. We compute a basis of M by transforming ()3 to its Smith normal form. We write
the vectors of this basis as columns of a matrix Q1 Since @ is invertible, the rank of
@2 (and thus of Qg) is k(B) — I(B). It follows that @ is a k(B) x [(B) matrix. On the
other hand, also the columns of @1 lie in M. Hence, we find a matrix 7" € ZHB)*UB) gyuch
that Q1 = QiT. It is well-known that there exists a matrix R € ZB)*k(B) guch that
RQ1 = 1y(p). This implies that T € GL(I(B),Z). We conclude that the Cartan matrix

~ T~
C = QTQ; of B is given by Q1 Q1 up to basic sets.

In order to reduce the number of possibilities for Q2 we do not only replace Q2 by Q2.5
for some S € GL(k(B) — I(B),Z), but also allow transformations of the form Q2 — PQ2
where P € GL(k(B),Z) is orthogonal. Then Q1 also becomes PQ; and C does not change
at all. For example we can take a permutation matrix with signs for P. In other words
we freely arrange the order and signs of the rows of the generalized decomposition matrix.
With the matrix S above we can realize elementary column operations on (2. We will often
apply these reductions without an explicit reference. Finally, after we have a list of possible
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4. The Cartan method

Cartan matrices C for B, we can check if the elementary divisors are correct by computing
lower defect groups (see [Section 1.8)). We can decrease the list further by reducing C' as a

quadratic form.

For the convenience of the reader we repeat the algorithm in a nutshell:

(1) Determine a set R of representatives for the conjugacy classes of B-subsections by

using

(2) Compute the Cartan matrix Cy, of b, for every (1, B) # (u,b,) € R by considering the
dominated block b, with defect group Cp(u)/{u).

(3) Enumerate the matrices @, such that QlQ, = C, for every (1, B) # (u,b,) € R.
(4) Form the matrix () consisting of the matrices @, for u # 1.

(5) Find a basis of the Z-module M := {x € Z¥B) : QT x = 0} and write the basis elements
as columns of Q; € Z+B)*I(B),

~ T~
(6) The Cartan matrix of B up to basic sets is given by Q1 Q1.
(7) Check if the elementary divisors are correct by using lower defect groups.

(8) Apply the reduction of quadratic forms.

The idea of this algorithm is not completely new. In fact, Olsson [235, Lemma 3.12]
already used this approach. However, according to the author’s knowledge, no one applied
this algorithm systematically via computer assistance so far. We will do this in [Part 11|
Unfortunately, the computational effort grows quickly for large defect groups. As a rule
of thumb, defect groups of order at most 32 are feasible. In a recent diploma thesis [30] a
defect group of order 64 was considered. Here however, many cases remained open.

4.3. The inverse Cartan method

In this section we present an old result by Brauer which uses the inverse of the Cartan
matrix. As usual, B is a p-block of a finite group with defect d.

Theorem 4.4 (Brauer [44]). Let (u,by) be a major B-subsection such that b, has Cartan
matriz Cy, = (ci;) up to basic sets. Define

Q(bu) = min{xpdCu_le -0 ?é = Zl(bu)}

Then k(B)q(by) < 1(by,)p®.

Since all elementary divisors of C,, divide p?, the matrix p?C; ! is integral and positive
definite. Thus, the number ¢(b,) is an invariant of the (equivalence class of the) quadratic
form corresponding to pdCJ 1 At first sight it seems difficult to calculate g(b,) in praxis.
Here the following lemma is quite useful.
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4.3. The inverse Cartan method

Lemma 4.5 (Liebeck [197]). Assume the notation in|Theorem 4.4} Let x = (x1,...,7yp,)) €
7Hou) sych that :L‘pdC;lJ:T <m & N. Then
Ciim

pd

|z;| <

fori=1,...,1(by).

So in order to determine ¢(b,) one can define m in to be the minimal diagonal
entry of p?C;; ! and check (probably by computer) the defined box for smaller values. There
is also a direct command in GAP to determine ¢(b,) (in small dimensions). One can show
that there is always a basic set for b, such that q(b,) is the first entry of pdC’u_ 1 (this follows
from . However, it is not clear how to construct such a basic set without the
knowledge of ¢(b,). The combination of [Theorem 4.2 and [Theorem 4.4 is quite powerful as

we will see in [Part 1111

We also add a related result by Robinson which goes in the opposite direction.

Theorem 4.6 (Robinson [250]). Let (u,by,) be a major B-subsection such that b, has
Cartan matriz C, = (c;j) up to basic sets. Let Q(b,) be the set of integers xp?CylaT
(z € ZMO)) which are coprime to p. Then for ¢'(b,) = min Q(b,) we have

> ki(B)p* < pd (bu).
=0

One may ask if the inverse Cartan method (i.e. an application of [Theorem 4.4)) always gives
Brauer’s k(B)-Conjecture. However, this is not the case as one can see from the following

example: Let B be a block with defect group C3, Cartan matrix C and e(B) = 21. Then
one can choose a basic set such that

4 2 2 2 2
25 1 1 1
gCt=12 15 11
2115 1
21115

Hence, ¢(B) < I(B).

Nevertheless, we like to point out that we do not know a single Cartan matrix such that

Brauer’s k(B)-Conjecture would not follow from [Theorem 4.2 or from [Theorem 4.4} Since

these two results are somehow related, it seems interesting to investigate the following
problem: Let C' = (¢;;) € Z! be the Cartan matrix of a p-block with defect d. Assume

that for all integral, positive definite quadratic forms q(x1,...,7p,)) = Zl<i<j<l ¢ijTiT;
we have
Z gijcij > p.
1<i<j<!

Then prove that zp?C~'zT > 1 for all 0 # = € Z'. If this can be done, the k(B)-Conjecture
would follow in full generality. A diagonal matrix shows that this argument fails for arbitrary
positive definite, symmetric matrices C. This illustrates the importance of [Question A
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4. The Cartan method
4.4. More inequalities

The results in this section were taken from [277]. It is obvious that [Theorem 4.2| should
be stronger for small values of [(b,). First we focus on major subsections. In the most

elementary case we have the following special case of

Proposition 4.7 (Robinson [256]). Let B be a block of defect d with major subsection
(u,by) such that 1(by) = 1. Then

> k(B <pt
=0

Moreover, in case u = 1 there is a result by Olsson.

Proposition 4.8 (Olsson [239]). If I(B) < 2, then k(B) < p®.

However, in praxis this implication is not so useful, because usually the knowledge of I(B)
already implies the exact value of k(B) (remember that k(B) — [(B) is determined locally).
In the following we generalize Olsson’s result for arbitrary u € Z(D).

Theorem 4.9. Let B be a p-block of a finite group with defect d, and let (z,b,) be a magjor
subsection such that I(b,) < 2. Then one of the following holds:

(i) N
> ki(B)p* < p”.
=0

(i)

3
Z%pd‘l ifp>2,
k(B) <1,
gzd if p=2.

In particular Brauer’s k(B)-Conjecture holds for B.

Proof. In case [(b,) = 1,|(i)| holds. Hence, let I(b,) = 2, and let C, = (¢;j) be the Cartan

matrix of b, up to basic sets. We consider the number
q(b:) = min{zp?C 1zt 0 £z € 7'} e N

as in [Theorem 4.4] If ¢(b,) = 1, [(Q)] follows from [Theorem 4.6 Therefore, we may assume
q(bz) > 2. Then Brauer’s k(B)-Conjecture already holds by but we want to
obtain the stronger bound Since p? is always an elementary divisor of C,, we see that
C, is not a diagonal matrix. This allows us to apply [Theorem 4.2 All entries of C, are
divisible by the smallest elementary divisor v := p~%det C,. Hence, we may consider the
integral matrix C, = (¢;;) = v~ 1C,. After changing the basic set, we may assume that
0 < 2¢12 < ¢11 < ¢99. Then

~ ~ 5_ det C, p?
c11 + 2 < —c11 + —= < —
4 c11 2y

L5
2
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4.4. More inequalities

by [Equation (3.1) on [page 37, Now [Theorem 4.2 leads to

d
< PPH3y
=T

k(B) < y(¢11 + ¢22 — ¢12)

Since v < p®1, we get for p odd. It remains to consider the case p = 2. If ¢1; = 2, we
must have ¢1o = 1. Hence, under these circumstances p > 2, since otherwise det C, is not a
p-power. Now assume ¢17 > 3 and p = 2. Since

d . ~ =
plost = 1’702—1 _ (_632 ~612) ’
0l 12 C11
we have g(b,) > 3. Now [Theorem 4.4] implies |(i1) O
It is conjectured that the matrix C, for [(b;) > 2 in the proof of [Theorem 4.9| cannot

have diagonal shape (this holds for p-solvable groups by [Lemma 3.1)). Hence for I(b,) = 2,
Theorem 4.9(i1)| might always apply. Then k(B) < p® unless p = 3.

Olsson [239)] also proved the implication

I(B) <3 = k(B) <p?

whenever p = 2. We also generalize this result to arbitrary major subsections. Suppose as
before that (z,b,) is a major subsection. We denote the corresponding part of the generalized
decomposition matrix by D, := (dy,, : x € Irr(B), ¢ € IBr(b;)). In case |(z)| < 2, it can
be seen easily that the contribution matrix M~# is integral. Then most proofs of [239]
remain true without any changes. This was more or less done in [254] (compare also with
Corollary 3.5 in [256]). In the general case we have to put a bit more effort into the proof.

Theorem 4.10. Let B be a 2-block of a finite group with defect d, and let (z,b,) be a magjor
B-subsection such that I(b,) < 3. Then

k(B) < ko(B) + ;iQiki(B) <24,
=1

In particular Brauer’s k(B)-Conjecture is satisfied for B.

Proof. Observe that by construction m3, is a positive real number for every x € Irr(B),
since C, is positive definite. Let x € Irrg(B), and let |(z)| = 2". In case n < 1 the proof is
much easier. For this reason we assume n > 2. We write

an—1—1

m;x: Z aj(X)Cj

J=0

with ¢ 1= €?™/?" and a;(x) € Z for j = 0,...,2""! — 1. As usual, the Galois group G of
the 2"-th cyclotomic field acts on Irr(B), on the rows of D,, and thus also on M, in an
obvious manner. Let T" be the orbit of x under G. Set m := |I'|. Then we have

map(x) = Z Mg,y > 0.
pel’
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4. The Cartan method

Assume first that ag(x) = 1. Since M*M=" = M*M* = 22M>, it follows that

m2t =" |mg,

yel,
T€lrr(B)

Applying Galois theory gives
[ mj.Fea

yel,
T€Irr; (B)

for all i > 0. By [Proposition 1.38 we also know v(mj, ) = h(r) where v is the 2-adic

valuation and @ € I'. Hence, also the numbers mpr2_h(T) are algebraic integers. This
implies
z> [ 27%mi, =1

yel,
T€lrr;(B)

Now using the inequality of arithmetic and geometric means we obtain

S P = m2(B)
yel,
T€Irr; (B)

for all ¢ > 0. Summing over i gives

oo
m2t = " mi, P >m) 2%ki(B)
Yerl, i=0
T€lrr(B)

which is even more than we wanted to prove.

Hence, we can assume that ag(y) > 2 for all x € Irr(B) such that h(x) = 0. It is well-known
that the ring of integers of Q(¢)NR has basis 1, (4+( 7 = = ' forj=1,...,2"2-1.
In particular the numbers a;(x) for j > 1 come in pairs modulo 2. Since v(m3, ) = 0, we
even have ag(x) > 3. For an arbitrary character ¢ € Irr(B) of positive height we already
know that mfw2_h(¢) is a positive algebraic integer. Hence, 2"(¥) | a;(¢) for all j > 0. By
Proposition 1.38| we have v(my,,) > h(t). Thus, we even have 2R+ | ag(v). As above we
also have ag(¢) > 0. This implies } ¢y, () My = 2it1E.(B) for i > 1 via Galois theory.
Using tr M? = 24(b,) it follows that

3-29> > mj, >3ko(B)+ Y 2 ki(B).
Y€elrr(B) i=1

This proves the claim. O

We remark that in Theorem 6(ii) in [239)] it should read I(B) < p* — 1 (compare with
Theorem 6*(ii)).

It is easy to see that the proof of can be generalized to the following.

Proposition 4.11. Let B be a 2-block of a finite group with defect d, and let (z,b,) be a
major B-subsection. Then for every odd number o one of the following holds:

50



4.4. More inequalities
w .
(i) 3 2%k(B) < 2%,
i=0

(ii) (o + 2)ko(B) + ioj 2071k, (B) < 291(b,).
=1

Proof. As in [Theorem 4.10|let x € Irro(B) and define ap(x) similarly. In case ag(x) <

e
the first inequality applies. Otherwise the second inequality applies. OJ

Observe that [Proposition 4.11] also covers (a generalization of) Theorem 8 in [239] for
p=2.

We now turn to arbitrary subsections. If in the situation of the Cartan matrix
is not known, one can apply the following theorem by Robinson.

Theorem 4.12 (Robinson [257]). Let (u,b,) be a B-subsection. If b, has defect d, then
ko(B) < p?\/1(by,).

We are going to improve this result for p = 2.

Theorem 4.13. Let B be a 2-block of a finite group, and let (u,b,) be a B-subsection such
that b, has defect q. Set oc:= | \/1(by)| if [\/U(bu)] is odd and o := Ll% otherwise.

Viba) | +1
Then ko(B) < a24. In particular ko(B) < 29 if l(b,) < 3.

Proof. By [Proposition 1.38/we still have my,, 7 0 aslong as h(x) = h(¢)) = 0. However, in all

other cases 1t is possible that m;w = (. So we can copy the proof of by leaving
out the characters of positive height. This gives ko(B) < a2? or ko(B) < 27(b,) /(o + 2)

for every odd number a. If |\/I(b,)] is odd, we choose o := | /I(by)|. Otherwise we take
o = [/1(by)| — 1. The result follows. O

Finally, we generalize the “dual” inequalities in [239]. For this let M? = (m,) = 2d1k( B) —
M?=.

Proposition 4.14. Let B be a 2-block of a finite group with defect d, and let (z,b,) be a
major B-subsection. Then for every odd number o one of the following holds:

(i) 3 2%k (B) < 2%,
1=0

(ii) (o + 2)ko(B) iz%’“ki(B) < 2(k(B) = 1(b.)).

In particular Brauer’s k(B)-Conjecture holds if k(B) —1(b,) < 3.

Proof. By Lemma V.9.3 in [93] the numbers m3, for x € Irr(B) are still real, positive

algebraic integers. As in [Theorem 4.10| we may assume [(z)| = 2" > 4. Let us write

211

m;x: Z a’j(X)Cj

J=0
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4. The Cartan method

with y € Irrg\(JB), ¢ == e2m/2" and %(X\),E 7 foLj =0,...,2" ! — 1. The Galois group
still acts on M?. Also the equation M?M? = 2¢M? remains true. For 7 € Irr(B) we have

v(m3,) = v(2¢ — my,) = v(m3,) = h(r). Hence, in case ag(x) < o we can carry over the

arguments in [I'heorem 4.10

Now assume that ag(x) > « for all characters x € Irrg(B). Here the proof works also

quite similar as in [Theorem 4.10| In fact for a character ¢ € Irr(B) of positive height we
have v(mj,,) = v(24 — M) = min(v(29), v(my,)) > h(y) by |Proposition 1.38} Moreover,

tr M = 24(k(B) — I(B)). The claim follows. O

It should be pointed out that usually k(B) —I(B) = k(B) —Il(b1) < k(B) —(b,) for a major
subsection (z, b,) (this holds for example if z lies in the center of the fusion system of B, see

Theorem 1.40]). However, this is not true in general as we will see in |[Theorem 13.4] Another
problem is that k(B) —[(b,) for z # 1 is not locally determined (in contrast to k(B) —I(B)).

By combining with [Proposition 4.11| we can replace in the last proposition by

(o + 2)ko(B) + i 271k, (B) < 22 min(i(b,), k(B) — I(b.)).
=1
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5. A bound in terms of fusion systems

In this chapter we obtain more inequalities on the invariants of a block by using local data.
This time the fusion system of the block plays a role. The exposition appeared in [127].

Brauer proved Olsson’s Conjecture for 2-blocks with dihedral defect groups using a Galois
action on the generalized decomposition numbers (see [46]). We put his approach into an
abstract framework. Let B be a p-block of a finite group G with defect group D, and let
(u, b,) be a subsection for B. Let p* be the order of u, and let ¢ := Cp+ be a primitive pF-th

root of unity. Then there exist integral vectors af := (ay (X))yemr(B) € Z*B) such that

o(p*)-1 ‘
diy= Y af (¢ (5.1)

=0

(see Bection L9).

Let G be the Galois group of the cyclotomic field Q(¢) over Q. Then G = Aut({u)) =
(Z/p*Z)* and we will often identify these groups. We will also interpret the elements of G
as integers in {1,...,p"} by a slight abuse of notation. Then (u?,b,) for v € G is also a
(algebraically conjugate) subsection and

e(p*)-1

i) =di, = > af(x)¢".
1=0

Now the situation splits naturally into characteristic 2 and odd characteristic, since the
structure of the corresponding Galois groups differs significantly.

5.1. The case p =2

Let p = 2, and let F be the fusion system of B. Then by we may assume that
(u) is fully F-normalized and Cp(u) is a defect group of b,. As before, (u) is also fully
F-centralized and

Autz((u)) = Autp((u)) = Np({u))/ Cp(u).

We begin with a refinement of the orthogonality relations. For a subsection (u,b,) with
IBr(b,) = {¢} we set a; := a] for all i. Moreover, if u,v € Q < D are conjugate in Np(Q),
we write u Né) .

Proposition 5.1. Let B be a 2-block of a finite group with defect group D and fusion system
F. Let (u,by,) be a B-subsection such that l(b,) =1 and (u) # 1 is fully F-normalized of
order 2%, Then

2Np((u)) N Co(w)/ ()] if uwl ~B) ul <) ui*2 ™

(ai,a;) = § =2[Np((w) N Cp () /{u)| if w wfy ul ~f) w*2
0 otherwise

fori,j €{0,...,28=Y —1}. In particular, (ag,ap) = 2|Np({u))/(u)|.
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5. A bound in terms of fusion systems

Proof. We set d* := (d%, : x € Irr(B)) and [Np((u)) N Cp(u')/ Cp(u)| = 2". Then

ok-1_1

1 .
e = LY S
yeG =0 ~€g
for i =0,...,2¥ 1 — 1. Hence,
(ai7a/j) — 22(17]{)) Z (duvjdu‘s)gjdfi'y'
v,0€G

If 4 and u® are conjugate under Autz((u)), we have (@, d“é) = 2% by [Theorem 1.14} If
we regard Autz((u)) as a subgroup of G, this means vd~ € Autz({u)). Therefore,

(a, a] 2(1-k)+d Z Z C(j5—i)'y — 92(1—k)+d Z Zg(j(;_,»)w

YEG seAutx((u)) SeAutx((u)) vE€G

Observe that if [(u’)]| # [(u’)], then (a;,a;) = 0. If u’ ~< ) u?, then there is a § € Autz((u))
such that j§ —i = 0 (mod 2%). In this case there are precisely 2" such elements and the
corresponding sum contributes 2" *~1. Similarly, if u’ ~<D > w2 we get the contribution

—2rtk=1 i the sum. All other summands vanish. This shows the result. O

Theorem 5.2. Let B be a 2-block of a finite group G with defect group D and fusion
system F, and let (u,b,) be a B-subsection such that (u) # 1 is fully F-normalized and
by has Cartan matriz Cy = (cij). Let IBr(by) = {p1,..., pyp,)} such that ¢1,...,om are
stable under Np((u)) and o1, .., ¢ip,) are not. Then m > 1. Suppose further that u is
conjugate to w=>" for somen € Z in D. Then

2|Np({u))/ Cp(u
“ 1<i<j<m
for every positive definite, integral quadratic form q(x1,...,Tm) = zlgigg’gm gijrixy. In

particular if [(b,) = 1, we get

ko(B) < 2[Np((w))/(u)]. (5.3)
Proof. Let x € Irrg(B) and |(u)| = 2¥ for some k > 1. We write d¥ := (dYprs - dyp,)s
where [ :=[(b,). Then
2k—1_1
dy, = (dyy,) = aj(x) (mod RadO)
j=0

for v € G. In particular d¥, = d¥, (mod RadO). We write |Cp(u)|C, ! = (¢;). Then it
follows from |[Proposition 1.38|that

C— u = o (A% 2
0 F my, = Z ledxsozdx% Z Cii(dy,,)

1<4,5<I 1<i<l
gk—=1_1 e(2F)—1
=Y G Y dXx'= D> G Z (mod Rad 0).
1<5<l j=0 1<i<l
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5.1. The case p = 2

Now every g € Np((u)) induces a permutation on IBr(b,). Let P, be the corresponding
permutation matrix. Then g also acts on the rows d;' := (d“ cx €lir(B)) fori=1,...,1
and it follows that C, Py = P,C,. Hence, we also have C 1Py =P,Cl forall g € ND(<u>).
If {omyy -y Pmy} (M <my < mg <) is an orbit under Np({u >) it follows that dy, =

c=dyg,., (mod Rad Q) and €pymy = - .. = Cmym,. Since the length of this orbit is even,
we get
2k—1_1
Z Cij Z 5-’5 0 (mod 2)
1<i<m

In particular, m > 1. In case |(u)| = 2 this simplifies to
Z Giah(x) Z0 (mod 2).
1<i<m

We show that this holds in general. Thus, let £ > 2 and ¢ € {1,...,m}. Since (u,b,) is
conjugate to (u™>",b,) and g; is stable, we have

2k—1_1 2k—1_1
. B 5 . _5n;
a0 =y, =iy = Yo a0,
=0 =0
Moreover, for every j € {0,... — 1} there is some j; € {0,...,¢(2%) — 1} such that

¢%"J = 4¢J'. In order to compare coefficients observe that
¢ =¢%" = j=-5" (mod2")=1=-5" (mod 2¥/gcd(2",j)) = j =0.

Hence, the set {#¢7 : j = 1,...,2F~1 — 1} splits under the action of (—5" 4 2*Z) into orbits

of even length. This shows 2?1:01_1 a;'-(x) = a{(x) (mod 2). Hence,

D Guah(x) 0 (mod 2) (5.4)

1<i<m

for every x € Irrg(B). In particular, there is an i € {1,...,m} such that aj)(x) # 0. This
gives '
ko(B) < Z gij (ag, ap)

1<i<j<m

(see proof of [Theorem 4.2)).

Now let k again be arbitrary. Observe that a) = 217% > veg(dy) fori € {1,. m} By
the orthogonality relations for generalized decomposition numbers we have (d;‘w, d;‘ ) = ¢ij
for v,6 € G if u” and u’ are conjugate under Np((u)). Otherwise we have (d%’, d}‘ ) =0.
This implies

)= 2[Np((u))/ Cp(u)|

(aév a’(])) = 22(1_k) Z (d;ﬂ?dy 2k Cij,
7,066
and |(5.2)| follows. In case [ = 1 we have C' = (|Cp(u)|), and |(5.3)|is also clear. O

In the situation of [Theorem 5.2 we have u € Z(Cg(u)). Hence, all Cartan invariants c¢;; are
divisible by [(u)|. This shows that the right hand side of |(5.2)| is always an integer. It is
also known that ko(B) is divisible by 4 unless |D| < 2.
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5. A bound in terms of fusion systems

Observe that the subsection (u,b,) in [Theorem 5.2| cannot be major unless |[(u)| < 2, since
then u would be contained in Z(D).

If D is rational of nilpotency class (at most) 2, Gluck’s Conjecture would imply m = I(by)
in In this case it suffices to know the Cartan matrix C,, only up to basic sets.
For, changing the basic set is essentially the same as taking another quadratic form ¢ (see
[191]). This must always hold in case I(b,) = 2. Here we get the following simpler result.

Theorem 5.3. Let p = 2, and let (u,b,) be a B-subsection such that (u) is fully F-
normalized and u is conjugate to u=>" for somen € Z in D. If l(b,) < 2, then

ko(B) < 2|Np((u))/(u)]-

Proof. We use the notation of the proof of We may assume that [ =2 = m.
Here we can use [(5.4)| in a stronger sense. Since |Cp(u)| occurs as elementary divisor of

Cy exactly once, we see that the rank of |dc(§g”3|Cu (mod 2) is 1. Hence, |g£g‘3|0u (mod 2)
has the form

<(1) 8) (mod 2), (8 (1)> (mod 2),  or G }) (mod 2).

Now it is easy to see that we may change the basic set for b, such that |Cp(u)|c11/ det C,,
is even and as small as possible. Then we also have to replace the rows df and d3 by linear

combinations of each other. This gives rows d;' and /d;- fori=1,2and j=0,...,0(2%) — 1.
Observe that the contributions do not depend on the basic set for C,,. Moreover, ¢11 is odd

and ¢9 is even. Hence, |(5.4)| takes the form

ay(x) £0 (mod 2)

for all x € Irrg(B). Since both ¢; and 9 are stable under Np((u)), we have vy(d}) = df
for all v € Autz((u)). Hence,

~ o~

ko(B) < (@b, ab) = ND((uZ{Q(k];D(u)‘CH

as above. It remains to show that ¢;; < |Cp(u)|. The reduction theory of quadratic forms
gives an equivalent matrix Cj, = (cj;) such that 0 < 2¢}, < min(c};, chy) (see Chapter 3).
In case ¢}, = 0 we may assume c11 < ¢j; = |Cp(u)], since |Cp(u)| is the largest elementary
divisor of C!,. Hence, let ¢}, > 0. Since the entries of C,, and thus also of C], are divisible
by a :=det C,,/|Cp(u)|, we even have ¢}, > «a. It follows that

C 2
302 < 3(chp)? < chychy — (¢ly)? = det C!, < [Cp(w)”

and a < |Cp(u)|/4. From [Equation (3.1)| on [page 37| we obtain

max (¢}, chy) < ¢hy + oy — ¢y < €y + ¢y —
_ ICo(l/a+3 _ |Cp(w)]+3a
- 2 2

< [Cp(u)l:

If a~te); or a™lc, is even, the result follows from the minimality of ¢;;. Otherwise we

replace C), by
=1\ (1 0) _ chyt ey — 2¢hy chy —chy
0 1 “\-1 1 g — cho Cho '

Then ¢11 < ¢} + chy — 2¢)5 < |Cp(u)|. This finishes the proof. O
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5.2. The case p > 2

If in the situation of [Theorem 5.2 we have m < [(b,), we really need to know the “exact”
Cartan matrix C,, which is unknown in most cases. For p > 2 there are not always stable
characters in IBr(b,) (see Proposition (2E)(ii) and the example following it in [167]).

Let us come back to our initial example. Let D be a (non-abelian) 2-group of maximal class.
Then there is an element x € D such that |D : (z)| = 2 and = is conjugate to 2™>" for some
n € {0,|(z)|/8} under D. Since (z) I D, the subgroup (z) is fully F-normalized, and b, has

cyclic defect group Cp(z) = (x). Since, e(by) = 1, we get I(b;) = 1. Hence, [Theorem 5.2
shows Olsson’s Conjecture ko(B) < 4 = |D : D’|. This was already proved in [46] [235].

5.2. The case p > 2

Now we turn to the case where B is a p-block of G for an odd prime p. We fix some
notation for this section. As before (u, b,) is a B-subsection such that |(u)| = p*. Moreover,
¢ € C is a primitive p*-th root of unity. Since the situation is more complicated for odd
primes, we assume further that ((b,) = 1. We write IBr(b,) = {¢y}. Then the generalized
decomposition numbers dy, for x € Irr(B) form a column d(u). Let d be the defect of b,.
Since u € Z(Cg(u)), u is contained in every defect group of b,. In particular, k¥ < d. As in
the case p = 2 we can write
e(P*)-1
dw) = > ai¢’
i=0
with a¥ € Z*PB) (change of notation!). We define the following matrix
A= (al(x):i=0,...,00") -1, y e Irr(B)) € 7oW")<k(B)

7

The proof of the main theorem of this section is an application of the next proposition.

Proposition 5.4. For every positive definite, integral quadratic form q(x1,..., .’Ew(pk)) =
Zlgigjgp(pk) gijrix; we have
ko(B)< Y aijafy,aly). (5.5)
1<i<j<ep(p*)

If (u,by) is magor, we can replace ko(B) by > o0 p*'ki(B) in[(5.5)

Proof. By [Lemma 1.39(i)|every column a“(x) of A corresponding to a character x of height
0 does not vanish. Hence, we have

ko(B)< > q@())= >, Y.  gyaii()aii(x)

x€lrr(B) x€lrr(B) 1<i<j<p(p*)
= E , ql](ai—lvaj—l)'
1<i<j<p(p*)

If (u,b,) is major and x € Irr(B), then p~*™a¥(y) is a non-vanishing integral column by
ILemma 1.39(ii)} In this case we have

szzk’b(B) S Z p2h(X)q(p7h(X)au(X)) — Z qij(a;-'il, a;ﬂl).
=0

x€lrr(B) 1<i<j<p(p")

The second claim follows. O
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5. A bound in terms of fusion systems

Notice that we have used only a weak version of in the proof above.

In order to find a suitable quadratic form it is often very useful to replace A by U A for some
integral matrix U € GL(¢(p¥), Q) (observe that the argument in the proof of [Proposition 5.4

remains correct).

However, we need a more explicit expression of the scalar products (a¥,a¥). For this

Z ’ ]
reason we introduce an auxiliary lemma about inverses of Vandermonde matrices. Let
G = {01,...,0,4k ) For an integer i € Z there is i’ € {1,. ..,p""1} such that —i = ¢/

(mod p*F—1). We Wlll use this notation for the rest of the section.

. k
Lemma 5.5. The inverse of the Vandermonde matriz V = (Uz’(O]_l)fj(il) is given by

’,

k
V= p R (ot 0)
where t; = (7 — (.

Proof. Fori,j € {0,...,¢(p*) — 1} we have

o(P*) e o
Y- alt)a(CY = Y o~ = ).
=1 =1

Assume first that 4 = j. Then (" = 1 and j 4+ i’ = i + 4 is divisible by p*~! but
not by p*. Hence, (% is a primitive p-th root of unity. Since the second coefficient
of the p-th cyclotomic polynomial ®,(X) = XP~! 4+ XP~2 + ...+ X + 1 is 1, we get

Zfz(zl)k) Uz(Cj”,) = —pF~1. This shows that
k

p
oi(1 =) = (0" + 0" = pF.
1

o~

)

=

Now let 4 # j. Then j —i #Z 0 (mod p¥) and j +i’ Z 0 (mod p*). Moreover, j —i = j + 4

(mod p*1), since i 4+ i’ = 0 (mod p*~!). Assume first that j —i # 0 (mod pF~1). Then

(7% is a primitive p*-th root of unity for some s > 2. Since the second coefficient of the
s—1

p°-th cyclotomic polynomial ®,s(X) = X0 4 x (-2 L+ XPT 4 (see

Lemma 1.10.1 in [224]) is 0, we have Zfz(ll)k) 01(¢?7%) = 0. The same holds for j +4’. Finally
let 5 —i =0 (mod p*~!). Then we have (as in the first part of the proof)

k

)
(T =) = T =0

1

SN

P

l

This proves the claim. O

Now let A := Autz((u)) < G. The next proposition shows that the scalar products (aj’, a})
only depend on p, k — d and A.

Proposition 5.6. We have

pk_d(a al) = ]{TEA:pk]i—jT}\—\{TeA:pk\i—i—j’T}H-

024 (5.6)
{re Aep | —j'm} = {r € A pP | + jT}.
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5.2. The case p > 2

Proof. Let W := (d;ip(g) cio=1,...,00p"), x € Irr(B)) be a part of the generalized
decomposition matrix. If V' is the Vandermonde matrix in [Cemma 5.5, we have VA = W
and A = V~'W. This shows

((afy,a%1))? j(’ff —AAT =V IWwWIy T =y lww v

Now let S := (sij)fj(i’?, where

0 0therw1se.

Then the orthogonality relations (see proof of |Theorem 5.2|) imply WW ' = p%S. Tt follows

that

{1 if oo € A,
Sij =

e(p*) o(p*)
p2k d(ag’a]) = Z o1 tl Z SlmUm Z ZU[ t; t]
=1 I=1 €A
@(p*) ' )
= oi(( ¢ =¢7))
TeEA =1
©(p*) o L o .
— al(gj‘rfz 4 (Z —Jj'T _ C-fzfj T CZ +j7')' (57)
TeA =1

As in the proof of we have

) p(p*) if p* | T -1,
Y a@™) =40 if pF1 o i — 4,
=1 —pF~1  otherwise.

This can be combined to

o(p*)

Yo o TH) = e Apt | ir =i} = {r e A pF Tt T — ).

TeA =1

We get similar expressions for the other numbers i/ — j'7, —¢ — 7' and ¢’ + j7. Since
i+i =7+35 =0 (mod p*~1), we have j7 —i =4’ — j'r = —i — j'r =i + j7 (mod p*1).
Thus, the terms of the form p*~!|{...}| in cancel out each other. This proves the
proposition. O

Since the group Aut((u)) is cyclic, A is uniquely determined by its order. We introduce a
notation.

Definition 5.7. Let A be as in [Proposition 5.6l Then we define I'(d, k, | A|) as the minimum

of the expressions
u u
E qij(aiflvajfl)
1<i<j<ep(p®)

where ¢ ranges over all positive definite, integral quadratic forms. By [Proposition 5.4 we
have ko(B) < T'(d, k, |A|), and Yo%, p*k;(B) < T'(d, k, |A]) if (u,b,) is major.
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5. A bound in terms of fusion systems

We will calculate I'(d, k, |.A|) by induction on k. First we collect some easy facts.

Lemma 5.8. Let H < (Z/p*Z)* where we regard H as a subset of {1,...,p*}. Then
H{oeH:0=1 (mod p’)}| = ged(|H|,p"7) for 1 < j <k.

Proof. The canonical epimorphism (Z/p*Z)* — (Z/p’Z)* has kernel K of order pF—7.
Hence, |[{oc € H:0 =1 (mod p’)}| = |[H N K| = ged(|H|,p*7), since the p-subgroups of
the cyclic group (Z/p*Z)* are totally ordered by inclusion. O

Lemma 5.9. We have
(af, af) = (JA] + |Alp)p**
and

pk—d

ged(|Alp, 5)
fori+j > 0. If a¥ # 0 for some i > 1, then (a¥,a¥) = 2p®*gcd(|Alp,i). Moreover,

at, a%) = 0 whenever ged(i, p*~1) # ged(4,p*~1).
i %y

(a,a¥) € {0,£1,+2}

Proof. For i = j = 0 we have i + j'7 = p*717 # 0 (mod p*) and i’ + j7 = p*~1 £ 0
(mod p*) for all 7 € A. Moreover, by there are precisely |Al, elements 7 € A
such that ¢/ — j'7 = p*~1(1 —7) = 0 (mod p*). The first claim follows from [Proposition 5.6

Now let i +j > 0 and 7 € A such that i = j7 (mod p¥). Then we have j # 0. Assume
that also 71 € A satisfies i = j7; (mod p¥). Then j(7 — 71) =0 (mod p*) and 7717y = 1

(mod p*/ ged(p*, 5)). Thus, implies
{7 € A:p" i~ jr}] € {0,ged(|Alp, 5)}-

The same argument also works for the other summands in |(5.6) since ged(|Alp,j) =
ged(|Alp, 77). This gives

pF(at, a¥) € {0, ged(|Alp, §), =2 ged(|Alp, 4)}

whenever ¢ + 5 > 0.

Suppose i > 1 and i = i7 (mod p*) for some 7 € A. Then 7 = 1 (mod p) and thus
i =it — (i +i')(r — 1) = —i'7 + i+ i (mod p¥). Hence, i’ = #'7 (mod p*). This shows
{r e A:pF | i—ir} = |{r € A: pF | —i'7}|. Moreover, we have |{r € A : p¥ |
i+i't} = |{r e A:pF | it +i'} = |{r € A: p¥ | i’ +ir}|. This shows a¥ = 0 or
(a at) = 20" ged (| Al 1)/

177

Finally suppose that ged(i,p*1) # ged(j, p*~1). Then i # j7 (mod p*~') and thus p* ¢
i — j7 for all 7 € A. The same holds for the other terms in|(5.6) since i + ' =j+j' =0
(mod p*~1). The last claim follows. O

Proposition 5.10. We have

L(d, 1, |Al) = (JA]+ (p = 1)/|ADp* .
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5.2. The case p > 2

Proof. Since |A| | p— 1, we have |A|, = 1. Hence, (al,a¥) = (|A| + 1)p?~! and (ai',a¥) €
{0, +p%= 1, £2p9=1Y for i + j > 0 by First we determine the indices ¢ such that
a¥ = 0. For this we use [Proposition 5.6 Observe that we always have ¢’ = 1. In particular
for all ¢,j we have p | i' — j'7 for 7 = 1. It follows that @' = 0 if and only if —i = 7
(mod p) for some 7 € A. We write this condition in the form —i € A. This gives exactly
|A| — 1 vanishing rows and columns. Thus, all the scalar products (a;',a}) with —i € A or

—j € A vanish. Hence, assume that —i ¢ A and —j ¢ A. Then (a¥,a¥) € {p®~*,2p?~1} for

Rl
4=1 we have a;' = aj. This happens exactly when j # 0 and

i+ 7 > 0. In case (af,aj“») =2p
ij~1 € A. Since —i ¢ A, the coset iA in G does not contain —1. Hence, there are precisely
|A| choices for j such that ij~1 € A.

Hence, we have shown that the rows a} for i =1,...,p — 2 split into |A| — 1 zero rows and
(p—1)/|A|l — 1 groups consisting of |A| equal rows each. If we replace the matrix A by UA
for a suitable matrix U € GL(p — 1,Z), we get a new matrix with exactly (p — 1)/|.A| non-
vanishing rows (this is essentially the same as taking another (positive definite) quadratic
form in [(5.5)] see [191]). After leaving out the zero rows we get a (p — 1)/|A| x (p — 1)/|A|

matrix

[A+1 1 ... 1
: . o1
1 1 2

Now we can apply the quadratic form g corresponding to the Dynkin diagram A(,_1)/ 4 in

Equation (55 This gives
D(d, 1, |A) < (1] + (p— 1)/]A)p" "

On the other hand, p'~9AAT is the square of the matrix

1 1

which has exactly |A| + (p — 1)/|A| columns. This shows that I'(d,1,|A|) cannot be
smaller. ]

The next proposition gives an induction step.

Proposition 5.11. If |A|, # 1, then

I(d,k,|A]) =T(d, k —1,]A|/p).

Proof. Since |A|, # 1, we have k > 2. Let i € {1,...,¢(p*) — 1} such that ged(i,p) = 1.
We will see that (a}',af) = 0 and thus af = 0. By [Lemma 5.9) and [Equation (5.6)|it suffices
to show that there is some 7 € A such that p* | i’ +i7. We can write this in the form
—i~14' € A, since i represents an element of (Z/p*Z)*. Now let —i' =i + ap*~! for some
a €Z. Then —i~ 1 =1+ i taph~! is an element of order p in G. Since G has only one

subgroup of order p, it follows that —i~ 1’ € A.
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5. A bound in terms of fusion systems

Hence, in order to apply it remains to consider the indices which are divisible
by p. Let A be the image of the canonical map (Z/p*Z)* — (Z/p*~'Z)* under A. Then

|A| = |A|/p (cf. [Lemma 5.8)). If i and j are divisible by p, we have
{re A:p* [itjr}l=p {r e A:p" " | (i/p) + (j/p)T}.

A similar equality holds for the other summands in [(5.6)] Here observe that (i/p) =4'/p,
where the dash on the left refers to the case pF~1. Thus, the remaining matrix is just the
matrix in case p*~!. Hence, I'(d, k, |A|) = T(d,k — 1,|A|) = T'(d, k — 1, |A|/p). O

Now we are in a position to prove the main theorem of this section.

Theorem 5.12. Let B be a p-block of a finite group where p is an odd prime, and let (u,by)
be a B-subsection such that I(b,) = 1 and b, has defect d. Moreover, let F be the fusion
system of B, and let |Autz((u))| = p°r where ptr and s > 0. Then we have

()| +p°(r* —1) 4

[{wl -7
If (in addition) (u,by) is magjor, we can replace ko(B) by > o, p*'ki(B) in[(5.8)

ko(B) < (5.8)

Proof. As before let |(u)| = p*. We will prove by induction on k that

_ pk —}—ps(TQ o 1)pd_

F(d7k7p87a> pk’f'

By [Proposition 5.10] we may assume k > 2. By |[Proposition 5.11| we can also assume that
s = 0. As before we consider the matrix A. Like in the proof of [Proposition 5.11]it is easy
to see that the indices divisible by p form a block of the matrix AAT which contributes
I'(d,k—1,7)/p to I'(d, k,r). It remains to deal with the matrix A= (a}‘ :ged(i,p) = 1).
Bythe entries of pF~4AAT lie in {0, 41, +2}. Moreover, if ged(i, p) = 1 we have
(a¥,a¥) = 2p?~F (see proof of |Proposition 5.11]).

177

With the notation of the proof of [Proposition 5.6/ we have VA = W. In particular tk AAT =
rkA=1kW = |G : A If we set A, := (a¥ : p | i), it also follows that rk 41 AT =rk 4; =

@(pk_l)/f. Since the rows of A are orthogonal to the rows of A; (see , we see
that tk A = (p(p*) — e(p*~1))/r = p"2(p — 1)?/r.

Now we will find p*~2(p—1)2/r linearly independent rows of A. For this observe that A acts
on Q:={i:1<i<p;l gcd(i,p) =1} by i :=7-i (mod p*~1) for 7 € A. Since ptr,
every orbit has length r (see . We choose a set of representatives A for these
orbits. Then |A| = p*~2(p—1)/r. Finally for i € A weset A; := {i+jp*1:5=0,...,p—2}.
We claim that the rows a}* with ¢ € |J ea Aj are linearly independent. We do this in two
steps.

Step 1: (af',a¥) =0 fori,j € A, i # j.

We will show that all summands in vanish. First assume that i = j7 (mod p*) for
some 7 € A. Then of course we also have i = j7 (mod p*~!) which contradicts the choice
of A. Exactly the same argument works for the other summands. For the next step we fix
some i € A.

Step 2: af for j € A; are linearly independent.
It suffices to show that the matrix A := pk_d(af, at )i.men, is invertible. We already know
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5.2. The case p > 2

that the diagonal entries of A’ equal 2. Now write m = [+ jpF~! for some j # 0. We consider
the summands in Assume that there is some 7 € A such that [ = m7 = (1 + jp*~ )1
(mod p*). Then we have 7 = 1 (mod p¥~1) which implies 7 = 1. However, this contradicts
§ # 0. On the other hand we have I’ = m/T = I'T (mod p*) for 7 = 1 € A. Now assume
—1 = m'7 (mod p¥). Then the argument above implies 7 = 1 and I + ' = 0 (mod p¥)
which is false. Similarly the last summand in equals 0. Thus, we have shown that
A = (1+ 5lm)l,m€Ai is invertible.

Therefore we have constructed a basis for the row space of A. Hence, there exists an
integral matrix U € GL(p*~2(p — 1)2,Q) such that the only non-zero rows of UA are a} for
1€ Uje A Aj. Then we can leave out the zero rows and obtain a matrix (still denoted by A)

of dimension p*~2(p — 1)2/r. Moreover, the two steps above show that p*~2AAT consists of
p*~2(p — 1)/r blocks of the form (1 + ;j)1<i j<p—1. Thus, an application of the quadratic

form ¢ corresponding to the Dynkin diagram Apk—2(p_1)2 /r in[Equation (5.5)| gives

I(d,k—1,r) _'_pk_l(p—l) d_pk+r2—1 d

k

I(d,k,r) <

The minimality of I'(d, k, r) is not so clear as in the proof of |Proposition 5.10} since here we do
not know if det U € {£1}. However, it suffices to give an example where ko(B) = T'(d, k,r).
By [Proposition 5.6{ we already know that I'(d, k,r) = p?~*T'(k, k, 7). Hence, we may assume
d=k. Let G = (u) x C, and B be the principal block of G. Then it is easy to see that the
hypothesis of the theorem is satisfied. Moreover,

_ID[-1

ko(B) = k(B) =

+r=0(d,k,r).
Hence, the proof is complete. O

We add some remarks. It is easy to see that the right hand side of is always an integer.
Moreover, if A=G (i.e.s=k—1and r=p—1) or Ais a p-group (i.e. r = 1), we get the
same bound as in [Theorem 4.19] and [Proposition 4.7] In all other cases really
improves [[heorem 4.12] and [Proposition 4.7] For k > 2 the case s = 0 and r = p — 1 gives
the best bound for ko(B). If k tends to infinity, I'(d, k,p — 1) goes to p?/(p — 1).

Regarding Olsson’s Conjecture, we have to say (in contrast to the case p = 2) that
Olsson’s Conjecture does not follow from if it does not already follow from

Theorem 4.12] since the right hand side of [(5.8)] is always larger than p?—!.

In the proof we already saw that Inequality is sharp for blocks with cyclic defect
groups. Perhaps it is possible that this can provide a more elementary proof of Dade’s
For this it would be sufficient to bound [(B) from below, since the difference
k(B) — l(B) is locally determined.

As an application of we give a concrete example. Let B be an 11-block with
defect group D = (11 x C11 and inertial index e(B) = 5 (for smaller primes results by

Usami and Puig give more complete information, e.g. [295, 251]). Assume that Autz(D)
acts diagonally (and thus fixed point freely) on both factors Cy1. Then we have [(b,) = 1 for
all non-trivial subsections (u, b,). Then [Theorem 5.12] gives k(B) < 77 while
only implies k(B) < 121. Also [Theorem 1.41|is useless here. However, for the principal
block B of G = D x Autz(D) we have k(B) = 29.
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5. A bound in terms of fusion systems

As it was pointed out earlier, for odd primes p and I(b,) > 1 there is not always a stable
character in IBr(b,) under Ng((u), by,), even for I(b,) = 2. However, the situation is better
if we consider the principal block.

Proposition 5.13. Let B be the principal p-block of G for an odd prime p, and let (u,by,)
be a B-subsection such that I(b,) = 2, and b, has defect d and Cartan matriz C, = (c¢i;).
Then we may choose a basic set for Cy such that pPcy1/det Cy, is divisible by p. Moreover,
let F be the fusion system of B and |Autz((u))| = p°r, where ptr and s > 0. Then we

have
()| +p°(r* = 1)

ko(B) < IO cit-

Proof. By Brauer’s Third Main Theorem, b,, is the principal block of C¢(u) and so IBr(b,,)
contains the trivial Brauer character. Hence, both characters of IBr(b,,) are stable under

N¢({u)). As in the proof of [Theorem 5.3 defdc Cy (mod p) has rank 1. Hence, we can

choose a basic set for C, such that pZcy;/det C, and D 612/ det Cy are divisible by p.
As in the proof of [Theorem 5.3, the rows d;' and a} become d“ and @ aj for : = 1,2 and
7i=0,...,0((u)]) — 1. Write p?C;;* = (¢;;). For x € Irro(B) we have

07 my, =cn (d;%) (mod Rad Q).

In particular, a; L(x) # 0 for some j € {0,...,(p¥) — 1}. Now since

(Au (A’ll,))_ C11 if’yEA,
L= 0 ifyeg\A,

the proof works as in case I(b,) = 1. O
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6. Essential subgroups and Alperin’s
Fusion Theorem

In this chapter we provide a version of Alperin’s Fusion Theorem which is one of the
main tools for studying fusion systems. Later we will investigate the structure of essential
subgroups. The material for p = 2 comes from [282]. The results on essential subgroups for
odd primes are unpublished so far. We remark further some results for p = 2 also appeared
in [234]. However, the proofs there are quite different.

Let F be a fusion system on a finite p-group P. We begin with the definition of an F-essential
subgroup.

Definition 6.1. A subgroup @ < P is called F-essential if the following properties hold:
(i) @ is fully F-normalized.
(il) @ is F-centric.

(iii) Outx(Q) := Autr(Q)/Inn(Q) contains a strongly p-embedded subgroup H, i.e. p |
|H| < |Outz(Q)| and pt |[HN*H]| for all x € Outz(Q) \ H.

Notice that in [203] the first property is not required. Also Property implies that @ is
F-radical. Let £ be a set of representatives for the Autz(P)-conjugacy classes of F-essential
subgroups of P. Then the number || is sometimes called the essential rank of the fusion
system. The following theorem says basically that F is controlled by £ and P.

Theorem 6.2 (Alperin’s Fusion Theorem). Let F be a fusion system on a finite p-group
P. Then every isomorphism in F is a composition of finitely many isomorphisms of the
form ¢+ S — T such that S,T < Q € EU{P} and there exists 1 € Autx(Q) with 1|s = .
Moreover, if Q # P, we may assume that 1 is a p-element.

Proof. This is a slightly stronger version as Theorem 1.3.5 in [2I]. First, we show that
it suffices to take the set £ instead of all F-essential subgroups. For this let () be F-
essential and a(Q) € € for some a € Autz(P). Moreover, let S,T < @Q, ¥ € Autz(Q) and
Yis =¢:S — T. Then aat € Autr(a(Q)). Hence, p = a1 o (awa_l)‘a(s) oag is a
composition of isomorphisms which have the desired form.

In order the prove the last claim, it remains to show that ¢ € Autx(Q) for Q € £ can be
written in the stated form. By induction on |P : @)|, we may assume that the claim holds
for all F-automorphisms of Np(Q). Let

A= (f € Autr(Q) p-element) = O (Aut#(Q)) < Aut#(Q).

Since Autp(Q) is a Sylow p-subgroup of Autz(Q) (see for example Proposition 1.2.5 in
[21]), the Frattini argument implies Aut7(Q) = ANay, (@) (Autp(Q)). Hence, we can write

¢ = af such that o € A and 3 € Ny (@) (Autp(Q)). With the notation of [Definition 1.25

we have Ng = Np(Q). Then f can be extended to a morphism 3’ on Np(Q). By induction, /3
is a composition of isomorphisms of the stated form and so is 8 = ﬁ" 0 and B~!. Thus, after

replacing ¢ by ¢ o 37!, we may assume ¢ € A. Then it is obvious that ¢ is a composition
of isomorphisms as desired. O
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6. Essential subgroups and Alperin’s Fusion Theorem

We deduce some necessary conditions for a subgroup ) < P to be F-essential. Since Q)
is F-centric, we have Cp(Q) C Q. In particular if @ is abelian, it must be a maximal
abelian subgroup. Conversely every maximal (normal) abelian subgroup R < P satisfies

Cp(R) = R.

Since Out£(Q) contains a strongly p-embedded subgroup, Outz(Q) is not a p-group and
not a p’-group. Moreover, Np(Q)/Q is isomorphic to a Sylow p-subgroup of Outx(Q). We
also have O, (Aut£(Q)) = Inn(Q). Consider the canonical homomorphism

U Autr(Q) — Aut(Q/2(Q)).

It is well-known that Ker ¥ is a p-group. On the other hand, Inn(Q) acts trivially on
the abelian group Q/®(Q). This gives Ker U = Inn(Q) and Out;(Q) < Aut(Q/q)( ))-
In particular Np(Q)/Q acts faithfully on Q/®(Q). Hence, Q] € (Q) for all x €

Np(Q)\ Q.

Recall that the rank of a p-group P is the minimal number of generators of P, i, e.
log,, |[P/®(P)|. In contrast the p-rank is the maximal rank of an abelian subgroup.

Proposition 6.3. Let F be a fusion system on a finite p-group P. If Q < P is F-essential
of rank r, then Outx(Q) < GL(r,p) and |Np(Q)/Q| < p""~1/2. Moreover, Np(Q)/Q has
nilpotency class at most r — 1 and exponent at most plogs (M1 In particular INp(Q)/Q| =
ifr=2.

Proof. A Sylow p-subgroup of GL(r, p) is given by the group U of upper triangular matrices
with ones on the main diagonal. We may assume Np(Q)/Q < U. Then U has order p"("—1)/2
and nilpotency class 7 — 1 (see §II1.16 in [141]). Let € U and m := [log,(r)]. Then we
have

m

2" —1=(z—1)" =0.

This shows that U has exponent at most (precisely) p™. O

If p is odd or @ is abelian, a similar argument shows that Outz(Q) is isomorphic to a
quotient of Aut(2(Q)) (see Theorems 5.2.4 and 5.3.10 in [I07]). In this case we have

) € Z(Np(Q)). In the general case one can replace Q(Q) by a so-called “critical”
subgroup (see Theorem 5.3.11 in [107]).

In the following we will improve [Proposition 6.3] by taking a closer look at the strongly
p-embedded subgroups. The case p = 2 in the next theorem is a result by Bender [26] and
the odd case can be found in [109] 20].

Theorem 6.4. A finite group H contains a strongly p-embedded subgroup if and only if
one of the following holds:

(1) Op(H) =1 and the Sylow p-subgroups of H have p-rank 1, i. e. they are non-trivial
cyclic or quaternion (where p = 2).

(2) OP(H/ Oy (H)) is isomorphic to one of the following (almost) simple groups (see
for notation):
(a) PSL(2,p"),
(b) PSU(3,p"),
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(c) Sz(22"*1) forp=2 and n > 1,

(d) 2Go(3*"~Y) forp=3 andn > 1,

(e) Asp forp>5,

(f) PSL(3,4), My forp =3,

(9) Aut(Sz(32)), 2F4(2)', McL, Figy for p =5,
(h) Jy for p=11.

Let H be as in for p = 2, and let S be a Sylow 2-subgroup of H. Then S
is a Suzuki 2-group, i.e. S has an automorphism which permutes the involutions of S
transitively (see page 201 in [193] for H = PSU(3,2")). This will be used later. The next
lemmas are important to bound the order of Np(Q)/Q, where @ is F-essential.

Lemma 6.5. If PSL(2,p") is isomorphic to a section of GL(r,p), then n <r/2.

Proof. The group PSL(2,p") has exponent p(p*® — 1)/ ged(2,p — 1)? (see 8.6.9 in [178] for
example), while GL(r, p) has exponent p/°&() lem{p’ —1:i =1,...,r} (see [I70]). Hence,

p* — 1] ged(2,p—1)lem{p’ —1:i=1,...,7}. (6.1)

Assume 2n > r. Since PSL(2,p") is non-abelian, we certainly have » > 1 and n > 1.
Therefore, Zsigmondy’s Theorem (see for example Theorem 3 in [264]) implies p = 2 and
n = 3. Then, however, the left hand side of |[(6.1)|is divisible by 9 while the right hand side
is not. O

Lemma 6.6. If PSU(3,p") is simple and isomorphic to a section of GL(r,p), then 3n < r/2.

Proof. Since [PSU(3,p")| is divisible by p3" 4 1, we obtain

T

P+ 1] |GL(r,p) = [[# — 1.
i=1

It follows that

r

P =1=0" - D"+ 1) | " - ]]r -1
i=1

Assume 6n > r. As in Zsigmondy’s Theorem shows p = 2 and n = 1. But then
PSU(3,p™) is not simple. O]

Lemma 6.7. If Sz(22"71) is isomorphic to a section of GL(r,2), then 4n —2 < r/2.

Proof. The order of Sz(22"~1) is divisible by 24"~2 + 1. Hence,

r
287174 _ 1 — (247172 _ 1)(2417,72 + 1) | (247172 _ 1) H27, _ 1
=1

Assume 8n — 4 > r. Then Zsigmondy’s Theorem gives a contradiction. O

Lemma 6.8. If 2G5(3?"*1) is isomorphic to a section of GL(r,3), then 3(2n +1) < r/2.
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6. Essential subgroups and Alperin’s Fusion Theorem

Proof. Since |2G(32"t1)] is divisible by 35"*3 4 1, we get
,
312n+6 1= (36n+3 _ 1)(36n+3 + 1) ’ (36n+3 _ 1) H3z —1.
=1

Suppose 6(2n + 1) > r. Then Zsigmondy’s Theorem gives a contradiction. O

Theorem 6.9. Let F be a fusion system on a p-group P. If Q < P is F-essential of rank
r, then one of the following holds for N := Np(Q)/Q:

(i) N is cyclic of order at most pl°8("1.

(i) N is elementary abelian of order at most pl™/?).

(i1i) p =2 and N is quaternion of order alt most pllogp (141,

(iv) p=2, QN) =Z(N) = ®(N) = N’ and |[N| = [Q(N)|* < pl"/2].
(v) p=2, QN) =Z(N) = ®(N) = N" and [N| = [N)|> < pl/2].

(vi) p > 2, N has order p*™ < pl"/2}exponent p, p-rank 2n and Z(N) = N’ = ®(N) = Cy
for somen > 1.

(vii) p=3, N = p'™ and r > 6.

(viii) p =3, |N| = po"t3 < plm/2] |Z(N)| = p** 1, Q(N) = ®(N) = N/ = Zy(N) = Cynt2
for somen > 1.

Proof. By definition, Outz(Q) contains a strongly p-embedded subgroup and N is a Sylow
p-subgroup of Outr(Q). By N is cyclic, quaternion or a Sylow p-subgroup of
an almost simple group S. In the first two cases the order of N is bounded by [Proposition 6.3
In the remaining case, we need to discuss the various possibilities for S. Since ) has rank
r, we may assume Outrz(Q) < GL(r, p).

First suppose that S = PSL(2,p"). Then we get n < /2 by In particular, N
is elementary abelian of rank at most /2. In case S = PSU(3,p") we obtain 3n < r/2 by

Thus, N has order p" < pl™/2) If p = 2, then we are in case [[v)] by [128]. In
case p > 2 it is easy to see that N has exponent p and Z(N) = N’ = ®(N) = C. The
p-rank of S (and thus N) can be found in Table 3.3.1 on p. 108 in [I10].

Next, let S 22 Sz(22"*1) and p = 2. Then the order of N is bounded by [Lemma 6.7, and
Lemma 6.8

[128] implies that we are in case If p=3 and S = 2Go(3*"*!), then [Lemma 6.8 shows
that N has order 367+3 < 3L7/2] Since S has a faithful, 7-dimensional representation over
a field of characteristic 3, we get exp N < 9. For n = 0 one can compute exp N = 9. Hence,
the same must be true for all n. Moreover, the 3-rank of NV can be found in Table 3.3.1 on
p. 108 in [110]. Other properties can be derived from [158].

Now let S 2 Ay, for some p > 5. Then of course N is elementary abelian of order p?. In
order to prove r > 4, it suffices to show that Ay, is not involved in GL(3,p). Observe
that ged(2p — 1, (p® — 1)(p? — 1)(p — 1)) | 21. This leaves the possibility p = 11. But here
134 |GL(3,11)].

The remaining cases for S are of exceptional nature. In particular p < 11. It is easy to see
that |[N| < p® and exp N = p in all instances. Hence, N occurs in one of the cases already
covered. However, it remains to verify the bound on r. But this follows just by comparing
the orders of these groups. O
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It may happen that [log,(r)] > [r/2], however we have the following addition to
frem 6.9

Proposition 6.10 (Lemma 1.7 in [234]). In the situation of|Theorem 6.9 we have |[N| <
Lr/2)
p

Since essential subgroups cannot have rank 1 (otherwise the automorphism group would be
abelian), we take a closer look at the essential subgroups of rank 2. The next proposition
generalizes Lemma 4.1 in [266].

Proposition 6.11. Let F be a fusion system on a p-group P. If Q < P is F-essential of
rank at most 2, then SL(2,p) < Outz(Q) < GL(2,p) and one of the following holds

(i) 1Q| < p* and P has mazimal class. In case p = 2 we have P = {Dan, SDon,Qan} for
somen > 3.

(ii) p € {2,3}, Q = Cpr x Cpr and |P : Q| = p for some r > 2. Moreover, P is non-
metacyclic. In case p = 2, we have P = Cyr 1 Cy. In case p = 3, P has maximal
class.

(111) Q/Ks3(Q)®(Q') is minimal non-abelian of type (r,r), i. e.

Q/Ks(@Q)2(Q) = (x,y | 2" =4 = [z,y] = [v,2,y] = [y, 2,y] = 1)

for some r > 1. In case p = 2, we have r > 2. In particular Q is non-metacyclic (for
all primes p).

Proof. As usual we may regard Outz(Q) as a subgroup of GL(2, p). Since Out #(Q) contains
at least two Sylow p-subgroups, we get SL(2,p) < Outz(Q) from 8.6.7 in [I78]. In particular
Q % Cp x Cj2 (see also Proposition 3.3 in [290]). Hence, in case |Q| < p® Propositions 1.8
and 10.17 in [27] imply that P has maximal class. The additional statement for p = 2 is
well-known.

Suppose next that @ is abelian of order at least p*. Again we must have Q = Cpr X Cpyr
for some r > 2. By [Proposition 6.3|it holds that |[Np(Q) : Q| = p. Choose g € Np(Q) \ Q.
Then ¢ (as an element of Out £(Q)) acts non-trivially on Q(Q). It follows that @ is the only
abelian maximal subgroup of Np(Q). Hence, @ is characteristic in Np(Q) and Np(Q) = P.
Now let p =2 and @ = (x,y). Then we may assume that 9z = y and 9y = x. We can write
g% = (zy)! for some i € Z, because g centralizes g2. Then an easy calculation shows that
gx~% has order 2. Hence, P = Cyr ! C3. Now let p > 3. Since g acts non-trivially on Q(Q),
we conclude that P has p-rank 2. It follows from Proposition 3.13 in [77] that p = 3. Tt is
known that fusion systems on metacyclic 3-groups are always controlled (see [290]). Hence,
P is non-metacyclic. Blackburn classified all those groups (see below). We
need to exclude the groups C(p,n) and G(P,n,¢€). This follows from Lemmas A.6 and A.8
in [77].

Finally, assume that @ is non-abelian (and p is arbitrary again). Since Outz(Q) acts
faithfully on Q/Q’, we get Q/Q’ = Cpr x Cpr for some r > 1. Moreover, by Hilfssatz I11.1.11
in [I41] we know that @'/ K3(Q) is cyclic and thus |@Q'/ K3(Q)®(Q')| = p. Therefore, the
group Q = Q/K3(Q)®(Q’) is minimal non-abelian by Now the structure of
Q follows from [267] (see . For p = 2 and r = 1, Taussky’s Theorem (see
Satz II1.11.9 in [141]) implies that @ is metacyclic. Then however, we have @ = Qg by
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6. Essential subgroups and Alperin’s Fusion Theorem

Lemma 1 in [209]. Thus, we end up in case[(i)] It is easy to see that Q/K3(Q)®(Q') (and
therefore Q) is not metacyclic. O]

In the situation of [Proposition 6.11] all maximal subgroups of ) are isomorphic. Hence, we
are in a position to apply [125 207]. In particular, there are only finitely many such groups
Q@ for a given coclass.

We note a corollary of

Proposition 6.12. Let F be a fusion system on a p-group P. If Q < P is F-essential of
rank at most 3, then [Np(Q) : Q| = p. Moreover, if p =2, then Outx(Q) = Ss.

Proof. The first claim follows from [Proposition 6.10] Now let p = 2. Then we may assume
that @ has rank 3 and Outz(Q) < GL(3,2). By the Sylow 2-subgroups of
Out £ (@) are cyclic. In particular, Outz(Q) is 2-nilpotent. If 71 |Outz(Q)|, then Outx(Q)
lies in the normalizer of a Sylow 3-subgroup of GL(3,2), and the claim follows. Otherwise
Out£(Q) lies in the normalizer N of a Sylow 7-subgroup of GL(3,2). However, |N| = 21.
Contradiction. O

For p = 2 it is worthwhile to note the rank 4 and rank 5 cases.

Lemma 6.13. Let F be a fusion system on a finite 2-group P, and let Q < P be an
F-essential subgroup.

(i) If Q has rank 4, then Outx(Q) is isomorphic to one of the following groups: Ss, D1,
S3 x C3, C3 x Cy (where Cy acts as inversion), Cs x Cy, Do x Cs, C3 x Cy, As,
Ci5 X Cy (with trivial center), GL(2,4).

(i1) If Q has rank 5, then Outz(Q) is isomorphic to one of the following groups: Ss, Do,
S3 x (3, C’g x Cy (where Cy acts as inversion), Cs x Cy, Dig x Cs3, Cg X Cy, S3x Cr,
As, Ci5 x Cy (with trivial center), S3 x (C7 x C3), GL(2,4).

Proof. If @ has rank 4, then Outz(Q) < GL(4,2) = Ag. Here the claim can be showed
by computer. Now assume that ¢ has rank 5. Then it is too costly to run through all
subgroups of GL(5,2). Let H := Outz(Q) and S € Syly,(H). By [Proposition 6.10| we have
|S| < 4. If S is cyclic, then H is solvable. Hence, H lies in a local subgroup of GL(5,2)
and we can enumerate them with GAP. Now suppose that S = C3. Then by
N := 0% (H/ Oy (H)) is a simple group. By a theorem of Gorenstein and Walter [I11], N
is isomorphic to PSL(2,¢) where ¢ = £3 (mod 8). In particular [N| = 1(¢ — 1)q(q + 1).
Since H < GL(5,2), this forces ¢ =5 and N = As. Since Out(V) = Cs, we conclude that
H/ Oy (H) = As. By Feit-Thompson Oy (H) is solvable. Hence, in case Oy (H) # 1, H lies
in a local subgroup of GL(5,2). Since these cases were already handled, we end up with
H = As. 0

We also have information in special cases.

Lemma 6.14. Let F be a fusion system on a finite 2-group P. If Q € {C3, D x Dg} is an
F-essential subgroup of P, then every subgroup of P has rank at most 4.

Proof. This follows from the Lemmas 99.3 and 99.7 in [29]. O
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In the situation of [Proposition 6.12|it is hard to say something about Outz(Q) for p > 2.
The existence of a strongly p-embedded subgroup is equivalent to the fact that Out z(Q)
contains a non-normal Sylow p-subgroup of order p. For p = 3 we have the following
result.

Lemma 6.15. Let F be a fusion system on a finite 3-group P, and let @ < P be an
F-essential subgroup.

(i) If Q has rank 3, then Outz(Q) is isomorphic to one of the following groups: Aq,
54, SL(2,3), A4 X CQ, 013 X 03, GL(2,3), 54 X 02, SL(2,3) X CQ, (013 X 03) X CQ,
GL(2,3) X CQ.

(i) If Q has rank 4 and Np(Q)/Q is not cyclic, then Ag is involved in Outr(Q). In
particular, 5 | |[Aut(Q)].

Proof. The first part follows by a computer enumeration over all subgroups of GL(3,3).

Now assume that () has rank 4. Then [Np(Q)/Q| < 9 by [Proposition 6.10L If Np(Q)/Q is

not cyclic, Outz(Q) must involve a simple group S given by [Theorem 6.4} Considering the
order of GL(4,3) gives S = Ag. O

On the other hand, the search for non-nilpotent fusion systems for odd primes is simplified
by the following result.

Theorem 6.16 (Glesser [104]). Let P be a p-group for p > 2. If there is a non-nilpotent
fusion system on P, then there exists a non-nilpotent constrained fusion system on P. In
particular, there exists a finite group G such that P € Sylp(G) and G is not p-nilpotent.

Therefore, the following algorithm helps to find non-nilpotent fusion systems on P:

(1) Check if Aut(P) is a p-group (otherwise there are non-nilpotent controlled fusion
systems).

(2) Make a list £ of all candidates of essential subgroups up to P-conjugation.

(3) For each Q € L, check if there is a subgroup N < P such that Cp(N) C N C @Q,
P/Z(N) < Aut(N) and Aut(/N) has no normal Sylow p-subgroup.

(4) For each N above construct finite groups Z(N).A where A < Aut(N) and check if they
have the desired fusion system.
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the classification

7.1. Fong reductions

An application of gives us the so-called First Fong Reduction. The statement
about Morita equivalence can be found in Proposition 3.8 in [53], and the claim about the
fusion system comes from Proposition IV.6.3 in [21].

Theorem 7.1 (First Fong Reduction). Let B be a block of a finite group G. Then B is
Morita equivalent to a quasiprimitive block B of a finite group G, i. e. for every normal
subgroup N of G, B covers just one block of N. Moreover, B and B have the same defect
group and the same fusion system.

The Second Fong Reduction can be stated as follows.

Theorem 7.2 (Second Fong Reduction). Let N <G, and let B be a p-block of G which
covers a stable block of N with trivial defect. Then there is a central extension

l1-Z—H—-G/N—1

such that B is Morita equivalent to a block of H with the same defect group and the same
fusion system. Moreover, Z is a cyclic p'-group.

7.2. Extensions of nilpotent blocks

Theorem 7.3 (Kiilshammer-Puig [I88]). Let B be a p-block of G with defect group D.
Suppose that B covers a nilpotent block b of N < G. Then B is Morita equivalent to a block
of a twisted group algebra O~L where L is an extension of D NN with Ng(N,b)/N.

The 2-cocycle v appearing in is sometimes called the Kiilshammer-Puig class.
By combining the result with [Proposition 1.21f we see that B is Morita equivalent to a
block B of a group L with defect group D and DN N < L. In particular, if b also has defect
group D, we are in a position to use

Later, Puig [249] obtained results in the opposite direction, i.e. results about blocks covered
by nilpotent blocks.

Proposition 7.4 (Puig). Let B be a nilpotent block of a finite group G, and suppose that

B covers a block b of N < G with defect group D. Then b is Morita equivalent to its Brauer
correspondent in Ny (D).
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7.3. Components

A finite group H is called quasisimple if H/ Z(H) is simple and H' = H. A subgroup U < G
is subnormal in G if there exists a series U A U; ... < U, = G. A subgroup C < G is a
component of G if C' is quasisimple and subnormal in G. The layer E(G) of a finite group
G is the subgroup generated by all components of G. It is known that E(G) is a central
product of components. Hence, the following lemma is relevant.

Lemma 7.5. Let G = Gy xGo be a central product of finite groups G1 and Go, and let B
be a block of G. Fori = 1,2, let B; be the (unique) block of G; I G covered by B. Then the

following holds
(i) If B; has defect group D; for i = 1,2, then D1Ds is a defect group of B.
(i1) If Gy NGy is a p'-group, then B =~ By ® Bs.

(i1i) B is nilpotent if and only if both By and Bs are.

Proof. The first two parts follow from Proposition 1.5 in [8I]. We quote the proof of the
third part from [86]: We may write G = E/Z where E = G x Gy and Z < Z(FE). Let Bg
be the unique block of E dominating B, so Oy(Z) is in the kernel of Bg, and B has
defect group Dg such that DpZ/Z is a defect group for B. By [15] 2.6], Bg is nilpotent if
and only if B is. Note that Bg is a product of blocks of G; and G2 which are nilpotent if
and only if By and Bs are. Hence, it suffices to consider the case G = G x G2. However,
then result follows easily by computing fusion system explicitly (we leave the details to the
reader). O

As usual we denote the Fitting subgroup of G by F(G) and the generalized Fitting subgroup
by F*(G) := E(G)F(G). It is known that [E(G),F(G)] = 1 and Cg(F*(G)) C F*(G).

Lemma 7.6. Let Q be a quasisimple group. Then Aut(Q) < Aut(Q/Z(Q)).

Proof. Let S := Q/Z(Q) (a simple group). Consider the canonical map f : Aut(Q) —
Aut(S). Let o € Ker f. Then a(g)g~! € Z(Q) for all ¢ € Q. Hence, we get a map
B:Q — Z(Q), g — al(g)g~t. Moreover, it is easy to see that (3 is a homomorphism. Since
Q is perfect, we get f =1 and thus a = idg. This shows Aut(Q) < Aut(S). O

In the following we sketch the reduction to quasisimple groups. For this let B be a block of

a finite group G. By we may assume that B is quasiprimitive. Moreover, the
Second Fong Reduction allows to assume that O,/ (G) is central and cyclic. In some cases we

can use [Theorem 7.3/ to show that O,(G) = 1. Then it follows that F(G) = Z(G) = Oy (G).
We consider the unique block b of E(G) covered by B. Write E(G) = L; *...* L,, where
Ly,...,L, are the components of G. For ¢« = 1,...,n, b covers a block b; of L; with

defect group D;. Then by [Lemma 7.5, D; X ... x D,, is a defect group of b and thus
contained in D. Again in favorable cases (for instance if the p-rank of D is small) we obtain

n = 1. This means that E(G) is quasisimple. Then Z(G) C Cg(E(G)) = Cq(E(G) Z(G)) =
Cq(F*(G)) C F(G) = Z(G) and G/ Z(G) = G/ Cg(E(G)) < Aut(E(G)). Moreover, by
Aut(E(G)) < Aut(B(G)/ Z(E(G))).
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So G is a central extension of a subgroup of the automorphism group of a simple group S
and a cyclic p’-group. Using Schreier’s Conjecture (which follows from the classification of
the finite simple groups) we deduce that S is the only non-abelian composition factor of

G.

/ solvable (Schreier’s Conjecture)
F(G) = Z(G) E(G)
simple (— classification)
Z(E(G))
abelian (Schur multiplier)
1

The following arguments often help to remove composition factors lying “above” S (so that
G is in fact quasisimple). Suppose that we have a normal subgroup N < G of prime index
q. Then B covers a unique block By of N with defect group N N D. The situation splits
naturally into two cases. In the first case, B is the only block covering By (see for example
[119]). Using the action of G on N, the set Irr(By) consists of « orbits of length ¢ and
stable characters. Clifford theory yields k(Bx) = ag+ § and k(B) = a+ ¢. This can often
be used the derive a contradiction. Similar considerations can be applied to IBr(By) and
IBr(B). In the second case, By is covered by several blocks of G. Then [215, Corollary 5.5.6]
shows that ¢ # p. In particular, By also has defect group D. Moreover, G = N Cg(D),
and all blocks of G covering By have defect group D. By [218, Theorem 9.4| all characters
in Irr(By) are stable.

As a final remark, we note that in order to prove Donovan’s Conjecture it suffices to assume
OP (@) = G (see [1859]).

7.4. The classification of the finite simple groups

After we have reduced the situation to quasisimple groups, it is time to apply the classification
of the finite simple groups which we state as follows.
Theorem 7.7 (CFSG). Every finite simple group belongs to one of the following families:
(1) cyclic groups Cy, of prime order.
(2) alternating groups Ay for n > 5.
(8) groups of Lie type which split further into the following classes:

(a) classical groups PSL(n,q), PSU(n,q), PQayni1(q), P (q), PQ5,(q), PSpa,(q).

(b) exceptional groups

o untwisted: Fg(q), E7(q), Es(q), Fi(q), G2(q).
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7. Reduction to quasisimple groups and the classification

o twisted: S2(2"), 3Dy (a), 2Bo(a), *Fi(271), 2Ga(37).

(4) 26 sporadic groups: My, Mia, Mo, Mos, Moy, Ji, Jo, J3, Jy, HS, He, McL, Suz,
Ly, Ru, O’N, 001, 002, 003, Figz, F’igg, Fi/24, HN, Th, BM, M.

The orders of these groups as well as their Schur multipliers and automorphism groups can
be found in the ATLAS [69]. Further information (for example the p-ranks) are contained
in [T110]. For the groups of Lie type we sometimes also refer to the corresponding Dynkin
diagram.

In the following we will list known results concerning the representation theory of simple
groups. The groups of prime order are certainly uninteresting. For the alternating groups it
is often useful to study the corresponding symmetric groups S, first. We refer to [153] 241].
For a non-negative integer n we denote the number of partitions of n by p(n). Here we set
p(0) ;=1 and Sp := 1 (the symmetric group on an empty set).

Theorem 7.8. Let B be a p-block of S,,. Then there exists a non-negative integer w called
the weight of B with the following properties:

(1) The defect group D of B is isomorphic to a Sylow p-subgroup of Sp,.

(it) The fusion system of B is Fp(Spw)-

(111) k(B) = Y p(wi)...p(wp) where the sum is taken over all non-negative tuples
(Wi,...,wp) such that Y w; = w.

(w) (B) = Y p(wi)...p(wp—1) where the sum is taken over all non-negative tuples
(Wi, ..., wp—1) such that Y w; = w.

Olsson [236] showed that in the situation of [Theorem 7.8 also the numbers k;(B) can

be expressed in terms of w. However, the formulas are too complicated to state here. In
fact, Enguehard [89] constructed a perfect isometry between B and By(OS.,). For the
complicated definition of a perfect isometry we refer to [53].

The Sylow subgroups of the symmetric groups are given by the following basic result.

Proposition 7.9. Define P; := Cp1...0C, (i factors) fori > 1. Let n =22 a;p’ be the
p-adic expansion of n (i.e. 0 < a; < p—1). Then a Sylow p-subgroup of Sy, is isomorphic to
oo
[
=1

Information about the Morita equivalence class of a block of a symmetric group can be
obtained from its core. In particular, Donovan’s Conjecture is true for blocks of symmetric
groups (see Scopes [287]). The essential rank of block fusion systems of symmetric groups
is determined in [11]. Moreover, the elementary divisors of the Cartan matrix of a block of
a symmetric group were computed in Theorem 4.5 in [31].

Now we turn to alternating groups.
Theorem 7.10. Let B be a p-block of A, with defect group D. Then one of the following
holds:

(i) p#2 and B is covered by two blocks B and B’ of Sp with defect group D. Moreover,
B and B are isomorphic as algebras and Fp(B) = Fp(B).

76
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(ii) B is covered by a unique block B of Sy with defect group D and weight w. Then
D =DnA, and Fp(B) = Fp(Ap).

Proof. The distinction into the two cases is well-known. The isomorphism in the first case
can be found for example in [51, Théoréme 0.1]. It remains to prove the claim about the
fusion system of B. Here we use Jacobsen [152]. Let B be a block of Sy, with weight w which
covers B. Assume that Fp(B) = Fp(B) = Fp(Spw). Then by the proof of Theorem 28 in
[152] we have N :=n —pw > 2 and B has a unique Brauer correspondent b in Cy4, (D). By
the proof of Lemma 27 in [152], b corresponds to a block of defect 0 in Ay (i.e. a character
Y € Irr(An)). Let 0 € Sy \ An. Since b is unique, ¥ is fixed by o. Hence, 1) extends to
two irreducible characters of Sy . Translating this to S,, means that B is covered by two
blocks of S,,. It is easy to see that also the converse holds. O

Again precise formulas for k(B), I(B) and k;(B) can be given in terms of sophisticated
combinatorial objects. Also perfect isometries are known to exist by [55]. Donovan’s
Conjecture is also known to hold for the blocks of alternating groups by Hiss [129]. Later,
Kessar [160, [159] extended these results to covering groups.

The block theory of simple groups of Lie type is vastly more complicated. But at least in
the defining characteristic we have the following strong theorem.

Theorem 7.11 (Humphreys [I38|, An-Dietrich [12]). Every p-block B of a simple group G of
Lie type in characteristic p has mazimal or trivial defect. In the former case, Fp(B) = Fp(G)
for P € Syl,(G).

In the situation of there are usually only two blocks, namely the principal
block and a block of defect 0. However, the Tits group 2Fy(2)" with three 2-blocks is an

exception.

In the general case of a finite group of Lie type, it is often possible to go over to a general
linear group. Here we use a paper by Fong and Srinivasan [97].

Theorem 7.12. Let B be a p-block of G := GL(n, q) with defect group D and p1q. Then
there exists a semisimple element s € G such that D is a Sylow p-subgroup of Cg(s).
Moreover, Cg(s) is a direct product of groups of the form GL(m, ¢").

Hence, in order to understand the structure of defect groups of blocks of linear groups, we
may study Sylow subgroups of GL(n, q).

Proposition 7.13 (Weir [316], Leedham-Green-Plesken [196]). Let P be a Sylow p-subgroup
of GL(n,q). Then one of the following holds

(i) p | q and P is conjugate in GL(n,q) to the group of upper triangular matrices with
ones on the main diagonal.

(i) 2#ptq and P = Cpr Q. Here Q € Syl,(S|p/e)) and p"m = q° — 1 where pt m and
e s the order of ¢ modulo p.

(iti)) p=2,4]q—1 and P = Cy 1 Q. Here Q € Syly(Sy) and 2"m = q — 1 where 24 m.

(iv) p=2,41q+1,2|n and P = SDy111Q. Here Q € Syly(S,,/2) and 2"'m = -1
where 21 m.
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7. Reduction to quasisimple groups and the classification

(v)p=2,4|qg+1,2¢n and P = Cy X (SDyr+1 Q). Here Q € Syly(S(n—1y/2) and
2"m = ¢*> — 1 where 21 m.

Similar results hold for other classical groups. Hiss and Kessar [130, [131] and Waldmiiller
[307] have obtained partial results on Donovan’s Conjecture for classical groups.

Finally, we turn to sporadic groups. Here for p = 2 the defect groups of blocks are listed in
Landrock’s paper [194] (see also [228]). Results on the essential rank of sporadic groups
are contained in [I0]. The possible Brauer trees of blocks of sporadic groups with cyclic
defect groups are determined in [132, 213]. Moreover, many of the sporadic groups can be
handled with GAP [103]. Information on blocks with specific properties can be found in
articles by An and Eaton [9, [14 [16, [15].

In addition to Donovan’s Conjecture mentioned above, several of the other conjectures from
have been checked for some of the finite simple groups. We do not give references
here.

We collect some applications of the classification.

Theorem 7.14 (Kessar-Malle [165]). Every block B of a finite group with abelian defect
group satisfies k(B) = ko(B).

Theorem 7.15 (Navarro-Tiep [221]). Brauer’s Height Zero Conjecture holds for 2-blocks
of maximal defect.
The proof of the next theorem relies on constructions of perfect isometries.

Theorem 7.16 (Fong-Harris [96], Sawabe-Watanabe [284], Zhang-Zhang [323], Usami [299]).
Let B be a principal p-block with abelian defect group.

(i) If p=2, then I(B) = k(I(B)).
(i1) If e(B) is a product of at most two primes, then [(B) = k(I(B)).
(i1i) If p # 3 and I(B) is an elementary abelian 2-group or Dg, then [(B) = k(I(B)).
In particular, in all three cases Alperin’s Weight Conjecture holds.
Compare also with in the introduction.
The final result of this section gives information about so-called T defect blocks.
Theorem 7.17 (An-Eaton [13]|). Let B be a p-block of a finite group G with defect group

D such that DN gDg~! = 0,(G) for all g € G\ Ng(D). Then Alperin’s Weight Conjecture
and the Alperin-McKay Conjecture hold for B.
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7.5. Blocks of p-solvable groups

For sake of completeness we state a few results concerning the opposite situation where
G is a p-solvable group, i.e. the non-abelian composition factors of G are p’-groups. In
this case the block theory of G is well-understood. One of the main theorems comes from
Kiilshammer [I80]. We enhance this old result by invoking fusion systems.

Theorem 7.18. Let B be a p-block of a p-solvable group G with defect group D and fusion
system F. Then B is Morita equivalent to a twisted group algebra O,H where H is an
extension of P = Op(F) with Outx(P). Moreover, D € Syl,(H).

Proof. By the Fong reductions, we may assume that B is quasiprimitive and O, (G) is
central. Then we are in a position to apply Proposition J in [I80] which also works over
O instead of F' (as B. Kiilshammer informed me). In particular, D € Syl,(G). We need
to show that the normal subgroup P in Theorem A in [I80] coincides with O,(F). By
Proposition J in [I80] we have

P =DNO0py(G) =DN(0p(G) x Opy(G)) = Op(G) € Op(F).

On the other hand, it follows from Parts (iii) and (v) in Theorem A in [I80] that
O,(Outz(P)) =1, i.e. Pis F-radical. Moreover, the Hall-Higman Lemma implies Cp(P) C
P. Hence, P is also F-centric. By Theorem 5.39 in [71] we obtain O,(F) C P. O

In the situation of [Theorem 7.18, we have Cp(Op,(F)) C Op(F) (see also [70]). This gives

the following consequence.

Corollary 7.19. The fusion system of a p-block of a p-solvable group is constrained.

As an immediate corollary of we obtain Donovan’s Conjecture restricted to
blocks of p-solvable groups. Most of the other conjectures introduced in are also
satisfied for p-solvable groups. We list some references:

e Brauer’s k(B)-Conjecture for p-solvable groups reduces to what is known as the
k(GV)-Problem (see Nagao [214]). This problem was settled recently by work of
several authors (see [285]).

e Brauer’s Height Zero Conjecture for p-solvable groups was verified by Gluck and Wolf
[106].

e The Alperin-McKay Conjecture for p-solvable groups was proved by Okuyama and
Wajima [232].

e Isaacs and Navarro [147] obtained the Galois-Alperin-McKay Conjecture for p-solvable

groups.

e Kiilshammer [I83] showed that the Alperin-McKay Conjecture (for a specific block)
would imply Olsson’s Conjecture (for the same block). Hence, also Olsson’s Conjecture
for p-solvable groups is true.

e A proof of Alperin’s Weight Conjecture for p-solvable groups (and its mysterious
history) appeared in [22].
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e Eaton [83] has shown that the Ordinary Weight Conjecture is equivalent to Dade’s
Projective Conjecture (also if one restricts to p-solvable groups). The latter conjecture
holds for p-solvable groups by work of Robinson [259]. Thus, the OWC is also correct
for p-solvable groups.

e In particular, also Robinson’s Conjecture is satisfied for p-solvable groups. There is
an even stronger bound on the heights of characters given in [211].

e It was mentioned in Linckelmann [202] that the Gluing Problem for p-solvable groups
has a unique solution.

e Concerning the Eaton-Moret6 Conjecture for p-solvable groups it is at least known
that
min{i > 1: k;(D) > 0} < inf{i > 1: k;(B) > 0}

(see [87]).

e Gluck’s Conjecture is at least true for solvable groups by [105].
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8.

Metacyclic defect groups

As a first application of the methods in we investigate blocks with metacyclic defect
groups. We remark that all metacyclic p-groups are classified (see e. g. [198]), but we will
not make use of this fact.

8.1. The case p =2

The following theorem collects the knowledge about 2-blocks with metacyclic defect
groups.

Theorem 8.1. Let B be a 2-block of a finite group with metacyclic defect group D. Then
one of the following holds:

(1)

(2)

(3)

(4)

B s nilpotent. Then k;(B) is the number of ordinary characters of D of degree 2°.
In particular k(B) is the number of conjugacy classes of D and ko(B) = |D : D'|.
Moreover, [(B) = 1.

D is a dihedral group of order 2" > 8. Then k(B) = 22 + 3, ko(B) = 4 and
k1(B) = 272 —1. According to two different fusion systems, [(B) is 2 or 3. The Cartan
matriz of B is

n—2
gn-2 L1 9 2 +1 1 1
9 4 or 1 2 .
1 .2

up to basic sets. Moreover, the characters of height 0 in B are 2-rational and Irri(B)
splits in n — 2 families of 2-conjugate characters of lengths 1,2,4,...,2" 3 respectively.
D is a quaternion group of order 8. Then k(B) =7, ko(B) =4 and k1(B) = (B) = 3.
The Cartan matriz of B is
2 11
211 2 .
1 2
up to basic sets. Moreover, there is one pair of 2-conjugate characters of height 1 and

all other characters in B are 2-rational.

D is a quaternion group of order 2" > 16. Then ko(B) = 4 and ki(B) = 2" 2 —
1. Moreover, Irr1(B) splits in n — 2 families of 2-conjugate characters of lengths
1,2,4,...,2"3 respectively, and all other characters in B are 2-rational. According to
two different fusion systems, one of the following holds

(a) k(B) =2""2+4+4, ky,_2(B) =1 and I(B) = 2. The Cartan matriz of B is

=341 2
(")

up to basic sets.

83



8. Metacyclic defect groups

(b) k(B) =2""2 45, k, o(B) =2 and I(B) = 3. The Cartan matriz of B is

=341 1 1
2 1 2 .
1 )

up to basic sets.

(5) D is a semidihedral group of order 2™ > 16. Then ko(B) = 4 and ki(B) = 22 —
1. Moreover, Irr1(B) splits in n — 2 families of 2-conjugate characters of lengths
1,2,4,...,2" 3 respectively, and all other characters in B are 2-rational. According to
three different fusion systems, one of the following holds

(a) k(B) =2""2+3 and [(B) = 2. The Cartan matriz of B is
(2"—2 +1 2>
2 4
up to basic sets.
(b) k(B) =2""2+4, k, o(B) =1 and [(B) = 2. The Cartan matriz of B is

2" 3 41 2
2
)
up to basic sets.

(¢) k(B) =2""2+4, k, o(B) =1 and [(B) = 3. The Cartan matriz of B is

241 1 1

up to basic sets.

(6) D = Cyn x Can is homocyclic. Then k(B) = ko(B) = (|D]| +8)/3 and I(B) = 3. The
Cartan matriz of B is
2242 221 22—
2271_1 22n+2 22n_1
22 —1 22 —1 2242

up to basic sets.

Proof. Let F be the fusion system of B. It was shown in the author’s dissertation [269] (see
also [273]) that F is nilpotent unless homocyclic or a 2-group of maximal class. Independently,
this was also obtained by Robinson [262] and Craven-Glesser [73] (preliminary work for finite
groups only has been carried out in [209] [58]). In fact, [Proposition 6.11and [Proposition 10.2|
below imply the claim. Moreover, we will generalize this result in [I'heorem 10.17]

Now let D be a 2-group of maximal class. Then Brauer [46] and Olsson [235] computed k(B),
k;(B) and [(B). This will be generalized in They also obtained the distribution
into 2-rational and 2-conjugate characters. The statement about Cartan matrices can be
extracted from Erdmann [92] and Cabanes-Picaronny [57].

Suppose next that D is homocyclic. Then results by Usami [295] show that B is perfectly
isometric to its Brauer correspondent in Ng(D). Observe that Usami assumes p # 2 in her
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paper. However, in a later paper together with Puig [251] Introduction]| they claim without
proof that the case p = 2 can be handled similarly. An explicit proof for the special case
above was given in the author’s dissertation [269]. Hence, the invariants and the Cartan

matrix can be obtained from [Theorem 1.20 O

If D is dihedral (including C22), semidihedral or quaternion, then B has tame representation
type. We deduce the conjectures.

Corollary 8.2. Fvery 2-block B with metacyclic defect group satisfies the following conjec-
tures:

o Alperin’s Weight Conjecture

o Brauer’s k(B)-Conjecture

e Brauer’s Height-Zero Conjecture

e Olsson’s Conjecture

o Galois-Alperin-McKay Conjecture

e Ordinary Weight Conjecture

o Gluck’s Conjecture

e Faton’s Conjecture

e Faton-Moreté Conjecture

e Malle-Navarro Conjecture

e Robinson’s Conjecture

Moreover, the Gluing Problem for B has a unique solution.

Proof. Most conjectures follow straight from [Theorem 8.1} The Galois-Alperin-McKay
Conjecture asserts (for p = 2) that every Galois automorphism v has the same number of
fixed points in Irrg(B) and in Irrg(b) where b is the Brauer correspondent of B in N (D).
This has been checked for nilpotent blocks in [148]. If D has maximal class, then the action
of v on Irrg(B) is trivial by . Thus, we may assume that D is homocyclic.
By Brauer’s Permutation Lemma, the number of fixed points in Irr(B) under the action
of the cyclic group (v) is the same as the number of fixed columns of the generalized
decomposition matrix. For 1 # u € D we have [(b,) = 1 and u is not conjugate to any of its
proper powers under I(B). Therefore, the number of fixed points of 7 is locally determined,
and the Galois-Alperin-McKay Conjecture follows.

For Alperin’s Weight Conjecture we may refer to [I61]. The Ordinary Weight Conjecture
for tame cases was shown in [260] (we may also refer to Theorems 9.10} [9.30| and [9.39| from
the next chapter). Even Dade’s Invariant Conjecture holds here by a result of Uno [293]. In
the homocyclic case, the OWC reduces to

KB)= Y K

x€lrr(D)/I(B)

which is true. Now we settle Gluck’s Conjecture. This is easy to see in the nilpotent case,
since we have [(b,) = 1 for every B-subsection (u,b,) here. In the tame cases, D has
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8. Metacyclic defect groups

nilpotency class 2 and thus, order 8. Here Gluck’s Conjecture holds by Theorem B in [105].
Also the abelian case was handled in [105, Corollary 3.2].

It remains to consider the Gluing Problem. If B is a controlled block, the Gluing Problem
has a unique solution by Example 5.3 in [202]. This solves the nilpotent case and the
homocyclic case. For the tames cases the claim follows from [242]. O

Now we discuss Donovan’s Conjecture. The nilpotent case follows by Puig’s
at once. For dihedral and semidihedral defect groups, Holm [135] [134] proved Donovan’s
Conjecture by using Erdmann’s work [92] (at least over the field F'; preliminary work was
done by Donovan [79] and Linckelmann [200]). He also gave an argument which shows
Donovan’s Conjecture for quaternion defect groups provided [(B) = 3 (see also [163]). A
version for O can be found in [136] [88]. Unfortunately, the case|(4a)|in [Theorem 8.1| appears
to be open. However, the Morita equivalences are determined up to certain scalars.

In the smallest homocyclic case 6’22, the blocks also have tame representation type. Here
Donovan’s Conjecture over F' follows from [91] and over O by [201] (for a stronger result see
[72]). For the general case of a homocyclic defect group we have results by Usami [295] about
the existence of perfect isometries. Brauer [43] has shown that a group with a homocyclic
Sylow 2-subgroup of order at least 16 is solvable.

In a recent paper [85] we addressed Donovan’s Conjecture for these defect groups by making
use of the classification of the finite simple groups. We provide the details without the long
and complicated proof.

Theorem 8.3. Let B be a block of a finite group G with defect group D =2 Com X Com for
some m > 2. Then B is Morita equivalent to its Brauer correspondent in Ng(D).

Corollary 8.4. Let B be a 2-block of a finite group with abelian defect group D of rank at
most 2. Then one of the following holds:

(i) B is nilpotent and thus Morita equivalent to OD.

(i) B is Morita equivalent to O[D x Cs].
(i) D = C3 and B is Morita equivalent to By(OAs).

In particular, Donovan’s Conjecture holds for D and Broué’s Abelian Defect Group Congjec-
ture holds for B.

Apart from these results, the work [85] also contains the following strong theorem.

Theorem 8.5. Donovan’s Conjecture holds 2-blocks with elementary abelian defect groups.
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8.2. The case p > 2
8.2. The case p > 2

For sake of completeness we start with the cyclic case. Brauer [38] obtained the invariants
of blocks with defect 1. This was extended by Dade [75] to cyclic defect groups. Later,
also Broué’s Abelian Defect Group Conjecture was established for cyclic defect groups (see
[253], 199, 265]).

Theorem 8.6 (Dade [75]). Let B be a p-block of a finite group with cyclic defect group D.
Then

_[D[-1

I(B) =e(B) |p—1, k(B) = ko(B) o(B)

+e(B).
The Cartan matriz of B is given by (m + ij)1<ij<e(B)y up to basic sets where m :=
(|D| — 1)/e(B) is the multiplicity of B.

In the next interesting case the defect group is elementary abelian of order 9. Here the block
invariants are not determined completely (see [L67]). Nevertheless, Donovan’s Conjecture is
known to hold for all principal 3-blocks with abelian defect groups (see [172, [176]). Also,
Brou¢’s Conjecture is true for principal blocks with defect group C2 (see [173| [175]). It is
also easy to see that Alperin’s Weight Conjecture for the defect groups Csn x C3m where
n # m follows from the Usami-Puig results [295] 250]. This was explicitly carried out in
[319].

Despite these obstacles in the abelian case, Brauer’s k(B)-Conjecture and Olsson’s Conjec-
ture were proved for all blocks with metacyclic defect groups by [100} BI8|. In this section
we will add some more conjectures to the list. One important ingredient is the following
result by Stancu.

Theorem 8.7 (Stancu [290]). Let p > 2, and let B be a p-block of a finite group with
metacyclic defect group. Then B is controlled.

Now we are in a position to prove the main theorem of this section.

Theorem 8.8. Let B be a p-block of a finite group with a metacyclic, non-abelian defect
group D for an odd prime p. Then one of the following holds

(1) B is nilpotent.

(2) D has the following form

D=(z,y|a"" =y =1, yay™ =) 2 Cpn x Cp (8.1)

with 0 <1 <m and m —1 < n. Moreover, (B) =e(B) |p—1 and

I od=1 o 2l—m—1 _
k(B) = <p +P e(%) ! +e(B)>p”.

In particular, Alperin’s Weight Conjecture holds for B.
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8. Metacyclic defect groups

Proof. If D is a non-split extension of two cyclic groups, then a result by Dietz [78] says
that B is nilpotent. Hence, we may assume that D is split, and B is non-nilpotent. Then
it is easy to see that D has a presentation as in [Equation (8.1)l Assume that the map
r — ! defines an automorphism of () of order p — 1. Then by Theorem 2.5 in [100] the
map « with a(x) = 2% and a(y) = y defines an automorphism of D of order p — 1, and we
may assume that I(B) < (a). In particular, e(B) | p — 1. Moreover, it is easy to see that
foc(B) = (x) is cyclic. Hence, implies [(B) = e(B) and k(B) = k(D x I(B)).
Since D x I(B) has only one block (namely the principal block), we obtain k(B) from [I0T]
(this can also be obtained via [126]). O

It remains to consider the numbers k;(B). Apart from [I0I] we mention a result by
Watanabe [137], which states that two principal blocks with a common metacyclic, non-
abelian defect group and the same inertial index are perfectly isometric.

We will make use of the parameters m,n, [ introduced in The following result
is taken from [280] (using [276]).

Proposition 8.9. Let B be a p-block of a finite group with a non-abelian split metacyclic
defect group D for an odd prime p. Then

p—1
e(B)

(9 ' l—l
2i7.. < p n-+m-—I < ptm _
E p~ki(B) < (e(B) +e(B)>p <p D],

p" | ko(B), p" ™| ki(B)  fori>1,

2" < ko(B) < < + e<B>>p" <p"'=|D: D,

ki(B)=0 for i> min{2(m -1, m—l—n—l}

2

Proof. We continue the notation from the proof of [Theorem 8.8, By [Proposition 1.33| we
have p" | |D : foc(B)| | ko(B). In particular p"™ < ko(B). In case ko(B) = p" it follows
from [Proposition 1.34| that B is nilpotent. However then we would have ko(B) = |D :
D'| = p"*! > p". Therefore 2p" < ko(B). [Proposition 1.33| also implies p"~™*! | |Z(D) :
Z(D) Nfoc(B)| | ki(B) for i > 1.

Now consider the subsection (y, b,). Since B is controlled, b, has defect group Cp(y) and
fusion system Cx(y) where F is the fusion system of B. It follows that e(b,) = e(B). As
usual, b, dominates a block of Cg(y)/(y) with cyclic defect group Cp(y)/(y) = <a;pm_l> of
order p!. Hence, [Proposition 4.3/ implies the first inequality. For the second we consider

m—1

u:=aP" € Z(D). Since I(B) acts non-trivially on (u), we observe that b, is nilpotent
and [(b,) = 1. Moreover, |Autz((u))| = e(B). Thus, shows the second claim.
Since ko(B) > 0, it follows at once that k;(B) = 0 for ¢ > (n +m — 1)/2. On the other
hand Corollary V.9.10 in [93] implies k;(B) = 0 for i > 2(m — ). O

Theorem 8.10. Let B be a p-block of a finite group with a non-abelian split metacyclic
defect group D for an odd prime p. Then the lengths of the families of p-conjugate characters
in Irr(B) are the same as in Irr(D x I(B)).
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8.2. The case p > 2

Proof. Tt suffices to show that the distribution of Irr(B) into 3-rational and 3-conjugate
characters only depends on D and e(B). By Brauer’s Permutation Lemma (Lemma IV.6.10
in [93]) we may study the action of the Galois group G (see on the columns of
the generalized decomposition matrix. For the elements u € D such that I(b,) = 1 there is
no difficulty in determine the action of G on the powers of u. Now assume that I(b,) > 1.
Let F be the fusion system of B. Then there is a non-trivial p’-element v € Aut (D) which
centralizes u. Since Autxz(D) = Inn(D) x I(B), v is D-conjugate to a non-trivial power
of a (see proof of [Theorem 8.8)). Since Cp(a) = (y), it follows that u is D-conjugate to a
power of y. Thus, we may assume u € (y). Suppose that u is F-conjugate to u’ for some
i € Z. Then u and u’ are even conjugate in D. Therefore u(z) and u’(z) are conjugate
in the abelian group D/(x). Hence, u’ = u. Thus, we have seen that the powers of u are
pairwise non-conjugate in F. As in the proof of |Proposition 8.9 we obtain [(b,) = e(B).
Let |{u)| = p*. Then the action of G gives e(B) p-rational characters (corresponding to u°)
and e(B) orbits of length (p — 1)p? for each i = 0,...,k — 1. O

In the situation of it is of course possible to determine the lengths of the
families in terms of p, n, m, [ and e(B). Since this is quite tedious, we will only do so in

special cases (see next section).

Corollary 8.11. Let B be a block of a finite group with metacyclic defect group. Then
Brauer’s k(B)-Conjecture, Brauer’s Height Zero Conjecture and Olsson’s Conjecture are

satisfied for B.

Proof. Assume first that B has abelian defect group D. Then Brauer’s k(B)-Conjecture
follows from [Theorem 4.2| (cf. [Proposition 4.3| or Theorem VII.10.13 in [93]). Then of course
also Olsson’s Conjecture is true. For the Height Zero Conjecture we refer to|Theorem 7.14
Now let D be non-abelian. Then we may assume that D is split by We need
to show that ko(B) < k(B). By [Proposition 8.9|it suffices to show

(L +em ) < (P2 )

This reduces to [ < m, one of our hypotheses. O

Apart from a special case covered in [280], it seems that there are no results about B in
the literature for p-solvable groups. We take the opportunity to give such a result which
also holds in a more general situation.

Theorem 8.12. Let B be a controlled block of a p-solvable group. If I(B) is cyclic, then B
is Morita equivalent to the group algebra O[D x I(B)] where D is the defect group of B.

Proof. This follows from O

Let us consider the opposite situation where G is quasisimple. Then the main theorem of [9]
tells us that B cannot have non-abelian metacyclic defect groups. Thus, in order to settle
the general case it would be sufficient to reduce the situation to quasisimple groups. As a
concrete example we note that the principal 3-block of 2G5(3) has defect group Cg x Cs
(see Example 4.3 in [133]).

In the next section we restrict the parameter [ in order to compute k;(B).
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8. Metacyclic defect groups

8.2.1. Metacyclic, minimal non-abelian defect groups

In this section we assume that [ =m — 1, i.e.
m n -1 1 m—1 ~
D= (x,yla? =y =1, yoy™ ' =2'P" ) = Cpm % Cpn

where m > 2 and n > 1. These are precisely the metacyclic, minimal non-abelian defect

groups (see [Chapter 12| below). By [Lemma 12.1] these are also the metacyclic p-groups such

that |D’| = p. The material is an improved version of [280].
Theorem 8.13. Let B be a p-block of a finite group with metacyclic, minimal non-abelian
defect group D for an odd prime p. Then

m—1 _ —
() = (7 elB) ) u(B) = 2 Lprims

pm—l +pm—2 _ pm—3 -1

k(B) = ( o(B) + e(B))p" [(B) = e(B).

In particular the following conjectures are satisfied for B (in addition to those listed in
previous results):

o Alperin-McKay Conjecture
e Ordinary Weight Conjecture
e Faton’s Conjecture

e Faton-Moreté Conjecture

e Robinson’s Conjecture

e Malle-Navarro Conjecture

Proof. By |Proposition 8.9 we have

m—1
pn ‘ kO(B) < <pe(B)1 -+ e(B))p”.

Thus, by way of contradiction we may assume that

m—1 _
ko(B) < (pe(B)l +e(B) - 1>p”.

Then implies the following contradiction

(i o etmr=a)or = (Vg et 1) (g )

< ip%ki(B) < (p:(;)p +pe(B)>p” < (pj(g)l +p2>p"-
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8.2. The case p > 2

This gives ko(B). By way of contradiction suppose that k;(B) > 0 for some i > 2. By
IProposition 8.9 k1(B) and k;(B) are divisible by p"~!. This shows

pm—l -1 4 e(B) pn N pm—l _pm—2 1 pn+1 +pn+3 < ipmk(B)
«(B) (B) =2

pt—1 1
< |/ B) |p"tt.
< (" )

Hence, we derive the following contradiction

1—p
n+3 _ n+l B -1 no< n+2‘
P p" < <e(B) +e(B)(p ))p <p

This shows k1 (B) = k(B) — ko(B).

Since the Brauer correspondent of B in Ng(D) has the same fusion system, the Alperin-
McKay Conjecture follows. Now we prove the Ordinary Weight Conjecture. Let Q < D
be an F-radical subgroup. If I(B) does not restrict to @), we derive the contradiction
Outr(Q) = Np(Q)/Q # 1. Hence, I(B) acts on @ and thus also on Np(Q). In particular,
Np(Q)/Q < Outx(Q). This shows Np(Q) = @ and @ = D. Since I(B) is cyclic, we
conclude that H?(Out#(Q), F*) = 1. Thus all 2-cocycles appearing in the OWC are trivial.
Therefore the conjecture asserts that k;(B) only depends on F and thus on e(B). Since the
conjecture is known to hold for the principal block of the solvable group G = D x I(B), the
claim follows. Eaton’s Conjecture is equivalent to Brauer’s k(B)-Conjecture and Olsson’s
Conjecture. Both are known to hold by Also the Eaton-Moret6 Conjecture
and Robinson’s Conjecture are trivially satisfied for B. The Malle-Navarro Conjecture
asserts that k(B)/ko(B) < k(D') = p and k(B)/l(B) < k(D). The first inequality is easy
to see. For the second inequality we observe that every conjugacy class of D has at most p
elements, since |D : Z(D)| = p*. Hence,

D|—|Z(D
k‘(D) — |Z(D)|—|—| | | ( )‘ :pn+m—1 +pn+m—2_pn+m—3'

b
We deduce
k(B) pm—l _|_pm—2 _pm—?) -1
—— 2 < k(B) = B) |p"
) < kB) = = +e(B))p
< (PR p" " = k(D). m

already gives new information for the non-abelian defect group of order

p3 and exponent p? (completing results by Hendren [121]). We will denote this group by
142
poe

Corollary 8.14. Let B be a p-block of a finite group with defect group p1™2 for an odd
prime p. Then the Galois-Alperin-McKay Conjecture holds for B.

Proof. Let D be a defect group of B, and let G be the relevant Galois group. Let v € G be a
p-element. Then it suffices to show that «y acts trivially on Irrg(B). By Lemma IV.6.10 in [93]
it is enough to prove that « acts trivially on the F-conjugacy classes of subsections of B via
7(u,by) := (u7,b,) where u € D and 7 € Z. Since 7 is a p-element, this action is certainly
trivial unless |(u)| = p?. Here however, the action of v on (u) is just the D-conjugation.
The result follows. O
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8. Metacyclic defect groups

In the situation of Corollary one can say a bit more: By it is easy to
see that Irr(B) splits into the following families of p-conjugate characters:

e (p—1)/e(B) + e(B) orbits of length p — 1,
e two orbits of length (p — 1)/e(B),
e ¢(B) p-rational characters.

Without loss of generality, let e(B) > 1. Since k1(B) < p — 1, all orbits of length p — 1
of p-conjugate characters must lie in Irrg(B). In case e(B) = p — 1 the remaining (p —
1)/e(B) + e(B) characters in Irrg(B) must be p-rational. Now let e(B) < v/p — 1. Then it
is easy to see that Irrg(B) contains just one orbit of length (p — 1)/e(B) of p-conjugate
characters. Unfortunately, it is not clear if this also holds for e(B) > /p — 1.

For the prime p = 3 we have e(B) = p — 1 unless B is nilpotent. This allows us to obtain
more information for one particular family (where m =2 and [ = 1).

Theorem 8.15. Let B be a non-nilpotent block of a finite group with (non-abelian) defect
group Cgx Csn for somen > 1. Then Irrg(B) splits into three 3-rational characters and three
families of 3-conjugate characters of size 2-3° fori =0,...,n—1. The irreducible characters
of height 1 split into one 3-rational character and one family of 3-conjugate characters of
size 2-3% for i =0,...,n — 2. In particular the Galois-Alperin-McKay Conjecture holds for
B. The Cartan matrixz of B is given by

2 1
n
(1)
up to basic sets. Moreover, the Gluing Problem for B has a unique solution.

Proof. Bywe have ko(B) = 3"!, ky(B) = 3""! and I(B) = 2. The elements
y', 23y and xy’ for i =0,...,3" —1land j =0,...,3""! — 1 form a set of representatives
for the F-conjugacy classes. We have I(b,) = 2 for all u € (y). This gives two 3-rational
characters and two orbits (of 3-conjugate characters) of length 2-3% for i = 0,...,n— 1. For
all other elements u we have [(b,) = 1. Since 23 and 273 are F-conjugate, we have another
3-rational character. On the other hand, for v = 23y% with j =1,...,3"~! — 1 the powers
of u are pairwise non-conjugate in F. This yields one orbit of length 2-3% for i = 0,...,n—2.
The element x corresponds to a 3-rational character, while the elements :chg’rh1 and 9ny3ni1
form one orbit of length 2. Finally the elements xy’ for j € {1,...,3" —1}\ {3"~%,2.3""1}
form one orbit of length 2-3° for i = 1,...,n — 1. The three families of length 2 -3~ must
certainly lie in Irrg(B).

Now we consider the action of Irr(D/foc(B)). The characters in Irrg(B) form three orbits
under the action of Irr(D/foc(B)), while the characters in Irr;(B) form just one orbit.
Observe that Z(D)foc(B)/foc(B) = (y*foc(B)) is cyclic. Let A € Irr(Z(D)foc(B)/foc(B))
and u = y3. Then (A% x)(u) = A(u)x(u) (see [263]) and dy sy = Aw)dy,, for x € Irry (B)
and ¢ € IBr(b,). This yields orbits (of 3-conjugate characters of height 1) of lengths 1, 2,

2-3,...,2-3"2 Since no proper sum of these numbers results in 2 - 3¢ for some i, we see
that these orbits do not merge further. This shows that Irri(B) consists of one 3-rational
character and one family of 3-conjugate characters of length 2 -3¢ for i = 0,...,n — 2. The

distribution of Irrg(B) follows from the arguments above. As a byproduct, it is interesting
to note that every irreducible character of B can be obtained from a 3-rational character
via the *-construction.
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By the elementary divisors of the Cartan matrix C' of B are 3" and 3"*2.
Hence, C :=37"C = (g Z) is an integral matrix with elementary divisors 1 and 9. We may
assume that C is reduced as binary quadratic form by changing the basic set if necessary.
This means 0 < 2b < a < ¢. We derive 3a%/4 < ac — b* = detC =9and a € {1,2,3}. This
gives only the following two possibilities for C:

2 1 1 0
(i) (o 5)
It remains to exclude the second matrix (which contradicts [Question Alon [page 35|). So
assume by way of contradiction that this matrix occurs for C. Two irreducible characters of
B in the same orbit under Irr(D/foc(B)) have the same ordinary decomposition numbers.
Hence, the decomposition matrix of B consists of 3" rows of the form (aj,a2), 3" rows

(B1, B2), 3" rows (71,72), and 3"~ ! rows of the form (41, d2) (for the characters of height 1).
Consequently,

3" = 3”(@% + ﬁf + ’yf) + 3”*15%,
3n+2 — 3n(ag 4 l@% +’Y%) + 371—16%7
0=3"(a1az + B182 + 7172) + 3" 616

Since 3 | d;, we deduce §; = 0. Since no row of the decomposition matrix vanishes, do = +3.
Without loss of generality, a; = +1 and 51 = 713 = 0. Then the third equation implies
as = 0. Thus, 6 = 35 + 2. A contradiction.

Finally we investigate the Gluing Problem for B. For this we use the notation of [242].
Up to conjugation there are four F-centric subgroups Q1 := (z3,y), Q2 := (z,9%), Q3 :=
(ry,2%) and D. This gives seven chains of F-centric subgroups. It can be shown that
Autr(Qq) = S3, Autr(Q2) = Cs, Autr(Q3) = C5 and Autg(D) = C3 x S3. It follows
that H?(Autz(c), F*) = 0 for all chains o of F-centric subgroups of D. Consequently,
HO([S(F¢)], A%) = 0. Hence, by Theorem 1.1 in [242] the Gluing Problem has at least one
solution. (Obviously, this should hold in a more general context.)

Now we determine H'([S(F¢)], AL). For a finite group A it is known that H* (4, F*) =
Hom(A, F*) = Hom(A/A'OP'(A), F*). Using this we observe that H' (Autz (o), F*) = Cy
for all chains except o = Q3 and o = (Q3 < D) in which case we have H! (Autz(o), F*) = 0.
Since [S(F¢)] is partially ordered by taking subchains, one can view [S(F¢)] as a category
where the morphisms are given by the pairs of ordered chains. In particular [S(F€)] has
exactly 13 morphisms. With the notation of [315] the functor AL is a representation of
[S(F)] over Z. Hence, we can view Ak as a module M over the incidence algebra of
[S(F€)]. More precisely, we have

M= f Axa)=Cs.
ac€Ob[S(F°)]

At this point we can apply Lemma 6.2(2) in [315]. For this let d : Hom[S(F¢)] - M a
derivation. Then by definition we have d(3) = 0 for 8 € {(Q3,@3), (Q3,Q3 < D), (D, Q3 <
D), (Qs < D,Qs < D)}. For all identity morphisms 8 € Hom([S(F€)]) we have d(8) =
d(BB) = AL(B)d(B) + d(B) = 2d(B) = 0. Since B for 8,7 € Hom([S(F*)]) is only defined
if B or v is an identity, we see that there are no further restrictions on d. On the four
morphisms (Q1,Q1 < D), (D,Q1 < D), (Q2,Q2 < D) and (D, Q2 < D) the value of d
is arbitrary. It remains to show that d is an inner derivation. For this observe that the
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8. Metacyclic defect groups

map A_l;-(ﬁ) is bijective if § is one of the four morphisms above. Now we construct a set
u = {uq € AL(a) : a € Ob[S(F°)]} such that d is the inner derivation induced by u. Here
we can set ug,<p = 0. Then the equation d((Q1,Q1 < D)) = AL((Q1,Q1 < D))(ug,)
determines ug, . Similarly, d((D,Q1 < D)) = A%(up) determines up. Then d((D, Q2 <
D)) = AL-(up) — ug,<p gives ug,<p and finally d((Q2,Q2 < D)) = AL(ug,) — ug,<p
determines ug,. Hence, Lemma 6.2(2) in [315] shows H'([S(F¢)], A%) = 0. So the Gluing
Problem has only one solution by Theorem 1.1 in [242]. O

Proposition 8.16. Let B be a 3-block of a finite group with defect group D. Assume that
D/(z) is metacyclic but not homocyclic for some z € Z(D). Then Brauer’s k(B)-Conjecture
holds for B.

Proof. 1If D/(z) is metacyclic and non-abelian, then {(b,) < 2 by [Theorem 8.8, Hence the
claim follows from [Theorem 4.9, Now assume that D/(z) & Csm x Csn where m # n. Let
b, be the block with defect group D/(z) dominated by b,. Then e(b,) < 4. Now the claim

follows from [Lemma 14.4l and [Lemma. 14.5 below. ]

We will later settle the case D/(z) = C% in [Proposition 8.16| (see [Theorem 13.8)).

8.2.2. One family for p =3

We add another result for p = 3 and | = 1 in [Equation (8.1)]
Theorem 8.17. Let B be a 3-block of a finite group with defect group
D=(zy|a® =y =1, yzy~' = 2"

where 2 < m < n+ 1. Then ko(B) = 3"*L. In particular, the Alperin-McKay Conjecture
holds for B.

Proof. We may assume that B is non-nilpotent. By |[Proposition 8.9 we have ko(B) €
{2.3", 3"}, By way of contradiction, suppose that ko(B) = 2-3". Let P € SyL,(G).
Since D/foc(B) acts freely on Irrg(B), there are 3" characters of degree a|P : D|, and 3"
characters of degree b|P : D| in B for some a,b > 1 such that 3t a,b. Hence,

> x@)?

Xx€lrrg(B)

=3"|P: D|*(a® + b*)3 = |P: D]*|D : foc(B)|.
3

Now Theorem 1.1 in [164] gives a contradiction. O

A generalization of the argument in the proof shows that in the situation of [Proposition 8.9
ko(B) = 2p™ can only occur if p=1 (mod 4).
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After we have handled 2-blocks with metacyclic defect groups completely, there are several
ways to proceed. In this chapter we will see that the methods by Brauer and Olsson for
dihedral, semidihedral and quaternion groups can be generalized to deal with direct and
central products of cyclic groups and 2-groups of maximal class. These results appeared in
[272, 274, 275].

Speaking of representation type, the defect groups in this chapter can be roughly described
as “finite times tame”. We summarize the results of the whole chapter.
Theorem 9.1. Let M be a 2-group of maximal class, and let C be a cyclic group. Then for
every block B with defect group M x C or M = C the following conjectures are satisfied:

o Alperin’s Weight Conjecture

e Brauer’s k(B)-Conjecture

e Brauer’s Height-Zero Conjecture

e Olsson’s Conjecture

o Alperin-McKay Conjecture

e Ordinary Weight Conjecture

o Gluck’s Conjecture

e Faton’s Congecture

e Faton-Moreté Congecture

o Malle-Navarro Conjecture

e Robinson’s Conjecture
Moreover, the Gluing Problem for B has a unique solution.

Although the proofs in the following four sections are fairly similar, we did not try to
condense the matter, since the results build on one another by induction. Most of the
conjectures in are immediate consequences of the main Theorems [0.7] [0.18]
[0-28] [0-37 and we will omit the details. Observe that Gluck’s Conjecture in this setting only
applies to defect groups of order at most 16. This will be handled later in [Proposition 13.6}
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9. Products of metacyclic groups

9.1. DQTL >< CQm

Let B be a block of G with defect group

-1 om 1

D= (z,y,z |2 ==Y =[x 2=[y,2]=1, yazy =21

= (x,y) X (2) = Don x Com

where n > 2 and m > 0. In the case n = 2 and m = 0 we get a four-group. Then the
invariants of B have been known for a long time. If n = 2 and m = 1, D is elementary
abelian of order 8, and the block invariants are also known (see below).
Finally, in the case n = 2 < m there exists a perfect isometry between B and its Brauer
correspondent (see [295] 251]). Thus, also in this case the block invariants are known, and
the major conjectures are satisfied. Hence, we assume n > 3 for the rest of the section. We
allow m = 0, since the results are completely consistent in this case.

Lemma 9.2. The automorphism group Aut(D) is a 2-group.

Proof. This is known for m = 0. For m > 1 the subgroups ®(D) < ®(D)Z(D) < (z,z) < D
are characteristic in D. By Theorem 5.3.2 in [I07] every automorphism of Aut(D) of odd
order acts trivially on D/®(D). The claim follows from Theorem 5.1.4 in [107]. O

It follows that the inertial index e(B) of B equals 1. Now we investigate the fusion system
F of B. First we compute the F-centric, F-radical subgroups (instead of the F-essential
subgroups), since they are needed later for Alperin’s Weight Conjecture.

Lemma 9.3. Let Q1 := <:):2n_2,y, 2) 2 C3 x Com and Qg = (x2n_2,xy, z) 2 C3 x Com.
Then Q1 and Q2 are the only candidates for proper F-centric, F-radical subgroups up to
conjugation. Moreover, one of the following cases occurs:

(aa) Autr(Q1) = Autr(Q2) = Ss.
(ab) Autr(Q1) = Cs and Autr(Q2) = Ss.
(ba) Autr(Q1) = S3 and Autr(Q2) = Cs.

(bb) Autr(Q1) = Autr(Q2) = Cs.
In case (bb) the block B is nilpotent.

Proof. Let @ < D be F-centric and F-radical. Then z € Z(D) C Cp(Q) C @ and
Q = (QN{x,y)) x (). Since Aut(Q) is not a 2-group, @ N (x,y) and thus @ must be
abelian (see [Lemma 9.2)). Let us consider the case @ = (z,z). Then m = n — 1 (this is not
important here). The group D C Ng(Q, bg) acts trivially on Q(Q) C Z(D), while a non-
trivial automorphism of Aut(Q) of odd order acts non-trivially on Q(Q) (see Theorem 5.2.4
in [I07]). This contradicts O2(Autz(Q)) = 1. Hence, Q is isomorphic to C% x Cym, and
contains an element of the form x'y. After conjugation with a suitable power of  we may
assume @ € {Q1,Q2}. This shows the first claim.

Let S < D be an arbitrary subgroup isomorphic to C3 x Com. If z ¢ S, the group
(S,z) = ({(S,z) N {z,y)) x (z) is abelian and of order at least 23, Hence, (S, z) N (z,y)
would be cyclic. This contradiction shows z € S. Thus, S is conjugate to @ € {Q1,Q2}.
Since [Np(Q)| = 23, we derive that @ is fully F-normalized. In particular, Np(Q)/Q =
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9.1. D2n X CQm

Cs is a Sylow 2-subgroup of Autrz(Q). Hence, Oy (Autz(Q)) has index 2 in Autr(Q).
Assume Np(Q) Cq(Q) < Ng(Q,bg). Lemma 5.4 in [203] shows Oz(Autz(Q)) = 1. If
m # 1, we have |Aut(Q)| = 2% - 3 for some k € N, since ®(Q) < Q(Q)®(Q) < Q are
characteristic subgroups. Then Autr(Q) = Ss3. Hence, we may assume m = 1. Then
Autr(Q) < Aut(Q) = GL(3,2). Since the normalizer of a Sylow 7-subgroup of GL(3,2)
has order 21, it follows that |Oo (Autz(Q))| # 7. Since this normalizer is selfnormalizing
in GL(3,2), we also have |Oy(Autz(Q))| # 21. This shows |Oy(Autr(Q))| = 3 and
Autx(Q) =2 S, because |GL(3,2)| = 23 -3 -7 (compare also with [Proposition 6.12)).

The last claim follows from Alperin’s Fusion Theorem and e(B) = 1. O

The naming of these cases is adopted from [46]. Since the cases (ab) and (ba) are symmetric,
we ignore case (ba). It is easy to see that Q1 and Q2 are not conjugate in D. Hence, by
Alperin’s Fusion Theorem the subpairs (Q1,bq,) and (Q2,bg,) are not conjugate in G. It
is also easy to see that ()1 and Q9 are always JF-centric.

Lemma 9.4. Let Q € {Q1,Q2} such that Autr(Q) = Ss. Then

Co(Na(Q,bg)) € {{z), (z*""2)}.

In particular 2% € Co(Ng(Q,bg)) and 22" 2 ¢ Co(Ng(Q,bg)) for j € Z.

Proof. We consider only the case @) = @1 (the other case is similar). It is easy to see that
the elements in @ \ Z(D) are not fixed under Np(Q) € Np(Q,bg). Since D acts trivially
on Z(D), it suffices to determine the fixed points of an automorphism « € Autr(Q) of
order 3 in Z(D). It is easy to see that Cg(a) = (a) has order 2™. First we show that
a € Z(D). Suppose the contrary. Let § € Autz(Q) be the automorphism induced by
22" € Np(Q) C Ng(Q,bg). Then we have 3(a) # a. Since S~ = a~!, we have
a(B(a)) = B(a~(a)) = B(a). Thus, B(a) € Co(a) = (a). This gives the contradiction
B(a)a= € D' N {a) = (x?) N {a) = 1. Now in case m # 1 the claim is clear. Thus, assume
m =1 and a =2%"". Then f3 acts trivially on Q/(a) and « acts non-trivially on Q/{a).
This contradicts Baf ta = 1. O

It is not possible to decide whether Co(Ng(Q,bg)) is (z) or (2" *2) in since

2n—2
we can replace z by x z.

Lemma 9.5. A set of representatives R for the F-conjugacy classes of elements u € D
such that (u) is fully F-normalized is given as follows:

(i) 227 (i=0,1,...,2"72 j=0,1,...,2™ — 1) in case (aa).
(i) %27 and y2/ (i=0,1,...,2"72 §=0,1,...,2™ — 1) in case (ab).

Proof. By [Lemma 9.3| and [Lemma 9.4/ in any case the elements x%2/ (i = 0,1,...,2""2
j =0,1,...,2™ — 1) are pairwise non-conjugate in F. Moreover, (z, z) C Cg(z'z’) and
|D : Np((z'27))] < 2. Suppose that (x'yz7) < D for some i, j € Z. Then we have z*+2yzJ =
z(zlyz?)z~! € (2'y2?) and the contradiction 2% € (z'yz7). This shows that the subgroups
(x'27) are always fully F-normalized.

Assume that case (aa) occurs. Then the elements of the form z%yz7 (i, j € Z) are conjugate
to elements of the form z?z7 under D UNg(Q1,bg,). Similarly, the elements of the form
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x¥tyzd (i, € Z) are conjugate to elements of the form 2%27 under D UNg(Q2,bg,). The
claim follows in this case.

In case (ab) the given elements are pairwise non-conjugate, since no conjugate of yz7 lies in
Q2. As in case (aa) the elements of the form 2%y27 (i,j € Z) are conjugate to elements of
the form yz7 under D and the elements of the form z?*'y2J (i, € Z) are conjugate to
elements of the form 2?27 under D UNg(Q2,bg, ). Finally, the subgroups (yz7) are fully
F-normalized, since 2’ is not conjugate to an element in Qs. O

Lemma 9.6. Olsson’s Conjecture ko(B) < 2™%% = |D : D'| is satisfied in all cases.

Proof. We consider the B-subsection (x,b). Since (z) is fully F-normalized, b, has defect
group (z, z). Since (x, z) cannot be isomorphic to a subgroup of @1 (or Q2), it follows that
Autz((z, z)) is a 2-group. Hence, b, is nilpotent and I(b;) = 1. Moreover, x is F-conjugate

(even D-conjugate) to o~ 1. Now the claim follows from [Theorem 5.3 O

Theorem 9.7. In all cases we have
k(B) =2"(2"% +3), ko(B) = 2m*2, ki(B) = 27272 — 1).

Moreover,
1 in case (bb)

I(B)=1<¢2 1n case (ab) .

3 in case (aa)

In particular Brauer’s k(B)-Conjecture, Brauer’s Height Zero Congecture and the Alperin-
McKay Conjecture hold.

Proof. Assume first that case (bb) occurs. Then B is nilpotent and k;(B) is just the number
ki(D) of irreducible characters of D of degree 2¢ (i > 0) and I(B) = 1. Since Cym is abelian,
we get k;(B) = 2™k;(Dgn). The claim follows in this case. Thus, we assume that case (aa)

or case (ab) occurs. We determine the numbers I(b) for the subsections in and

apply Let us begin with the non-major subsections. Since Autz((z, z)) is a
2-group, the blocks b,i,; fori=1,...,2" 2 -1 and j =0,1,...,2™ — 1 are nilpotent by
. In particular, I(b,i,;) = 1. The blocks b,.; (j =0,1,...,2™ — 1) have Q1 as
defect group. Since Ng(Q1,b9,) = Np(Q1) Ca(Q1), they are also nilpotent, and it follows
that 1(b,.;) = 1.

We divide the (non-trivial) major subsections into three sets:

U:i={2®""2%:j=0,1,...,2" " —1},
Vi={z:j=1,...,2m -1},
W= {22 2%+ j=0,1,..., 2" — 1},

By case (bb) occurs for by, and we get I(b,) = 1 for u € U. The blocks b, with
v € V dominate unique blocks b, of Cg(v)/(v) with defect group D/{v) = Dan X Com /()|

such that [(b,) = I(b,). The same argument for w € W gives blocks b,, with defect group
D/{w) = Dan. This allows us to apply induction on m (for the blocks b, and b,,). The

beginning of this induction (m = 0) is satisfied by Theorem 8.1} Thus, we may assume
m > 1. By [Lemma 1.36| the cases for b, (resp. by) and b, (resp. b,,) coincide.

98



9.1. D2n X CQm

Suppose that case (ab) occurs. By case (ab) occurs for exactly 2™ — 1 blocks
in {b,:v € V}U{by,:w € W} and case (bb) occurs for the other 2™~ blocks. Induction

gives
DUl + > Ubw) =Y by + > 1by) =2(2" = 1) + 277

veV weW veV weW
Taking all subsections together, we derive

k(B) —1(B) = 2m(2""2 4+ 3) — 2.

In particular k(B) > 2™(2""2 4+ 3) — 1. Let u := 22"~ € Z(D). Then 2" | dy.,, and
2h0C0)+1 tdy,, for x € Irr(B) by |Lemma 1.39} In particular dy,, # 0. M gives

M4 < ko(B)+AR(B)—ko(B) < > (d%,.) = (d(w), d(u) = |D| = 2"*™. (9.1)
Xx€Elrr(B)

Hence, we have

XPu

« ) FEl if h(x) =0
+2 otherwise

and the claim follows in case (ab).

Now suppose that case (aa) occurs. Then by the same argument as in case (ab) we have

S Ubo) + > Ubw) =Y 1by) + > b)) =3(2" = 1) + 27

veV weW veV weW

Observe that this sum does not depend on which case actually occurs for b, (for example).
In fact all three cases for b, are possible. Taking all subsections together, we derive

k(B) —1(B) = 2™(2""2 + 3) — 3.

Here it is not clear a priori whether /(B) > 1. Brauer delayed the discussion of the possibility
I(B) = 1 until section 7 of [46]. Here we argue differently via lower defect groups and
centrally controlled blocks. First we consider the case m > 2. By [Lemma 9.4] we have
(D,N¢(Q1,b0,),Na(Q2,b0,)) € Ca(2?), i.e. B is centrally controlled. By [Theorem 1.40
we get [(B) > [(b,2) = 3. Hence, the claim follows with Inequality [(9.1)]

Now consider the case m = 1. By there is a (unique) non-trivial fixed point

u € Z(D) of Ng(Q1,bg,). Then I(b,) > 1. By [Theorem 8.1 the Cartan matrix of b,
(1)

has 2 as an elementary divisor. Hence, [Proposition 1.43| implies my, (Q) > 0 for some

Q < Cg(u) = Ng({u)) of order 2. Since (u) < Z(Cg(u)), we have @ = (u) by
Now it follows from [Lemma 1.44] that mg)(Q, bg) = mg;(Q) = ml(,i)(Q) > 0. This shows

[(B) > 2 by [Proposition 1.43] Now the claim follows again with Inequality [(9.1)] O

We add some remarks. For every n > 3 and each case ((aa), (ab) or (bb)) there is a finite
group H with Sylow 2-subgroup Dy and fusion system F (see [Theorem 10.17| below).
Taking the principal block of H x Com we get examples for B for any parameters. Moreover,
the principal block of Sg shows that also Cg, (Ng(Q1,bq,)) # Cg,(Na(Q2,bq,)) is possible
in case (aa). This gives an example, where B is not centrally controlled (and m = 1).
In particular, the fusion system in case (aa) is not unique. still gives the
impression that B should be perfectly isometric (or even Morita equivalent) to a tensor
product of a block with defect group Don and the group algebra F'Com. However, we show
that this is not always true. This result is new and was suggested by Kiilshammer.
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Proposition 9.8. The principal 2-block of FSg is not perfectly isometric (nor Morita
equivalent) to A @ FCy where A is a block of a finite group with defect group Dsg.

Proof. We have I(By(FSg)) = 3 and k(Bo(F'Se)) = 10. Since A @ FC5 can be treated as
a block of a direct product of the form H x Cs, we may assume that {(A) = 3 (see [308]).
Let Z7 := Z(B()(FSG)) and Zy := Z(A KRE FCQ) = Z(A) QRp FCy. By Theorem 4.11 in [53]
it suffices to show that Z; and Zs are not isomorphic as F-algebras. By the main result
of [57] the algebra Z(A) is determined up to isomorphism. Hence, we may assume that
A = By(FAg) and A®p FCy = By(F(Ag x Cq)). We compare the kernels of the Frobenius
map 7 = {a € Z; : a®> = 0} for i = 1,2. The block idempotent of By(FSg) is given by
1+(1,2,3,4,5)" where (1,2,3,4,5)" is the class sum of the conjugacy class of (1,2,3,4,5)
in Sg. It follows that Z7 has a basis b1, ..., big such that each b; has the form b; = deLi g
for a subset L; C Sg which is closed under conjugation (see Proposition 2.2 in [23§]). In
particular all the structure constants of Z1 are 0 or 1. An element a = Z}gl a;b; (a; € F for
i=1,...,10) belongs to 21 if and only if Egl a?b? = (. This gives linear equations of the
form 0 = af +...+ a?j = (ai, +...+a;;)* = ai, +...+a;,. A computer calculation implies

dimp 21 = 7. Similarly we obtain dimpg 22 = 8. Hence, Z; and Z5 are not isomorphic. [

As another remark we mention that B cannot be a block of maximal defect of a simple
group for m > 1 by the main theorem in [118].

Theorem 9.9. Alperin’s Weight Congjecture holds for B.

Proof. Let QQ < D be F-centric and F-radical. By we have Outz(Q) = S3 or
Outr(Q) =1 (if @ = D). In particular Outz(Q) has trivial Schur multiplier. Moreover,

F Outz(Q) has precisely one block of defect 0. Now the claim follows from [Theorem 9.7, [J
Theorem 9.10. The Ordinary Weight Conjecture holds for B.

Proof. Let Q < D be F-centric and F-radical. In the case @ = D we have Outz(D) = 1 and
Np consists only of the trivial chain. Then it follows easily that w(D,d) = k%(D) = k%(B)
for all d € N. Now let Q € {Q1,Q2} such that Out£(Q) = Autz(Q) = S3. It suffices
to show that w(@,d) = 0 for all d € N. Since @ is abelian, we have w(Q,d) = 0 unless
d =m + 2. Thus, let d = m + 2. Up to conjugation Ny consists of the trivial chain o : 1
and the chain 7: 1 < C, where C' < Outx(Q) has order 2.

We consider the chain o first. Here I(0) = Outz(Q) = S3 acts faithfully on Q(Q) = C3
and thus fixes a four-group. Hence, the characters in Irr(Q) split into 2 orbits of length
3 and 2™ orbits of length 1 under I(o) (see also [Lemma 9.4). For a character x € Irr(D)
lying in an orbit of length 3 we have I(c,x) = Cy and thus w(Q, o, x) = 0. For the 2™
stable characters x € Irr(D) we get w(Q, o, x) = 1, since I(o, x) = Outz(Q) has precisely
one block of defect 0.

Now consider the chain 7. Here I(7) = C and the characters in Irr(Q) split into 2™ orbits
of length 2 and 2™*! orbits of length 1 under (7). For a character y € Irr(D) in an orbit
of length 2 we have I(7,x) = 1 and thus w(Q, 7, x) = 1. For the 2™*! stable characters
x € Irr(D) we get I(r,x) = I(17) = C and w(Q, 7, x) = 0.
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Taking both chains together, we derive
w(Q,d) = (—1)lelHtam 4 (—1)ltl+igm —gm _gm _ g

This proves the OWC. O

Finally we show that the Gluing Problem for the block B has a unique solution. This was
done for m = 0 in [242].

Theorem 9.11. The Gluing Problem for B has a unique solution.

Proof. We will show that H(Autz(c), FX) =0 for i = 1,2 and every chain ¢ of F-centric
subgroups of D. Then it follows that A% = 0 and HO([S(F°¢)], AZ) = H'([S(F°)], AL) = 0.
Hence, by Theorem 1.1 in [242] the Gluing Problem has only the trivial solution.

Let @ < D be the largest (F-centric) subgroup occurring in o. Then as in the proof of
[Lemma 9.3|we have Q = (QN(z,y)) x (2). If QN (z,y) is non-abelian, Aut(Q) is a 2-group by
Lemma 9.2 In this case we get H (Autz (o), F*) = 0 for i = 1,2 (see proof of Corollary 2.2
in [242]). Hence, we may assume that Q € {Q1,Q2} and Autz(Q) = S (see proof of

for the case @ = (z, 2)). Then o only consists of @ and Autr(c) = Autr(Q).
Hence, also in this case we get H'(Autz(c), F*) =0 for i = 1,2. O

92 D2n * C2m

It seems natural to proceed with defect groups of type QQon X Com. However, in order to do
so we first need to settle the problem for central products which occur in the induction
step. Let

=y =" =) =y A =1, yay T =27 2T =)

= (z,y) * (2) = Dan % Cam

D= (z,y,z | z¥

where n > 2 and m > 1. For m = 1 we get D = Don. Then the invariants of B are known.
Hence, we assume m > 2. Similarly for n = 2 we get D = (y,z) = Co X Com. Then B
is nilpotent and everything is known. Thus, we also assume n > 3. Then we have D =
(2,922, 2) 2 Qgn % Cam. For n > 4 we also have D = (222" "y, z) & SDgn % Com.

The first lemma shows that the situation splits naturally into two cases according to n = 3
orn > 4.

Lemma 9.12. The automorphism group Aut(D) is a 2-group if and only if n > 4.

Proof. Since Aut(Qg) = Sy, we see that Aut(QgxCam) is not a 2-group. An automorphism of
Qs x Cam of odd order acts trivially on (Qgx Cam)" = Co and on Z(Qg x Cam)/(Qg x Cam )| =
Cym and thus also on Z(Qs x Cam) by Theorem 5.3.2 in [107]. Hence, Aut(Qg % Cam) =
Aut(Dg * Cam) is not a 2-group.

Now assume n > 4. Then ®(D) = (22, 2?) < ®(D) Z(D) = (22, 2) are characteristic sub-
groups of D. Moreover, (x, z) is the only abelian maximal subgroup containing ®(D) Z(D).
Hence, every automorphism of Aut(D) of odd order acts trivially on D/®(D). The claim
follows from Theorem 5.1.4 in [107]. O
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It follows that the inertial index e(B) of B equals 1 for n > 4. In case n = 3 there are two
possibilities e(B) € {1,3}, since ®(D) Z(D) is still characteristic in D. Now we investigate
the fusion system F of B.

Lemma 9.13. Let Q, := <:c2n73,y, 2) & Dgx Com and Qo = <x2n73,:cy,z> >~ Dg * Com.
Then Q1 and Q9 are the only candidates for proper F-centric, F-radical subgroups up to
conjugation. Moreover, one of the following cases occurs:

(aa) n=e(B) =3 or (n >4 and Outr(Q1) = Outr(Q2) = S3).

(ab) n >4, Outz(Q1) = Cy, and Outr(Q2) = Ss.

(ba) n >4, Outr(Q1) = S3, and Outr(Q2) = Cs.

(bb) Outr(Q1) = Outr(Q2) = Co.
In case (bb) the block B is nilpotent.

Proof. Let @ < D be F-centric and F-radical. Then z € Z(D) C Cp(Q) C @ and
Q= (QN{x,y))*(z). If @ N (x,y) is abelian, we have

Q= (z'y,2) 2 Cy x Cym  or
Q == <«'B, Z> = CQ’"« * sz = CQmax(n,m) X CQmin(n,m)fl

for some ¢ € Z. In the first case, Aut(Q) is a 2-group, since m > 2. Then Oz(Aut£(Q)) # 1.
Thus, assume @ = (z,z). The group D C Ng(Q,bq) acts trivially on Q/®(Q), while
a non-trivial automorphism of Aut(Q) of odd order acts non-trivially on Q/®(Q) (see
Theorem 5.1.4 in [107]). This contradicts O2(Aut£(Q)) = 1. (Moreover, by Lemma 5.4 in
[203] we see that Autz(Q) is a 2-group.)

Hence by Q is isomorphic to Dg * Com and contains an element of the form
x'y. After conjugation with a suitable power of z we may assume @ € {Q1,@2}. This shows
the first claim.

Let S < D be an arbitrary subgroup isomorphic to Dg Com. If z ¢ S, then for (S, z) =
((S, z)N{x,y))(z) we have (S, z) = 5" = Cy. However, this is impossible, since (S, z) N (z, y)
has at least order 16. This contradiction shows z € S. Thus, S is conjugate to @ € {Q1,Q2}
under D. In particular @ is fully F-normalized. Hence, Np(Q)/Q = Cs is a Sylow 2-
subgroup of Outr(Q). Assume Np(Q) Ce(Q) < Ng(Q,bg). Since O2(Outr(Q)) =1 and
|Aut(Q)| = 2% - 3 for some k € N, we get Outz(Q) = Ss.

The last claim follows from Alperin’s Fusion Theorem and e(B) =1 (for n > 4). O

Since the cases (ab) and (ba) are symmetric, we ignore case (ba). It is easy to see that Q1
and Q2 are not conjugate in D if n > 4. Hence, by Alperin’s Fusion Theorem the subpairs
(Q1,bg,) and (Q2,bg,) are not conjugate in G. It is also easy to see that 1 and Q2 are
always F-centric.

Lemma 9.14. Let Q € {Q1,Q2} such that Outr(Q) = Ss. Then

Co(Na(Q,bQ)) = 2(Q) = (2).
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Proof. Since Q@ C Np(Q,bq), we have Co(Ng(Q,bg)) € Co(Q) = Z(Q). On the other
hand, Np(Q) and every automorphism of Autz(Q) of odd order act trivially on Z(Q) =
Z(D) = (z) = Cym. Hence, the claim follows. O

Lemma 9.15. A set of representatives R for the F-conjugacy classes of elements u € D
such that (u) is fully F-normalized is given as follows:

(i) 227 (i=0,1,...,2"2 j=0,1,...,2"" 1 — 1) in case (aa).
(ii) °27 and y2/ (i=0,1,...,2"72 j=0,1,...,2" 1 — 1) in case (ab).

Proof. The proof works exactly as in [Lemma 9.5| O

Lemma 9.16. Olsson’s Conjecture ko(B) < 2™+ = |D : D'| is satisfied in all cases.

Proof. This follows from [Theorem 5.3 (cf. [Lemma 9.6)). O

Lemma 9.17. Let v be the 2-adic valuation, and let ¢ be a primitive 2F-th root of unity
for k>2. Then 0 <v(1+¢) <1.

Proof. We prove this by induction on k. For k = 2 we have ¢ € {+i}, where i = /—1.
Then 2v(1 + i) = v((1 +)?) = v(2i) = 1 and the claim follows. Now let & > 3. Then
2v(14+¢) = v((1+¢)%) = v(1 + ¢ +20) = v(1 +¢?), since v(1+¢*) < 1 = v(2) by
induction. O

Theorem 9.18.
(i) In case (aa) and n = 3 we have k(B) = 2™1 .7, ko(B) = 2™+, ky(B) = 2™ 1.3,

and l[(B) =
(i) In case (aa) and n > 4 we have k(B) = 2m~1(2""2 1+ 5), ko(B) = 2™, k1 (B) =
2m=1(n=2 1) k, o(B) =2™, and I(B) =

)
(iii) In case (ab) we have k:( ) = 2m_1(2n_2+4), ko(B) = 2™+ ky(B) = 2m1(2n2 1),
kn—o(B) =2m"1 and I(B) =
)=

(iv) In case (bb) we have k(B) = 2m~1(2""243), ko(B) = 2™T!, ky(B) = 2m~1(2n 2 - 1),
and I(B) =

In particular Brauer’s k(B)-Conjecture, Brauer’s Height Zero Congjecture and the Alperin-
McKay Congecture hold.

Proof. Assume first that case (bb) occurs. Then B is nilpotent and k;(B) is just the number
ki(D) of irreducible characters of D of degree 2° (i > 0) and I(B) = 1. In particular
ko(B) = |D : D'| = 2™+ and k(B) = k(D) = 2™~1(2"=2 4 3). Since |D| is the sum of the
squares of the degrees of the irreducible characters, we get k1(B) = k(D) = 2m~1(2"2—-1).

Now assume that case (aa) or case (ab) occurs. We determine the numbers [(b) for the

subsections in and apply [Theorem 1.37} Let us begin with the non-major

subsections. Since Autz({x, z)) is a 2-group, we have l(b,i,;) =1 forall i = 1,...,2" "2 — 1
and j = 0,1,...,2"~!1 — 1. The blocks by (= 0,1,...,2™71 — 1) have Cp(yz’) =
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(y27,z) = Cy x Cym as defect group. Hence, they are also nilpotent, and it follows that
l(by.i) = 1.

The major subsections of B are given by (z7,b,;) for j =0,1,...,2™ — 1 up to conjugation.
By the cases for B and b,; coincide. As usual, the blocks b,; dominate blocks
b,; of Cq(27)/(z7) with defect group D/{z7) & Dgyn-1 x Com |(z9y) for j # 0. We have
I(b,;) = l(b,;). The cases for b,; and b,; also coincide. Now we discuss the cases (ab) and
(aa) separately.

Case (ab):
Then we have [(b,;) = I(b,;) = 2 for j = 1,...,2™ —1 by|Theorem 9.7, Hence, Theorem 1.37]
implies
k(B) —1(B) =2m"1(2" 2 —1) 4+ 2m 4 2(2m — 1) = 2™ 1 (2" 2 4 4) — 2.
Since B is a centrally controlled block, we have [(B) > I(b,) = 2 and k(B) > 2m~1(2"72 +4)

by [Theorem 1.40, In order to bound k(B) from above we study the numbers d3,,. Let
D? = (d5,, ) yemr(B),- Then (D*)TD? = O~ is the Cartan matrix of b,. Since b, has defect
i=1,2

=1,
group Dyn-1, the matrix C# is given by

=341 2
zZ __ om
CF=2 ( 2 4)

up to basic sets (see [Theorem 8.1|). We consider the generalized decomposition numbers
more carefully. As usual we write

2am=1_1

G = D a00¢

J=0

for i = 1,2, where ( is a primitive 2”-th root of unity. Since the subsections (z7,b,;) are

pairwise non-conjugate for j =0,...,2™ — 1, we get
(a}’ a}) = (271—2 + 2)51']', (CL%, a?) = 45@', (a?, a?) = 851]
Then

= -3 -
Mo = Ay By = 2o, Ay, + By, ) + (2777 + )i, i,

It follows from [Proposition 1.3§| that

2am—1_1
h(x) =0<=mi, € 0" = d,, €0 < Y aj(x)=1 (mod?2). (9.2)
j=0

Assume that k(B) is as large as possible. Since (z,b,) is a major subsection, no row of D?

vanishes. Hence, for j € {0,1,...,2™"1 — 1} we have essentially the following possibilities
(where €1, €2, €3, €4 € {£1}; cf. proof of Theorem 3.15 in [235]):
1
all 1 -0 H1 e € e € e e e e
(1) : ] 1 € €3 €& ’
a; €1 € € € =+1 +£1 +1 =1
Ty, oor +1 6 e € e e e
(I1) : ] 1 €2 €3 ’
a; 261 € e 1 +1 . .o .
1
a; | £1 -+ £1 € €2 . .
(rrny: | 2 b .
aj 2¢1 2¢e9
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The number k(B) would be maximal if case (I) occurs for all j and for every character x €
Irr(B) we have Z?:gl_l la}(x)] <1 and E?:gl_l |a?(x)| < 1. However, this contradicts
ILemma 9.16 and [Equation (9.2)l This explains why we have to take the cases (II) and (III)
also into account. Now let o (resp. 7, §) be the number of indices j € {0,1,...,2m" 1 -1}
such that case (I) (resp. (II), (III)) occurs for aé-. Then obviously a + 8+ = 2" L It

is easy to see that we may assume for all ¥ € Irr(B) that 2-117171 al < 1 in order

to maximize k(B). In contrast to that it does make sense to have a?(x) # 0 # a(x) for

some j # k in order to satisfy Olsson’s Conjecture in view of [Equation (9.2) Let § be the
number of pairs (x,7) € Irr(B) x {0,1,...,2™~1 — 1} such that there exists a k # j with

a?(x)a%(x) # 0. Then it follows that

y=2""1—a-8,
k(B) < (2" 2+46)a+ (2" 2 +4)8+ (2" 2 +2)y —6/2
=23 4 6o+ 48 + 2y — §/2
= 2mFTNT3 L 9M 4 4o + 28 — 6/2,
8a+ 48 — 6 < ko(B) < 2T,

This gives k(B) < 2m+n=3 4 om+l — om=1(9n=2 4 4) Together with the lower bound
above, we have shown that k(B) = 2m~1(2""2 + 4) and I(B) = 2. In particular the cases
(I), (IT) and (III) are really the only possibilities which can occur. The inequalities above
imply also ko(B) = 2™*!. However we do not know the precise values of a, 3, 7, and d.
We will see in a moment that § = 0. Assume the contrary. If y € Irr(B) is a character
such that ajz(x)ai(x) # 0 for some j # k, then it is easy to see that ajz(x)ai(x) € {1}
and af(x) = 0 for all I ¢ {j,k}. For if not, we would have 8« + 43 — § < ko(B) or
k(B) < 2m*n=3 1 2m 4 4o+ 23 — 6/2. Hence, we have to exclude the following types of rows
of D* (where € € {£1}): (e¢7, €7 + eC¥), (e¢7,e¢? — €C*), (0, €7 + €C*), and (0, ¢/ — eCF).
Let d5 be the row of D* corresponding to the character x € Irr(B). If df = (e, eC? + €eCF)
for j # k we have

M = 4=22+ ¢+ )+ (2P H D)@+ HC) = 44 (200 - 1) (24T ).

Since v(¢I7F + ¢F7) = v(F(IF 4 ¢F9)) = v(1 + ¢2U—R), [Lemma 9.17] implies (2 +
¢77F 4 ¢*7) < 1. This yields the contradiction 1 < h(y) < v(m5,) < 1. A very similar
calculation works for the other types of rows. Thus, we have shown § = 0. Then the rows

of D? have the following forms: (£¢7,0), (e¢?,€¢?), (0,£¢7), and (e¢/,2¢e¢7). We already
know which of these rows correspond to characters of height 0. In order to determine k;(B)
we calculate the contributions for the remaining rows. If df = (£¢7,0), we have m5, = 4.
Then [Proposition 1.38implies ~(y) = 1. The number of these rows is precisely

(2n72 _ 2)C¥+ (21172 _ 1)/B+ 27172,)/ — 2n+m73 —2q — ﬁ — 2n+m73 _ 2m71 — 2m71(2n72 _ 1)

Now assume that ¢ € Irr(B) is a character of height 0 such that df, = (0, +¢7) (such
characters always exist). Let x € Irr(B) such that dj = (eC¥,2¢e¢¥), where € € {£1}. Then
m?,, = —2(£e¢FT) 4+ (2773 + 1) (+e2¢F7) = £€2"72¢FJ, and [Proposition 1.38| implies
h(x) = n — 2. The number of these characters is precisely k(B) — ko(B) — 2"~ 1(2"72 —1) =
2m=1 This gives k;(B) for i € N (recall that n > 4 in case (ab)).

Case (aa):
Here the arguments are similar, so that we will leave out some details. By we
have

k(B)—1(B)=2""12"2-1)+302™ - 1)=2""1(2""2+5) - 3.
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Again B is centrally controlled, and [(B) > 3 and k(B) > 2™~1(2"=2 + 5) follow from
Theorem 1.40} The Cartan matrix C* of b, is given by

up to basic sets (see [Theorem 8.1)). We write IBr(b.) = {1, 2, ¢3} and define the integral

columns a’ for ¢ =1,2,3 and j =0,1,...,2™" 1 — 1 as in case (ab). Then we can calculate
the scalar products (aé-, af ). In particular the orthogonality relations imply that the columns

a? and ag? consist of four entries =1 and zeros elsewhere. The contributions are given by

w - 4dx<p1diw1 o (

+ d;w df/)«ps

df(@l dfbgﬂz + dX<P2 dztpr + dX#’ldfﬂﬁ% + dXWSdf%Pl)
2
i, + (207 + 1) (d5g, 42, + iy )

for x, 1 € Irr(B). As before, [Proposition 1.38implies

Z 2
h(x) =0 <= m}, € O* <= |d},, +d;,,|" € O
. . gm—1_1 (93)
= dly, +di,, €0" = > (aj(x)+dl(x)) =1 (mod?2).
7=0

In order to search the maximum value for k(B) (in view of [Lemma 9.16|and [Equation (9.3))
we have to consider the following possibilities (where €1, €9, €3, €4 € {£1}):

ajl- +1 -+ X1 € € €3 € . .
I): | o € € . . ol *1 . o o o]
a? €3 €4 . . £l %1
ajl- +1 - £1 € € €3
(I1): | a; e e . e A+l ]
a;-’ €0 €3 —€4 . +1
ajl- +1 - £l € e
(IIT): a? €1 € €3 €
a;’ €1 € —€3 —€4

We define o, 8 and 7 as in case (ab). Then we have a+ 3+~ = 2™~L. Let 6 be the number
of triples (x,i,7) € Irr(B) x {2,3} x {0,1,...,2™~! — 1} such that there exists a k # j
with aé- (x)az(x) # 0 or aé- (x)ai(x) # 0. Then the following holds:

Y= 2m71 -« — /87
E(B) < (2" 2 +6)a+ (2" 2 +5)8+ (2" 2 +4)y — /2
= ontm=3 L gmFl L on 4+ 5 —§/2,
8a +48 — 6§ < ko(B) < 2mTL,
This gives k(B) < 2ntm=3 yom+l 4 gm—1 — gm=1(9n=2 4 5) Together with the lower bound

we have shown that k(B) = 2™ 1(2"2 +5), ko(B) = 2™} and I(B) = 3. In particular
the maximal value for k(B) is indeed attended. Moreover, § = 0. Let x € Irr(B) such that
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dy = (£¢7,0,0). Then m%, = 4 and h(x) = 1 by [Proposition 1.38, The number of these
characters is

(2n72 o 2)a + (27172 . 1)/8 + 271727 — 2n+m71 o 2m71 _ 2m71(2n72 . 1)

Now let ¢ € Irr(B) a character of height 0 such that dj, = (0,0, +¢7), and let x € Irr(B)
such that df = (eCk,eC¥, eC*), where e € {#1}. Then we have mi, = —2(FeCh ) £eChT +
(2772 +1)(£e¢*7) = £2"2¢*7 and h(x) = n — 2. The same holds if d% = (0,eC*, —e¢").
This gives the numbers k;(B) for i € N. Observe that we have to add k1 (B) and k,_2(B)
in case n = 3. O

If we take m = 1 in the formulas for k;(B) and [(B) we get exactly the invariants for the
defect group Qon. However, recall that Don x Cy = Don. Using [Theorem 10.17| below it is
easy to construct examples for B in all cases.

Theorem 9.19. Alperin’s Weight Conjecture holds for B.

Proof. Let @@ < D be F-centric and F-radical. By [Lemma 9.13| we have Outz(Q) = Ss,
Outr(Q) = C3, or Outz(Q) = 1 (in the last two cases we have ) = D). In particular

Outz(Q) has trivial Schur multiplier. Moreover, the group algebras F'1 and F'Ss have
precisely one block of defect 0, while F'C3 has three blocks of defect 0. Now the claim
follows from [Theorem 9.18] ]

Lemma 9.20. Let ¢ be a primitive 2™-th root of unity. Then for n = 3 the (ordinary)
character table of D s given as follows:

1 z
11 1 ¢
1(—-1 1 ¢
11 -1 ¢
1|-1 -1 ¢
) 0 0 CQT+1
where 7 =0,1,...,2m 1 — 1.
Proof. We just take the characters y € Irr(Dg x Cam) with X(x222m71) = x(1). O

Theorem 9.21. The Ordinary Weight Conjecture holds for B.

Proof. We may assume that B is not nilpotent, and thus case (bb) does not occur. Suppose
that n = 3 and case (aa) occurs. Then D is the only F-centric, F-radical subgroup of D.
Since Outz(D) = C3, the set Np consists only of the trivial chain. We have w(D,d) = 0
for d ¢ {m +1,m + 2}, since then k%(D) = 0. For d = m + 1 we get w(D,d) = 3-2m"! by
In case d = m + 2 it follows that w(D,d) = 3 -2m~! 4+ 2m~1 = 2m+1 Hence,
the OWC follows from [Theorem 9.18]
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Now let n > 4 and assume that case (aa) occurs. Then there are three F-centric, F-radical
subgroups up to conjugation: @1, Q2 and D. Since Outz(D) = 1, it follows easily that

w(D,d) = k%D) for all d € N. By [Theorem 9.18|it suffices to show

2ml ifd=m+1
w(Q,d) =
(@.d) {O otherwise
for Q € {Q1,Q2}, because k™ (B) = k,_o(B) = 2™. We already have w(Q, d) = 0 unless
d € {m+ 1,m + 2}. Without loss of generality let Q@ = Q1.

Let d = m + 1. Up to conjugation Ng consists of the trivial chain o : 1 and the chain
7:1 < C, where C < Outz(Q) has order 2. We consider the chain o first. Here I(0) =
Outr(Q) = S3 acts trivially on the characters of @ or defect m + 1 by .
This contributes 2™ ~! to the alternating sum of w(Q, d). Now consider the chain 7. Here
I(7) = C and 2(FC) = 0 where z(FC) is the number of blocks of defect 0 in FC'. Hence,

the contribution of 7 vanishes and we get w(Q,d) = 2™~ ! as desired.

Let d = m + 2. Then we have I(o, 1) = S3 for every character p € Irr(Q) with p(z2" ") =
u(y) = 1. For the other characters of @ with defect d we have I(o,u) = Cy. Hence, the
chain o contributes 2™ to the alternating sum. There are 2™ characters u € Irr(D) which
are not fixed under I(7) = C. Hence, they split into 21 orbits of length 2. For these
characters we have I(7, u) = 1. For the other irreducible characters p of D of defect d we
have I(7, 1) = C. Thus, the contribution of 7 to the alternating sum is —2™~!. This shows

w(Q,d) =0.

In case (ab) we have only two F-centric, F-radical subgroups: Q2 and D. Since k,,_2(B) =
2m—1 in this case, the calculations above imply the result. ]

Theorem 9.22. The Gluing Problem for B has a unique solution.

Proof. Assume first that n > 4. Let ¢ be a chain of F-centric subgroups of D, and let
Q@ < D be the largest subgroup occurring in . Then as in the proof of we have
Q= (@QnN{z,y))*(z). If QN (z,y) is abelian or Q@ = D, then Autz(Q) and Autx(o) are
2-groups. In this case we get H!(Aut (o), F*) = 0 for i = 1,2 (see proof of Corollary 2.2
in [242]). Now assume that Q € {Q1,Q2} and Autz(Q) = S4. Then it is easy to see
that @ does not contain a proper F-centric subgroup. Hence, o consists only of ¢ and
Autr (o) = Autz(Q). Thus, also in this case we get H (Autr(o), F*) =0 for i = 1,2. It
follows that A% = 0 and H°([S(F¢)], A%) = H'([S(F¢)], AL) = 0. Hence, by Theorem 1.1
in [242] the Gluing Problem has only the trivial solution.

Now let n = 3. Then we have H'(Autz(c), F*) = 0 for i = 1,2 unless 0 = D and
case (aa) occurs. In this case Autr(o) = Autz(D) = Ay. Here H2(Autx(o), F¥) = 0,
but H'(Autz (o), F*) = HY (A4, F*) = HY(C3, F*) = C3. Hence, we have to consider the
situation more closely. Up to conjugation there are three chains of F-centric subgroups:
Q = (x,z), D, and Q < D. Since [S(F°)] is partially ordered by taking subchains, one can
view [S(F€)] as a category, where the morphisms are given by the pairs of ordered chains.
In our case [S(F¢)] has precisely five morphisms. With the notations of [315] the functor
AL is a representation of [S(F¢)] over Z. Hence, we can view AL as a module M over the
incidence algebra of [S(F€)]. More precisely, we have

M= P Ak(a) = AR(D) = Cs.
ac€Ob[S(Fe)]
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Now we can determine H'([S(F¢)], AL) using Lemma 6.2(2) in [315]. For this let d :
Hom[S(F€)] — M a derivation. Then we have d(a) = 0 for all « € Hom[S(F¢)] with
a # (D, D) =: ay. Moreover,

d(ar) = d(enar) = (Ax(en))(d(en)) + d(ar) = 2d(en) = 0.

Hence, H([S(F°)], AL) = 0. O
9-3. an >< CQm
We write

D= (z,y,z|2*" =" =[x,z =y, =1, ¢’ =2, yay L =27

= (2,9) x {2) = Qun x Cim

where n > 3 and m > 0. We allow m = 0, since the results are completely consistent in this
case.

The first lemma shows that the situation splits naturally into two cases according to n = 3

orn > 4.

Lemma 9.23. The automorphism group Aut(D) is a 2-group if and only if n > 4.

Proof. Since Aut(Qg) = Sy, the “only if”-part is easy to see. Now let n > 4. Then the
subgroups ®(D) < ®(D)Z(D) < (x,z) < D are characteristic in D. By Theorem 5.3.2 in
[107] every automorphism of Aut(D) of odd order acts trivially on D/®(D). The claim
follows from Theorem 5.1.4 in [107]. O

It follows that the inertial index e(B) of B equals 1 for n > 4. In case n = 3 there are two
possibilities e(B) € {1, 3}, since ®(D) Z(D) is still characteristic in D. Now we investigate
the fusion system F of B.

Lemma 9.24. Let Q1 := (xQniS,y,z> >~ Qg x Com and Qo := (xQnia,xy, z2) 2 Qg X Cam.
Then Q1 and Q2 are the only candidates for proper F-centric, F-radical subgroups up to
congugation. Moreover, one of the following cases occurs:

(aa) n=e(B) =3 or (n >4 and Out#(Q1) = Out#(Q2) = S3).
(ab) n >4, Outr(Q1) = C2 and Out £(Q2) = Ss.

(ba) n >4, Outr(Q1) = S3 and Outr(Q2) = Cs.

(bb) Outr(Q1) = Outr(Q2) = Co.

In case (bb) the block B is nilpotent.
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Proof. Let Q < D be F-centric and F-radical. Then z € Z(D) C Cp(Q) € Q and
Q = (QN{z,y)) x (z). Let us consider the case Q = (x,z). Then m = n — 1 (this is not
important here). The group D C Ng(Q, bg) acts trivially on Q(Q) C Z(D), while a non-
trivial automorphism of Aut(Q) of odd order acts non-trivially on 2(Q) (see Theorem 5.2.4
in [I07]). This contradicts O2(Autz(Q)) = 1. Moreover, by Lemma 5.4 in [203] we see that
Aut£(Q) is a 2-group (this will be needed later).

Now let Q@ = (z'y, z) for some i € Z. Then we have m = 2, and the same argument as
before leads to a contradiction.

Hence by [Lemma 9.23] @ is isomorphic to Qg x Com, and contains an element of the form
x'y. After conjugation with a suitable power of z we may assume @ € {Q1, Q2}. This shows
the first claim.

Let S < D be an arbitrary subgroup isomorphic to Qg x Com. If z ¢ S| then for (S, z) =
(S, 2)N{x, y)) x(z) we have (S, z)’ = §' = Cy. However, this is impossible, since (S, 2)N(z, y)
has at least order 16. This contradiction shows z € S. Thus, S is conjugate to @ € {Q1, @2}
under D. In particular, @ is fully F-normalized. Hence, Np(Q)/Q = Cj is a Sylow 2-
subgroup of Outz(Q). Assume Np(Q) Ca(Q) < Na(Q,bg). Since O2(Outz(Q)) =1 and
|Aut(Q)| = 2" - 3 for some k € N, we get Outz(Q) = Ss.

The last claim follows from Alperin’s Fusion Theorem and e(B) =1 (for n > 4). O

The naming of these cases is adopted from [235]. Since the cases (ab) and (ba) are symmetric,
we ignore case (ba). It is easy to see that Q1 and @2 are not conjugate in D if n > 4. Hence,
by Alperin’s Fusion Theorem the subpairs (Q1,bg,) and (Q2,bq,) are not conjugate in G.
It is also easy to see that Q1 and Q)2 are always JF-centric.

Lemma 9.25. Let Q € {Q1,Q2} such that Outz(Q) = Ss. Then
Co(Ne(@Q.b)) = Z(Q) = (%", 2).

Proof. Since Q@ € Np(Q,bg), we have Co(Ng(Q,bg)) C Co(Q) = Z(Q). On the other
hand, Np(Q) acts trivially on Z(Q) = Z(D). Hence, it suffices to determine the fixed points
of an automorphism a € Aut(Q) of order 3 in Z(Q). Since « acts trivially on Q' = Cy and
on Z(Q)/Q" = Cam, the claim follows from Theorem 5.3.2 in [107]. O

Lemma 9.26. A set of representatives R for the F-conjugacy classes of elements u € D
such that (u) is fully F-normalized is given as follows:

(i) x'27 (i=0,1,...,2"72 j=0,1,...,2™ — 1) in case (aa).
(i) °27 and yz/ (i=0,1,...,2"72, §=0,1,...,2" — 1) in case (ab).

Proof. By in any case the elements z'2/ (i = 0,1,...,2"72, 7 =0,1,...,2m—1)
are pairwise non-conjugate in F. If n = 3, the block B is controlled and every subgroup
is fully F-normalized. Thus, assume for the moment that n > 4. Then (z,z) C Cg(z'2/)
and |D : Np((z'27))| < 2. Suppose that (x'yz/) < D for some i,5j € Z. Then we have
2220 = z(zly2))x~! € (2'y2’) and the contradiction z? € (2'yz?). This shows that the
subgroups (z'27) are always fully F-normalized.
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Assume that case (aa) occurs. Then the elements of the form z%'yz7 (i, j € Z) are conjugate
to elements of the form z?27 under D UNg(Q1,bg,). Similarly, the elements of the form
x¥*1ly2J (i, 5 € 7) are conjugate to elements of the form 2?27 under D UNg(Q2,bg,). The
claim follows in this case.

In case (ab) the given elements are pairwise non-conjugate, since no conjugate of yz7 lies in
Q2. As in case (aa), the elements of the form x%y27 (i,j € Z) are conjugate to elements of
the form yz7 under D and the elements of the form z?*'y2/ (i, € Z) are conjugate to
elements of the form xQZzJ under D UNg(Q2,bg,). Finally, the subgroups (yz7) are fully
F-normalized, since yz7 is not conjugate to an element in Q3. O

Lemma 9.27. Olsson’s Conjecture ko(B) < 2™+2 = |D : D'| is satisfied in all cases.

Proof. This follows from [Theorem 5.3 (cf. [Lemma 9.6)). O

Theorem 9.28.

(i) In case (aa) and n = 3 we have k(B) = 2™ -7, ko(B) = 2™*2, k1 (B) = 2™ - 3 and
I(B) = 3.

(i) In case (aa) and n > 4 we have k(B) = 2™(2" 2 +5), ko(B) = 2™2, ki (B) =
2m(2n=2 — 1), ky,_o(B) = 2™ and I(B) = 3.

(iii) In case (ab) we have k(B) = 2™ (2" 2 +4), ko(B) = 22, k(B) = 2™(2" 2 — 1),
kn_o(B) = 2 and I(B) = 2.

(iv) In case (bb) we have k(B) = 2™(2" 2 +3), ko(B) = 2™*2, ky(B) = 2™(2" 2 —1) and
I(B) =1.

In particular Brauer’s k(B)-Conjecture, Brauer’s Height-Zero Conjecture and the Alperin-
McKay Conjecture hold.

Proof. Assume first that case (bb) occurs. Then B is nilpotent and k;(B) is just the number
k(D) of irreducible characters of D of degree 2¢ (i > 0) and I(B) = 1. Since Cam is abelian,
we get k;i(B) = 2"k;(Qan). The claim follows in this case.

Now assume that case (aa) or case (ab) occurs. We determine the numbers [(b) for the
subsections in and apply [Theorem 1.37} Let us begin with the non-major
subsections. Since Autz((z, z)) is a 2-group, we have l(b,i,;) =1 foralli=1,...,2"72 —1
and j =0,1,...,2™ — 1. The blocks b,; (j =0,1,...,2™"1 — 1) have Cp(yz’) = (y,2) =
Cy x Com as defect group. In case (ab), Autz(Np((y, 2z))) = Autx(Q1) is a 2-group. Thus,
by Lemma 5.4 in [203] also Autz((y,2)) is a 2-group. Hence, it follows that i(b, ;) = 1 for
j=0,1,...,2m°1 —1.

Now let (u,b,) be a major subsection. By [Lemma 9.25 the cases for B and b, coincide.
As usual, the blocks b, dominate blocks b, of Cg(u)/(u) with defect group D/(u). In case
u = 2 for some j € Z we have D/{u) = Qqn X Com (23| Of course the cases for b, and by,

coincide, and we have I(b,;) = I(b,;). Thus, we can apply induction on m. The beginning

of this induction (m = 0) is satisfied by [Theorem 8.1

27172

Incase u =z we have D/(u) = Dyn—1 x Cam. Then we can apply [Theorem 9.7} Observe

again that the cases for b, and b, coincide.
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Finally, if u = 22" 729 for some jed{l,...,2™ —1}, we have

. ne2 .
D/{u) = (D/())/({&® 27} [{z*)) = Qzn % Cym ) (22
For (27) = (z) we get D/(u) = Qqn. Otherwise we have Qan % Com ) (,2y) = Dan % Com /|25y,
Here we can apply [Theorem 9.18] Now we discuss the cases (ab) and (aa) separately.
Case (ab):
Then we have [(b,) = I(b,) = 2 for 1 # u € Z(D). Hence, [Theorem 1.37] implies
k(B) —1(B) = 2m(2""2 —1) 4+ 2™ 4+ 2(2™ T — 1) = 2m(2""2 4 4) — 2.

Since B is a centrally controlled block, we have [(B) > I(b,) = 2 and k(B) > 2™(2"2 + 4)

by [Theorem 1.40} In order to bound k(B) from above we study the numbers d5,,. Let

D? = (d3, ) yenr(),- Then (D*)TD? = C% is the Cartan matrix of b,. Since b, has defect
i=1,2

group Qon, it follows that

OF — om <2”—2 +2 4>

4 8

up to basic sets (see [Theorem 8.1|). We consider the generalized decomposition numbers
more carefully. Here the proof follows the lines of However, we have to

consider more cases. As in the previous section we write

om—1_1

;%: Z a§'<X)<j

J=0

for i = 1,2, where ( is a primitive 2™-th root of unity. Since the subsections (z7,b,;) are

pairwise non-conjugate for j =0,...,2™ — 1, we get
((Iil, (Ijl) = (2”71 + 4)57;]', (a%, CLJQ) == 857;j, (a?, CLJQ) == 16(5”

Since C* is just twice as large as in the proof of [Theorem 9.18| the contributions remain
the same in terms of df,. In particular we get

am—=1_1
h(x) =0+ > a(x)=1 (mod2). (9.4)
j=0
Assume that k(B) is as large as possible. Since (z,b,) is a major subsection, no row of D?
vanishes. Hence, for j € {0,1,...,2™"1 — 1} we have essentially the following possibilities
(where €1, ...,es € {£1}):
all 1 - F+1 e -0 € e e e
ORI 1 ) ,
aj € -+ € 1 --- =1
an:| 3 L i :
aj 2¢1 € -+ € X1 - %1
(I1T) ; 1 2 €3 6 ’
aj 2¢1 2¢9 € -+ € 1 +1 +1 1 . . .
al :l:l o .. j:l € € € € € . o e oo oo .
(V) : % 1 2 3 €4 €5 ’
aj 2¢1 2¢3 2€3 € € 1 1 . .o .
1
(V) : a;» +1 .- +1 €1 €2 €3 €4 .o . .
aj 261 2¢9 2e3 2ey4

112



9.3. an X C2m

The number k(B) would be maximal if case (I) occurs for all j and for every character x €
Irr(B) we have Z?:gl_l la}(x)] <1 and E?:gl_l |a?(x)| < 1. However, this contradicts
ILemma 9.27 and [Equation (9.4)| This explains why we have to allow other possibilities. We
illustrate with two example that the given forms (I) to (V) are the only possibilities we
need. For that consider

(IIa): J |
9 (e A1 e 41

(IVa) : a} e T e e R |
aj 31 e 0 eg £l EL . e

Then both (II) and (Ila) contribute 2"~! + 10 to k(B). However, (II) contributes 12 to
ko(B), while (Ila) contributes 16 to ko(B). Hence, (II) is “better” than (ITa). In the same
way (IV) is “better” than (IVa). Now let oy (resp. ag,...,as5) be the number of indices
j€{0,1,...,2m=1 —1} such that case (I) (resp. (I),...,(V)) occurs for aé. Then obviously
ar + ... +a5 = 2m7L Tt is easy to see that we may assume for all y € Irr(B) that

23:(; -l ]ajl» (x)] <1 in order to maximize k(B). In contrast to that it does make sense to
have a?(X) # 0 # a2(x) for some j # k in order to satisfy Olsson’s Conjecture in view of
I[Equation (9.4)l Let § be the number of pairs (x,j) € Irr(B) x {0,1,...,2™~t — 1} such

that there exists a k # j with a?(x)az(x) # 0. Then it follows that

as =2""1 —ay —as — as — au,
E(B) < (2" ' +12)a1 + (2" +10)as + (2" 4 8)as
+ (2" +6)ay + (2" + 4)as — 6/2
=272 4 1204 + 100 + 8ag + 6oy + das — 6/2
= 2mAn=2 4 oM+l 4 80y + 6ag + dag + 20 — 5/2,
160 + 120 + 8z + 4ay — 0 < ko(B) < 2m+2.

This gives k(B) < 2m+n=24.9m+2 — ogm(9n=2 1 4) Together with the lower bound above, we
have shown that k(B) = 2™~1(2""244) and [(B) = 2. In particular the cases (I),...,(V) are
really the only possibilities which can occur. The inequalities above imply also kq(B) = 2™m+2.

As in the previous section we can show that 6 = 0. Moreover, as there we see that the rows
of type (£¢7,0) of D? correspond to characters of height 1. The number of these rows is

2" — Doy + (2" =g + (2" —2)az + (2" — Dag + 2" ag = 2m(2" % — 1).

The remaining rows of D? correspond to characters of height 0 or n — 2. This gives k;(B)
for i € N (recall that n > 4 in case (ab)).

Case (aa):

Here we have I(b,) = I(b,) = 3 for 1 # u € Z(D). Hence, [Theorem 1.37|implies

k(B) —1(B) =2"(2" 2 — 1) + 3(2™"! —1) = 2"(2" % + 5) — 3.
Again B is a centrally controlled, [(B) > I(b,) = 3 and k(B) > 2™(2"2+5) by[Theorem 1.40)

The Cartan matrix of b, is

2492 2 2
% =2m 2 4 .
2 .4
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up to basic sets. We write IBr(b,) = {¢1, 2, p3} and define the integral columns aé- for
i=1,2,3and j = 0,1,...,2""1 — 1 as in case (ab). Then we can calculate the scalar

products (aé, af). Again C? is just twice as large as in the proof of [Theorem 9.18| and we

get

am—1_1
2 3 _
h(x) =0 Y  (af(x)+dl(x)) =1 (mod 2). (9.5)
Jj=0
In order to search the maximum value for k(B) (in view of [Lemma 9.27| and [Equation (9.5))
we have to consider the following possibilities (where €1, ..., e € {£1}):
() (I1) (1) (1V) V)
a;- a? al a;- a? a;’ a; a? a? ajl a? a? a; a? a;’
+1 +1 +1 +1 +1
+1 . . +1 . . +1 . . +1 . . +1
€1 €1 . €1 €1 . €1 €1 . €1 €1 . €1 €1 €1
€2 €9 . €2 €9 . €2 €2 €2 €9 €9 €2
€3 €3 . €3 €3 €3 €3 €3 €3 €3 €3 €3
€4 €4
€4 €4 €4 €4 €4 €4 €4 €4 €4 €4 €4 €4
€5 . €5
€5 . €5 €5 . €5 €5 . €5 . €5 —€5
€g . €6 €g . €g . €g —€g . €6 —€g
€8 . €8 €7 . €7 . €7 —€7 . €7 —€7 . €7 —€7
+1 . . €8 —€g . €8 —€g . €8 —€g . €8 —€s
+1 . . +1 . . +1 .
: . +1 . . +1 . . . +1
1 . T . S|
- *Hl S . .4l
. . +1
+1 . . +1

Define ayq, ..., a5 as before. Let § be the number of triples (x,,7) € Irr(B) x {2,3} x
{0,1,...,2™1 — 1} such that there exists a k # j with aé-(x)a%(x) # 0 or aé»(x)a%(x) # 0.
Then the following holds:

a5 =271 —a) —ag — az — au,
k(B) < (2" ' +12)a; + (2" + 11)as + (2" + 10)ay
+ (2" 9y + (2" + 8)as — §/2
= 2mT2 1 1904 + 11 + 10a3 + 9ay + Saz — §/2
= omHn=2 4 9mF2 L 40y + 3o + 203 + g — 6/2,
160 + 1205 + 8z + 4ay — 6 < ko(B) < 2m+2,
This gives k(B) < 2ntm=2 4 om+2 4 om — gm(9n=2 4 5) Together with the lower bound

we have shown that k(B) = 2™(2""2 +5), ko(B) = 22, and [(B) = 3. In particular the
maximal value for k(B) is indeed attended. Moreover, 6 = 0. As in the previous section

114



9.3. an X C2m

we see that the rows of D? of type (£¢7,0,0) correspond to characters of height 1. The
number of these rows is

2" — Doy + (27 = Bag + (2" - 2az + (2" — Dayg + 2" Lag = 2m(272 — 1).

The remaining rows of D? correspond to characters of height 0 or n — 2. This gives k;(B)
for ¢ € N. Observe that we have to add k;(B) and ky,—_2(B) in case n = 3. O

We add some remarks. Using [Theorem 10.17] below it is easy to construct examples for B
in all cases. If B is a block with defect group Qon * Com+1, then the invariants of B and B
coincide in the corresponding cases. However, it was shown in [271] (for n =3 and m = 1)
that the numbers of 2-rational characters of B resp. B are different.

Theorem 9.29. Alperin’s Weight Conjecture holds for B.

Proof. Just copy the proof of [Theorem 9.19] O

Theorem 9.30. The Ordinary Weight Conjecture holds for B.

Proof. We may assume that B is not nilpotent, and thus case (bb) does not occur. Suppose
that n = 3 and case (aa) occurs. Then D is the only F-centric, F-radical subgroup of D.
Since Outz(D) = Cs, the set Np consists only of the trivial chain. We have w(D,d) =0
for d ¢ {m +2,m + 3}, since then k%(D) = 0. For d = m + 2 we get w(D,d) = 3-2™, since
the irreducible characters of D of degree 2 are stable under Outz(D). In case d = m + 3 it

follows that w(D,d) = 3 - 2™ + 2™ = 2™*+2_ Hence, the OWC follows from [Theorem 9.28

Now let n > 4 and assume that case (aa) occurs. Then there are three F-centric, F-radical
subgroups up to conjugation: @1, Q2 and D. Since Outz(D) = 1, it follows easily that

w(D,d) = k%(D) for all d € N. By [Theorem 9.28|it suffices to show

W(@d):{Qm ifd=m+2

0 otherwise

for Q € {Q1,Q2}, because k™2(B) = k,_o(B) = 2™*!. We already have w(Q,d) = 0
unless d € {m + 2, m + 3}. Without loss of generality let Q@ = Q;.

Let d = m + 2. Up to conjugation Ng consists of the trivial chain o : 1 and the chain
7:1 < C, where C < Outz(Q) has order 2. We consider the chain o first. Here I(0) =
Outr(Q) = Ss acts trivially on the characters of @ or defect m + 2. This contributes 2™ to
the alternating sum of w(Q, d). Now consider the chain 7. Here I(7) = C' and z(FC) = 0.
Hence, the contribution of 7 vanishes and we get w(Q,d) = 2™ as desired.

Let d = m + 3. Then we have I(o, 1) = S3 for every character p € Irr(Q) with p(z2"°) =
u(y) = 1. For the other characters of @ with defect d we have I(o,u) = Cy. Hence, the
chain o contributes 2™ to the alternating sum. There are 2™*! characters u € Irr(D)
which are not fixed under I(7) = C. Hence, they split into 2™ orbits of length 2. For these
characters we have I(7, u) = 1. For the other irreducible characters p of D of defect d we
have I(7, ) = C. Thus, the contribution of 7 to the alternating sum is —2"". This shows

w(Q,d) = 0.

In case (ab) we have only two F-centric, F-radical subgroups: Q2 and D. Since k,,_2(B) =
2™ in this case, the calculations above imply the result. O
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Finally we show that the Gluing Problem for the block B has a unique solution. This was
done for m = 0 in [242].

Theorem 9.31. The Gluing Problem for B has a unique solution.

Proof. Let o be a chain of F-centric subgroups of D, and let () be the largest subgroup
occurring in 0. Then @ = (Q N (z,y)) x (2). If @ N (x,y) is abelian, then Autz(Q) and
Autr(o) are 2-groups. So we have H'(Aut (o), F*) =0 for i = 1, 2.

Now assume that QN (z,y) is non-abelian. Again Autxz (o) is a 2-group unless @ € {Q1,Q2}
(up to conjugation). Without loss of generality assume @ = Q1 and Autz(Q) = Sy. If Q
is the only subgroup occurring in o, we get Autr(o) = Autz(Q) = Sy. If o consists of
another subgroup, Autz (o) must be a 2-group, since an automorphism of Autz(Q) of order
3 permutes the three maximal subgroups of <x2n73, y) transitively. So in both cases we have
Hi(Autz (o), F*) =0 for i = 1,2.

Hence, A% = 0 and H([S(F°)], A%) = HY([S(F¢)], AL) = 0. Now by Theorem 1.1 in [242]
the Gluing Problem has only the trivial solution. O

Let

-1 1 x71+2"—2>

D= (z,y,z | 2¥ =y?=22" =[2,2] = [y,2] =1, yoy~ ' =

= (z,y) X (2) = SDan x Com
with n > 4 and m > 0.

Lemma 9.32. The automorphism group Aut(D) is a 2-group.

Proof. This follows as in because the maximal subgroups of the semidihedral

group are pairwise non-isomorphic. O

The last lemma implies that the inertial index of B is e(B) = 1.

Lemma 9.33. Let Q1 := <x2n72,y,z> > C2 x Cym and Qg = <x2n73,acy, 2) 2 Qg X Cgm.
Then Q1 and Q9 are the only candidates for proper F-centric, F-radical subgroups up to
congugation. Moreover, one of the following cases occurs:

(aa) Autr(Q1) = Outr(Q2) = Ss.

(ab) AutF(Q1) = S5 and Out #(Qs) = Cs.
(ba) Autr(Q1) = C2 and Outr(Q2) = Ss.
(bb) Autr(Q1) = Outr(Q2) = Co.

In case (bb) the block B is nilpotent.
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Proof. Let ) < D be F-centric and F-radical. Then z € Z(D) C Cp(Q) € @ and
Q= (QN{(z,y)) x (z). Since Aut(Q) is not a 2-group, only the following cases are possible:
Q = C2,., C2 x Com, Qg x Cam. In the first case we have Q = (z,2) or Q = (2'y, 2) for
some odd . Then m = n — 1 or m = 2 respectively (this is not important here). The
group D € Ng(Q,bg) (resp. (22" 7*)Q) acts trivially on Q(Q) C Z(D), while a non-trivial
automorphism of Aut(Q) of odd order acts non-trivially on (@) (see Theorem 5.2.4 in
[107]). This contradicts Oz(Autz(Q)) = 1. Moreover, by Lemma 5.4 in [203] we see that
Autr((z,z)) is a 2-group (this will be needed later).

If Q = C? x Cym, then @ contains an element of the form z%y. After conjugation with a
suitable power of x we may assume ) = (1. Similarly, ) is conjugate to Q9 if Q = Qg X Com.
This shows the first claim.

It remains to show that one of the given cases occurs. For the subgroup ()1 this can be

done as in For the subgroup Q2 we can copy the proof of In

particular both @)1 and Q9 are fully F-normalized. The last claim follows from Alperin’s
Fusion Theorem and e(B) = 1. O

Again the naming of these cases is adopted from Olsson’s paper [235], but in contrast to the
dihedral and quaternion case, the cases (ab) and (ba) are not symmetric, since Q1 % Q2.
Moreover, it is easy to see that ()1 and Q)2 are always F-centric.

Lemma 9.34. Let Q € {Q1,Q2} such that Outr(Q) = S3. Then

(2) if Q= Q,

CQ(NG(QabQ)) = {<.%'2n_2 Z> if Q= Qs.

Proof. For Q)2 this follows as in the quaternion case. For Q1 we can consult
Observe that we may have to replace z by 22" 2 here. However, this does not affect

CQ2(NG’(Q27bQ2))' O

Lemma 9.35. A set of representatives R for the F-conjugacy classes of elements u € D
such that (u) is fully F-normalized is given as follows:

(i) ©'27 (i=0,1,...,2"72 j=0,1,...,2™ — 1) in case (aa).
(ii) 27 and xyz? (i =0,1,...,2"72, j=0,1,...,2™ — 1) in case (ab).
(iii) x'2) and yz/ (i=0,1,...,2"72 j=0,1,...,2™ — 1) in case (ab).

Proof. By in any case the elements z'2/ (i = 0,1,...,2"7 2, =0,1,...,2m—1)
are pairwise non-conjugate in F. Moreover, (r,z) C Cg(x'z7) and |D : Np((z'27))| < 2.
Suppose that (z'yz7) I D for some i, j € Z. Then we have zT2+2" y2d = g(ziyzd)a! €
(ziy27) and the contradiction 272"~ € (z'yz7). This shows that the subgroups (z'27) are
always fully F-normalized.

Assume that case (aa) occurs. Then the elements of the form z%*yz7 (i, j € Z) are conjugate
to elements of the form 227 under D U Ng(Q1,bg,). Similarly, the elements of the form
z¥ly2J (i,j € Z) are conjugate to elements of the form 2?27 under D UN¢g(Q2,bg,). The
claim follows in this case.
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In case (ab) the given elements are pairwise non-conjugate, since no conjugate of zyz’ lies
in Q1. As in case (aa), the elements of the form x%y2/ (i, j € Z) are conjugate to elements
of the form z%2/ under D UNg(Q1,bg, ), and the elements of the form z%*1y2J (i, € Z)
are conjugate to elements of the form xyz/ under D. Finally, the subgroups (zyz’) are fully
F-normalized, since zyz/ is not conjugate to an element in Q.

The situation in case (ba) is very similar. We omit the details. O

Lemma 9.36. Olsson’s Conjecture ko(B) < 2m%2 = |D : D'| is satisfied in all cases.

Proof. This follows from [Theorem 5.3 (cf. [Lemma 9.6]). O

Theorem 9.37.
(i) In case (aa) we have k(B) = 2™(2""2 4+ 4), ko(B) = 2™*2, k1(B) = 2m(2"2 - 1),
kn—2(B) =2™ and [(B) = 3.
(ii) In case (ab) we have k(B) = 2™(2" 2 +3), ko(B) = 2™*2, k1 (B) = 2™(2" 2 1) and
I(B) =2.
iii) In case (ba) we have k(B) = 2™(2" 2 + 4), ko(B) = 2m+2, k1 (B) = 2™(2" 2 - 1),
(ui)
kn—2(B) =2™ and [(B) = 2.
(iv) In case (bb) we have k(B) = 2™(2"2 +3), ko(B) = 2™%2, ky(B) = 2™(2" 2 — 1) and
I(B)=1.

In particular Brauer’s k(B)-Conjecture, Brauer’s Height-Zero Congecture and the Alperin-
McKay Conjecture hold.

Proof. Assume first that case (bb) occurs. Then B is nilpotent, and the result follows.

Now assume that case (aa), (ab) or (ba) occurs. We determine the numbers [(b) for the

subsections in and apply Let us begin with the non-major
subsections. Since Autz({x, z)) is a 2-group, we have l(b,i,;) =1 forall i =1,...,2" "2 — 1
and j = 0,1,...,2™ — 1. The blocks b,,.; (j = 0,1,...,2™" " — 1) have Cp(zyz’) =
(ry,z) = C4 x Cym as defect group. In case (ab), Autz(Np((zy,2))) = Autr(Q2) is a
2-group. Hence, Lemma 5.4 in [203] implies that also Autr((zy, z)) is a 2-group. This gives
l(byyzi) = 1 for j =0,1,...,2™ — 1. Similarly, in case (ba) we have I(b,.;) = 1.

Now we consider the major subsections. By the cases for B and b,; coincide.
As usual, the blocks b,; dominate blocks b,; of Cg(27)/(27) with defect group D/(z7) =
SDan X Com j|(25y|- Of course the cases for b,; and b,; coincide, and we have I(b,;) = I(b,;).
Thus, we can apply induction on m. The beginning of this induction (m = 0) is satisfied by

[Theorem 8.1
Let u := 22" 27 for a j € {0,1,...,2™ — 1}. If case (ab) occurs for B, then case (bb)

occurs for b, by [Lemma 9.341 Thus, I(b,) = 1 in this case. If case (ba) or (aa) occurs for

B, then case (ba) occurs for b,. In case j = 0, b, dominates a block b, with defect group

D/{u) = Dan-1 x Cam. Then we can apply [Theorem 9.7, Observe again that the cases for
b, and b, coincide.

Finally, if j € {1,...,2™ — 1}, we have

D/(u) = (D)) ((@*" 9}/ (%)) = S Dy # Com 2y,
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For (27) = (z) we get D/{u) = SDan. Otherwise, SDan * Cgm |(z25)] = Dan % Com (25|
Here we can apply [Theorem 9.18, Now we discuss the cases (ab), (ba) and (aa) separately.
Case (ab): o

Then we have [(b,;) = (b,;) =2 for j = 1,...,2™ — 1 by induction on m. As explained
above, we also have I(b,) = 1 for u = 22" 29 and j=0,1,...,2™ —1. Hence, [Theorem 1.37|
implies

k(B) —1(B) =2"(2" 2 — 1) + 2™ +2(2™ — 1) 4 2™ = 2™(2"2 + 3) — 2.

Since B is a centrally controlled block, we have I[(B) > I(b,) = 2 and k(B) > 2m(2" 2 + 3)
by

Let u:= 22"~ € Z(D). [Lemma 1.39|implies 2" | dy,,, and 2h()+1 tds,, for x € Irr(B).
In particular, df,, # 0.|Lemma 9.30| gives

2 < ko(B) + 4(k(B) — ko(B)) < Y (d¥,,)? = (d(u),d(u)) = [D| = 2",
Xx€Elrr(B)

Hence, we have

XPu

2 - +1 ifh(x)=0
+2 otherwise

and the claim follows in case (ab).

Case (ba):
Here we have I(b,) = 2 for all 1 # u € Z(D) by induction on m. This gives

k(B) —1(B) = 2m(2""2 —1) 4+ 2™ 4+ 2(2™ T — 1) = 2m(2"72 1 4) — 2.

Since B is a centrally controlled block, we have I[(B) > I(b,) = 2 and k(B) > 2m(2" 2 + 4)

by Now the proof works as in the quaternion case by studying the numbers
d} - Since b, has defect group SDan, the Cartan matrix of b, is given by

om M2 12 4
4 8

up to basic sets. This is exactly the same matrix as in the quaternion case. So we omit the
details.

Case (aa):

We have [(b,;) =3 for j =1,...,2"™ — 1 by induction on m. Moreover, for u = z
get I(b,) = 2. Hence,

n—1 -
2" 20 we

k(B) —1(B) =2™(2"2 — 1) + 3(2™ — 1) + 2™t = om(2n=2 1 4) — 3.
Again B is centrally controlled which implies [(B) > I(b,) = 3 and k(B) > 2™(2""2 + 4).

In contrast to case (ba) we study the generalized decomposition numbers of the element
u:= 22"z Then case (ba) occurs for b, and the Cartan matrix of b, is given by

m (27242 4
(70

up to basic sets. Hence, the proof works as above. O
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9. Products of metacyclic groups

Using [Theorem 10.17] below it is easy to construct examples for B in all cases.

Theorem 9.38. Alperin’s Weight Conjecture holds for B.

Proof. Just copy the proof of O

Theorem 9.39. The Ordinary Weight Conjecture holds for B.

Proof. We may assume that B is not nilpotent, and thus case (bb) does not occur.

Assume first that case (aa) occurs. Then there are three F-centric, F-radical subgroups up
to conjugation: @1, Q2 and D. Since Outz(D) = 1, it follows easily that w(D,d) = k%(D)

for all d € N. By [Theorem 9.37] it suffices to show w(Q1,d) = 0 for all d and

M if d=m+ 2,

0 otherwise,

w(Q2,d) = {

because k™2(B) = k,_o(B) = 2™. For the group @ this works exactly as in
and for ()2 we can copy the proof of

In the cases (ab) and (ba) we have only two F-centric, F-radical subgroups: Q1 (resp. Q2)

and D. In case (ab), [Theorem 9.37|implies k%(B) = k%(D) for all d € N while in case (ba)

we still have k™*2(B) = 2™. So the calculations above imply the result. t
Theorem 9.40. The Gluing Problem for B has a unique solution.

Proof. Let o be a chain of F-centric subgroups of D, and let @) be the largest subgroup
occurring in 0. Then Q = (Q N (z,y)) x (z). If @ N (z,y) is abelian, then Autr(Q) and
Autz(o) are 2-groups unless @ = @1 (up to conjugation). In case Q = @1, o only consists
of @, and we can also have Autr(c) = Autr(Q) = S3. So in all these cases we have
Hi(Autz (o), F*) =0 for i = 1,2.

Now assume that @ N (z,y) is non-abelian. Again Autxz (o) is a 2-group unless Q = Q2 (up

to conjugation). Now the claim follows as in [Theorem 9.31 O
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10. Bicyclic groups

Another interesting generalization of metacyclic groups are bicyclic groups. Here a group G
is called bicyclic if there exist x,y € G such that G = (x)(y). For odd primes p, Huppert
showed in [139] that a bicyclic p-group is metacyclic and conversely (see also Satz I11.11.5
[141]). This shifts again the focus to the case p = 2 where the class of bicyclic p-groups is
strictly larger than the class of metacyclic p-groups. Apart from Huppert’s work, there are
many other contributions to the theory of bicyclic 2-groups. We mention some of them:
[33, 149, 150, 1511 [80]. One of these early results is the following: Let P be a non-metacyclic,
bicyclic 2-group. Then the commutator subgroup P’ is abelian of rank at most 2 and P/P’
contains a cyclic maximal subgroup. Moreover, if P/P’ has exponent at least 8, then also
P’ contains a cyclic maximal subgroup.

Here we are primarily interested in the classification of the corresponding fusion systems.
Later we give corollaries for blocks with bicyclic defect groups. The material comes from
[282, 277]. We will use the following notation: A group P is called minimal non-abelian of
type (r, s) if

Pyl =y =zl = [z,2,9] = [y,2,9] = 1)

for r > s > 1 (see [Chapter 12| for more details).

10.1. Fusion systems

Janko gave the following characterization of bicyclic 2-groups (see [I54] or alternatively §87
in [28]). Notice that Janko defines commutators in [I54] differently than we do.

Theorem 10.1 (Janko). A non-metacyclic 2-group P is bicyclic if and only if P has rank
2 and contains exactly one non-metacyclic mazximal subgroup.

Using this, he classified all bicyclic 2-groups in terms of generators and relations. However,
it is not clear if different parameters in his paper give non-isomorphic groups. In particular
the number of isomorphism types of bicyclic 2-groups is unknown.

As a corollary, we obtain the structure of the automorphism group of a bicyclic 2-group.

Proposition 10.2. Let P be a bicyclic 2-group such that Aut(P) is not a 2-group. Then P
s homocyclic or a quaternion group of order 8. In particular, P is metacyclic.

Proof. By Lemma 1 in [209] we may assume that P is non-metacyclic (see also [292]
Lemma 5.27|). Since P has rank 2, every non-trivial automorphism of odd order permutes
the maximal subgroups of P transitively. By [Theorem 10.1]such an automorphism cannot

exist. O

As another corollary, we see that every subgroup of a bicyclic 2-group contains a metacyclic
maximal subgroup. Since quotients of bicyclic groups are also bicyclic, it follows that every
section of a bicyclic 2-group has rank at most 3. This will be used in the following without
an explicit comment. Since here and in the following the arguments are very specific (i. e.
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10. Bicyclic groups

not of general interest), we will sometimes apply computer calculations in order to handle
small cases.

Proposition 10.3. Let F be a fusion system on a bicyclic, non-metacyclic 2-group P.
Suppose that P contains an F-essential subgroup Q of rank 2. Then Q = C2, and P =
Cam 1 Cy for some m > 2. Moreover, F = Fp(Can x S3) or F = Fp(PSL(3,q)) for some
g=1 (mod 4).

Proof. By [Proposition 6.11]it suffices for the first claim to show that () is metacyclic, since
minimal non-abelian groups of type (m, m) for m > 2 are non-metacyclic (see Proposition 2.8
in [I54]). Let M < P be a metacyclic maximal subgroup of P. We may assume Q ¢ M.
Then M N Q is a maximal subgroup of Q). Since ) admits an automorphism of order 3, the
maximal subgroups of ) are isomorphic. Now the first claim follows from Proposition 2.2
in [154]. The fusion systems on Cam ! Cy are given by Theorem 5.3 in [73]. Two of them
have C%, as essential subgroup. O

It can be seen that the group Cam ! Cy is in fact bicyclic. Observe that Theorem 5.3 in [73]
provides another non-nilpotent fusion system on Com ! Co which we will discover later. For
the rest of this section we consider the case where the bicyclic, non-metacyclic 2-group P
has no F-essential subgroup of rank 2.

In the following we consider fusion systems only up to isomorphism (see [Definition 1.26)).

Proposition 10.4. Let F be a non-nilpotent fusion system on a bicyclic 2-group P. Suppose
that P contains an elementary abelian normal subgroup of order 8. Then P is minimal
non-abelian of type (n,1) for some n > 2 and Con—1 x C3 is the only F-essential subgroup
of P. Moreover, F = Fp(Ay x Con) where Con acts as a transposition in Aut(Ay) = Sy
(thus Ay x Con is unique up to isomorphism).

Proof. Suppose first |P'| = 2. Then P is minimal non-abelian of type (n,1) for some n > 2
by Theorem 4.1 in [I54]. We show that P contains exactly one F-essential subgroup Q. Since
P is minimal non-abelian, every selfcentralizing subgroup is maximal. Moreover, ) has rank
3 by [Proposition 10.3| Hence, Q = (22,y,2) = Cyn1 x C3 is the unique non-metacyclic
maximal subgroup of P. We prove that F is unique up to isomorphism. By Alperin’s Fusion
Theorem it suffices to describe the action of Autx(Q) on Q. First of all P = Np(Q) acts
on only two four-subgroups (y, z) and <;L‘2n71y, z) of @ non-trivially. Let o € Autx(Q) be
of order 3. Then « is unique up to conjugation in Aut(Q). Hence, o acts on only one
four-subgroup R of Q. Let 3 € P/Q < Autz(Q). Then (a8)(R) = (Ba~")(R) = B(R) = R,
since Autr(Q) = Ss. Thus, Autz(Q) acts (non-trivially) on (y,z) or on (2" 'y, 2). It
can be seen easily that the elements x and xanly satisfy the same relations as x and y.
Hence, after replacing y by mZn_ly if necessary, we may assume that Autz(Q) acts on
(y, z). Since Cg(a) = Cyn-1, we see that 2%y ¢ Co(a) or 2%yz ¢ Cg(a). But then both
22y, 2%yz ¢ Cgo(a), because B(z2y) = x?yz. Hence, Cg(a) = Co(Aut£(Q)) € {(z?), (z%2)}.
However, xy and y fulfill the same relations as z and y. Hence, after replacing x by xy
if necessary, we have Cg(Autz(Q)) = (). This determines the action of Autz(Q) on
@ completely. In particular, F is uniquely determined (up to isomorphism). The group
G = Ay xCon as described in the proposition has a minimal non-abelian Sylow 2-subgroup of
type (n,1). Since A4 is not 2-nilpotent, Fp(G) is not nilpotent. It follows that F = Fp(G).
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10.1. Fusion systems

Now suppose |P’| > 2. Then Theorem 4.2 in [I54] describes the structure of P. We use the
notation of this theorem. Let QQ < P be F-essential. By [Proposition 10.3] ) has rank 3.
In particular @ is contained in the unique non-metacyclic maximal subgroup M := E(a?)
of P. Since (a*,u) = Z(M) < Q, it follows that Q € {(a* u,v), (a*, a®v,u), M}. In the
first two cases we have P’ = (u, z) C @Q < P which contradicts [Proposition 6.12| Hence,
Q = M. Every automorphism of M of order 3 acts freely on M/ Z(M) = C3. However, the
subgroups L < M such that Z(M) < L < M are non-isomorphic. Contradiction. O

It remains to deal with the case where P does not contain an elementary abelian normal
subgroup of order 8. In particular Theorem 4.3 in [I54] applies.

Lemma 10.5. Let F be a fusion system on a bicyclic 2-group P. If QQ < P is F-essential
of rank 3, then one of the following holds:
(i) Q <P and P/®(Q) is minimal non-abelian of type (2,1).

Proof. By |Proposition 6.12| we have [Np(Q) : Q| = 2. Since Np(Q) acts non-trivially on
Q/®(Q), we conclude that Np(Q)/®(Q) is non-abelian. Then Np(Q)/®(Q) is minimal
non-abelian of type (2,1) or Np(Q)/®(Q) = Dg x Cs, because Np(Q)/P(Q) contains
an elementary abelian subgroup of order 8. In case Np(Q) = P only the first possibility
can apply, since P has rank 2. Now assume that Q@ ¢ P and Np(Q)/®(Q) is minimal
non-abelian of type (2,1). Take g € Np(Np(Q)) \ Np(Q) such that ¢g> € Np(Q). Then
Q1 :=9Q # Q and Q1 N Q is (g)-invariant. Moreover, ®(Q) C ®(Np(Q)) C @1 and

[2(Q) : 2(Q) NV(Q)] = [R(Q1) : P(Q) N P(Q)[ = [2(Q1)2(Q) : B(Q)]
= [2(Q1/2(Q))] =2,

since Q1/P(Q) (# Q/P(Q)) is abelian of rank 2. Hence, Np(Q)/®(Q) N ®(Q1) is a group
of order 32 of rank 2 with two distinct normal subgroups of order 2 such that their

quotients are isomorphic to the minimal non-abelian group of type (2,1). It follows that
Np(Q)/®(Q) N ®(Q1) is the minimal non-abelian group of type (2,2) (this can be checked
by computer). However, then all maximal subgroups of Np(Q)/®(Q) N ®(Q1) have rank 3

which contradicts [Theorem 10.1} Thus, we have proved that Np(Q)/®(Q) = Dg x Cy. 0O

Now we are in a position to determine all F-essential subgroups on a bicyclic 2-group. This
is a key result for the remainder of the section.

Proposition 10.6. Let F be a fusion system on a bicyclic 2-group P. If Q@ < P is
F-essential of rank 3, then one of the following holds:

(i) Q= Cym x C2 for some m > 1.

(ii) Q= Cam x Qg for some m > 1.
(i1i) Q = Com x Qg for some m > 2.
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10. Bicyclic groups

Proof. If P contains an elementary abelian normal subgroup of order 8, then the conclusion
holds by [Proposition 10.4l Hence, we will assume that there is no such normal subgroup.
Let a € Out£(Q) be of order 3 (see |Proposition 6.12)). Since |Aut(Q)]| is not divisible by 9,
we can regard « as an element of Aut(Q) by choosing a suitable preimage. We apply [291]
to the group @ (observe that the rank in [291] is the p-rank in our setting). Let C' := Cg(a).
Suppose first that C' has 2-rank 3, i.e. m(C) = 3 with the notation of [291]. Since [@, o] is
generated by at most three elements, only the first part of Theorem B in [29] can occur.
In particular @ =2 Qg * C. However, this implies that () contains a subgroup of rank at least
4. Contradiction.

Now assume m(C') = 2. Then Theorem A in [291] gives Q@ = Qg C. Let Z < Z(Qg x C) =
®(Qs) x Z(C) such that Q = (Qs x C)/Z. Then |Z] = 2 and C has rank at most 2, since
@ has rank 3. Moreover, it follows that Q(Z(C)) € ®(C) (otherwise: Z < ®(Qs) x ®(C) =
®(Qs x C)). By Burnside’s Basis Theorem C Cy X Cgm is abelian and Q = Qg x Com
for some m > 1.

Finally suppose that m(C) =1, i.e. C is cyclic or quaternion. By |[Theorem 10.1) ®(P) is
metacyclic. Since ®(Q) C ®(P) (Satz I11.3.14 in [141]), also ®(Q) is metacyclic. According
to the action of o on ®(Q) one of the following holds (see |[Proposition 10.2]):

(a) ®(@Q) <CdQ.
(b) ©(Q) = Qs.
(c) ®(Q)NC =1 and ®(Q) = O3, for some n > 1.

We handle these cases separately. First assume case By 8.2.2(a) in [I78] we have
|Q : C| = 4 and « acts freely on @)/C. On the other hand « acts trivially on Q/ Cq(C)
by 8.1.2(b) in [I78]. This shows @Q = C Cq(C). If C is quaternion, then @ = Qan * Cq(C).
In particular, Cg(C) has rank at most 2. Thus, a similar argument as above yields @ =
Q2n x Com. However, this is impossible here, because a would act trivially on Q/®(Q) by
the definition of C. Hence, C is cyclic and central of index 4 in @. Since, () has rank 3,
the exponents of C' and Q coincide. If Q is abelian, we must have Q = Cym x C3 for some
m > 1. Now assume that @ is non-abelian. Write C' = (a) and choose b, c € @ such that
Q/C = (bC,cC). Since (b)C is abelian and non-cyclic, we may assume b> = 1. Similarly
c? = 1. Since @Q is non-abelian, °b # b. Let |C| = 2™ where m > 2. Then a € Z(Q) implies
b= a2 b Thus, @ is uniquely determined as

—1

Q= (a,bc|a® =*=c=1a,b]=[a,c] =1, b=10a>" D).

Since the group Qg * Com =2 Dgx Com has the same properties, we get QQ = Qg * Com.

Next we will show that case @ cannot occur for any finite group . On the one hand we have

R/ Co(®(Q)) < Aut(Qs) = Ss. On the other hand C3 = ®(Q) Co(P(Q))/ Co(P(Q)) <
®(Q/ Co(2(Q))). Contradiction.

It remains to deal with case . Again we will derive a contradiction. By Theorem D in
[291], C # 1 (Ugs has rank 4). The action of o on Q/P(Q) shows |P : CP(Q)| > 4. Now
®(Q)NC =1 implies |C| = 2. There exists an a-invariant maximal subgroup N < Q. Thus,
NNCCNNCP(Q)NC =P(Q)NC = 1. In particular we can apply Theorem D in [291]
which gives N & C§n+1- Hence, Q 2 N xC = C§n+1 x Cy (here x can also mean x). Choose
z,y € N such that a(z) = y and a(y) = 27 ly~!. Let C = (c). Since Q has rank 3, c acts
trivially on N/®(NN). Hence, we find integers i, j such that “z = 2y’ and i = 1 (mod 2)
and 7 =0 (mod 2). Then “y = a(*z) = 273" /. In particular, the isomorphism type of Q
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10.1. Fusion systems

does only depend on 4, j. Since ¢? = 1, we obtain 2 — j2 =1 (mod 2"*!) and j(2i — j) =0
(mod 2"*1). We will show that j = 0 (mod 2"). This is true for n = 1. Thus, assume
n > 2. Then 1 —j? =i? — j2 =1 (mod 8). Therefore, j =0 (mod 4). Now j(2i —j) =0
(mod 21 implies j = 0 (mod 27"). In particular i =2 — j2 = 1 (mod 2"*1). Hence, we
have two possibilities for 7 and at most four possibilities for ¢. This gives at most eight
isomorphism types for Q. Now we split the proof into the cases @ < P and Q ¢ P.

Suppose @ < P. Then |P : Q| = 2 by [Proposition 6.12, Moreover, Q(Q) < P. Since P
does not contain an elementary abelian normal subgroup of order 8, it follows that @
contains more than seven involutions. With the notation above, let 2"y®c be an involution
such that z7y* ¢ Q(N). Then 1 = 2"y ca"y’c = "t =I5yt +0=0)s and r(1414) — js =
s(1+4)+ jr —js =0 (mod 2"*1). In case n = 1 we have |P| = 64. Here it can be shown
by computer that P does not exist. Hence, suppose n > 2 in the following. Suppose further
that i =1 (mod 2"). Then we obtain 2r = 2s = 0 (mod 2"). Since z"y* ¢ Q(N) we may
assume that r = +£2""! (mod 2"*!) (the case s = £2"71 (mod 2""!) is similar). However,
this leads to the contradiction 0 = 7(1 4 ) — js = 2" (mod 2"*1!). This shows that i = —1
(mod 2"). In particular, z'~!y' = ¢zz~! = [¢,z] € Q" and 27y~ = [¢,y] € Q. This
shows C3, = Q' = ®(Q). By |[Lemma 10.5, P/®(Q) is minimal non-abelian of type (2,1).
Since @' C P’, we conclude that P/P’ = Cy x C3. Then P is described in Theorem 4.11 in
[154]. In particular ®(P) is abelian. Choose g € P\ Q. Then g acts non-trivially on N/®(Q),
because a does as well. This shows N < P and C3 = N/®(Q) # Z(P/®(Q)) = ®(P/®(Q)).
Hence, P/N is cyclic and ®(P) # N. Therefore, ) contains two abelian maximal subgroups
and NN®(P) C Z(Q). Now a result of Knoche (see Aufgabe I11.7.24) gives the contradiction

Q' =2.
Now assume @ ¢ P. We will derive the contradiction that Np(Q) does not contain a

metacyclic maximal subgroup. By [Lemma 10.5, Np(Q)/®(Q) = Dg x Cy. Choose g €
Np(Q) \ Q. Then g acts non-trivially on N/®(N), because o does as well. In particular

N < Np(Q). This implies

7*®(Q) € B(NP(Q)/2(Q)) = (NP(Q)/2(Q))' € N/(Q)

and g2 € N. As above, we may choose z,y € N such that 92 = y and 9y = z. Since g
centralizes g2, we can write g2 = (2y)’ for some i € Z. Then gz~* has order 2. Hence, we
may assume that g> = 1 and (N, g) = Con+11Cs. In case n = 1 we have |[Np(Q)| = 64. Here
one can show by computer that Np(Q) does not exist. Hence, n > 2. Let M be a metacyclic
maximal subgroup of Np(Q). Since (®(Q), g) = Can ! Co is not metacyclic, we conclude
that g ¢ M. Let C = (c¢). Then (®(Q), ¢) has rank 3. In particular, ¢ ¢ M. This leaves two
possibilities for M. It is easy to see that (IV, gc) = Cyni1 2 Cy. Thus, M = (®(Q), zc, gc).
Assume (gc)? € ®(Q). Then it is easy to see that (®(Q), ge) = C9n1C5 is not metacyclic. This
contradiction shows (gc)? = zy (mod ®(Q)). Moreover, c(gc)?c = (cg)? = (ge) 2. Since
N = (gc,a(ge)), c acts as inversion on N. In particular, (zc)? = 1. Hence (2(Q),zc) C M
is elementary abelian of order 8. Contradiction. O

Let @ be one of the groups in [Proposition 10.6| Then it can be seen that there is an
automorphism a € Aut(Q) of order 3. Since the kernel of the canonical map Aut(Q) —
Aut(Q/P(Q)) = GL(3,2) is a 2-group, we have (a) € Syl;(Aut(Q)). If « is not conjugate
to ! in Aut(Q), then Burnside’s Transfer Theorem implies that Aut(Q) is 3-nilpotent.
But then also Outz(Q) = S3 would be 3-nilpotent which is not the case. Hence, « is unique
up to conjugation in Aut(Q). In particular the isomorphism type of Cg () is uniquely
determined.
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10. Bicyclic groups

Proposition 10.7. Let F be a fusion system on a bicyclic 2-group P. If Q<P is F-essential
of rank 3, then one of the following holds:

(i) P is minimal non-abelian of type (n,1) for some n > 2.
(i) P = Qg x Con for some n > 2. Here Con acts as a transposition in Aut(Qg) = Sy.
(iii) P = Qg.Con for some n > 2.

In particular P’ is cyclic.

Proof. We use [Proposition 10.6| If @ is abelian, then C3 =2 Q(Q) < P. By [Proposition 10.4}
P is minimal non-abelian of type (n, 1) for some n > 2. Now assume @ = Qg X Con-1 for
some n > 2. We write Q = (x,y, z) such that (x,y) = Qg and (z) = Cyn—1. Moreover, choose
g€ P\ Q. Let a € Outz(Q) as usual. Then « acts non-trivially on Q/Z(Q) = C3 and so
does g. Hence, we may assume 92 = y. Since ¢ € @Q, it follows that 9y = Pz e {z,271}.
By replacing g with gz if necessary, we may assume that 9y = 2. Hence, g% € Z(Q). By
Lemma 10.5, P/®(Q) is minimal non-abelian of type (2,1). In particular, Q/®(Q) =
Q(P/®(Q)). This gives g? ¢ ®(Q) and ¢* € z(z?,2?). Since 9(2?) = 22, we get 92 = z.
After replacing g by gz for a suitable integer i, it turns out that g2 € {z, z2?}. In the latter
case we replace z by z2z and obtain ¢g? = z. Hence, P = Qg x Cyn as stated. Moreover, g
acts on (x,y) as an involution in Aut(Q)g) = Sy. Since an involution which is a square in
Aut(Qg) cannot act non-trivially on Qg/®(Qs), g must correspond to a transposition in
S4. This describes P up to isomorphism. Since P = (gx)(g), P is bicyclic. In particular
P’ C (z,y) is abelian and thus cyclic.

Finally suppose that () = Qg * Can for some n > 2. We use the same notation as before. In

. n—1 .
particular 22 = 22" . The same arguments as above give g> = z and

n

P:<x,y,g\x4:1, 9U2:g/2:g2 L Vr=a"t Yr =y, Iy = x) = Qg.Con.

Then P = (gz){g) is bicyclic and P’ cyclic. O

We will construct the groups and fusion systems in the last proposition systematically in

our main [I'heorem 10.17]

The following result is useful to reduce the search for essential subgroups. Notice that the
centerfree fusion systems on metacyclic 2-groups are determined in [73].

Proposition 10.8. Let F be a centerfree fusion system on a bicyclic, non-metacyclic
2-group P. Then there exists an abelian F-essential subgroup Q < P isomorphic to C'22m or
to Cym x C2 for some m > 1.

Proof. By way of contradiction assume that all F-essential subgroups are isomorphic to
Com X Qg or to Com * Qg (use Propositions and [10.6). Let z € Z(P) be an involution.
Since Z(F) = 1, Alperin’s Fusion Theorem in connection with implies that
there exists an F-essential subgroup Q < P such that z € Z(Q). Moreover, there is an
automorphism a € Aut(Q) such that a(z) # z. Of course « restricts to an automorphism
of Z(Q). In case @ = Cam x Qg this is not possible, since Z(Q) is cyclic. Now assume
@ = Cym x (Yg. Observe that we can assume that o has order 3, because the automorphisms
in Autp(Q) fix z anyway. But then « acts trivially on @’ and on Q(Q)/Q’ and thus also on
Q(Q) > z. Contradiction. O
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10.1. Fusion systems

10.1.1. The case P’ non-cyclic

The aim of this section is to prove that there are only nilpotent fusion system provided P’
is non-cyclic. We do this by a case by case analysis corresponding to the theorems in [154].
By [Proposition 10.7] we may assume that there are no normal F-essential subgroups.

Let F be a non-nilpotent fusion system on the bicyclic 2-group P. Assume for the moment
that P’ = C2. Then P does not contain an elementary abelian subgroup of order 8 by
[Proposition 10.4} Hence, Theorem 4.6 in [I54] shows that P is unique of order 32. In this
case we can prove with computer that there are no candidates for F-essential subgroups.
Hence, we may assume ®(P’) # 1 in the following.

We introduce a few notation from Theorem 4.3 in [I54] that will be used for the rest of the
paper:

O(P) = P'(a%) = (a®)(v), M = E(a®) = (z)(a®)(v).
Here, M is the unique non-metacyclic maximal subgroup of P.

Proposition 10.9. Let P be a bicyclic 2-group such that P’ is non-cyclic and P/®(P’)
contains no elementary abelian normal subgroup of order 8. Then every fusion system on P
is nilpotent.

Proof. The case ®(P’) = 1 was already handled. So we may assume ®(P’) # 1. In particular
Theorem 4.7 in [I54] applies. Let F be a non-nilpotent fusion system on P. Assume first
that there exists an F-essential subgroup Q € {Cam x C2, Com * Qg =2 Cam * Dg} (the letter
m is not used in Theorem 4.7 of [154]). Theorem 4.7 of [I54] also shows that ®(P) is
metacyclic and abelian. Since () contains more than three involutions, there is an involution
B € M\ ®(P). Hence, we can write f = xa?v/ for some 4,7 € Z. Now in case (a) of
Theorem 4.7 of [154] we derive the following contradiction:

6% = za® v za® v = va*za® = xz(av)ZZQQ’ = 2202t 81 q % = (1) # 1.

Similarly in case (b) we get:

ﬂQ — vaz,ija%,U] _ $a221‘2]a22 — CL‘Q(CLU)%Z]CZ% — x2a21uzv2 1zgzz]a21

n72. . n72. . . . .
— 22" i 2" G uzl(1+7]+§)+] £ 1.

Next assume that there is an F-essential subgroup Com X Qg =2 @ < P for some m > 1.
Suppose m > 3 for the moment. Since Q C M, it is easy to see that M \ ®(P) contains an
element of order at least 8. However, we have seen above that this is impossible. Hence,
m < 2. By [Proposition 10.7, @ is not normal in P. Since Q < Np/(Q) < Np(Q), we have
Np(Q) < M = Np(Q)®(P). A computer calculation shows that Np(Q) = Q16 X Com. Thus,
Np(Q) N ®(P) = Cg x Cym, because ®(P) is abelian. Hence, there exist 8 = za®y’ €
Np(Q)\ ®(P) C M\ ®(P) and § € Np(Q) N ®(P) such that 5% = §%. As above we always
have 32 € u(z). However, in both cases (a) and (b) we have §* € Ua(®(P)) N Q(®(P)) =
(a®)(v?" ") = (2). Contradiction. O
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10. Bicyclic groups

If P’ is cyclic, P/®(P’) is minimal non-abelian and thus contains an elementary abelian
normal subgroup of order 8. Hence, it remains to deal with the case where P/®(P’) has a
normal subgroup isomorphic to C3.

Our next goal is to show that P’ requires a cyclic maximal subgroup in order to admit a
non-nilpotent fusion system.

Proposition 10.10. Let P be a bicyclic 2-group such that P' = Cor X Cyrys for some r > 2
and s € {1,2}. Then every fusion system on P is nilpotent.

Proof. We apply Theorem 4.11 and Theorem 4.12 in [I54] simultaneously. As usual assume
first that P contains an F-essential subgroup Q = Com x C3 for some m > 1 (m is not
used in the statement of Theorem 4.11 in [154]). Then @ N ®(P) = Cam x Cy, since (P)
is abelian and metacyclic. We choose 8 := za%v/ € Q \ ®(P). In case m > 2, j fixes an
element of order 4 in @ N ®(P). Since ®(P) is abelian, all elements of ®(P) of order 4 are
contained in

(¥ % v2"") if Theorem 4.11 applies,

¥ " v2"") if Theorem 4.12 applies.

Q2(2(P)) = {

However, the relations in Theorem 4.11/12 in [154] show that z and thus 8 acts as inversion

on Q9(®(P)). Hence, m = 1. Then Np(Q) N ®(P) = C4 x Co by |Lemma 10.5 In particular
there exists an element p € Qo(®(P)) \ (Np(Q) N ®(P)). Then 3 = Bp~2 € Q. Since

Q = (B)(QNP(P)), we derive the contradiction p € Np(Q).

Next suppose that Q = Com x Qg for some m > 1. Here we can repeat the argument word
by word. Finally the case Q@ = Com * Qg cannot occur, since Z(P) is non-cyclic. O

The next lemma is useful in a more general context.

Lemma 10.11. Let P be a metacyclic 2-group which does not have maximal class. Then
every homocyclic subgroup of P is given by Q;(P) for some ¢ > 0.

Proof. Let C22k >~ @ < P with k € N. We argue by induction on k. By Exercise 1.85 in [27],
C? = Q(P). Hence, we may assume k > 2. By induction it suffices to show that P/Q(P)
does not have maximal class. Let us assume the contrary. Since P/Q(P) contains more
than one involution, P/Q(P) is a dihedral group or a semidihedral group. Let (z) < P such
that P/(z) is cyclic. Then (z)Q(P)/Q(P) and (P/QP))/((x)Q(P)/QP)) = P/{x)Q2P)
are also cyclic. This yields |P/{x)Q2(P)| =2 and |P/(z)| = 4. Since P/Q(P) is a dihedral
group or a semidihedral group, there exists an element y € P such that the following holds:

(i) P/QUP) = (zQ(P), y$2(P)),

(ii) y* € Q(P),

(i) Yz = 2! (mod Q(P)) or Yz = 272" (mod Q(P)) with |P/Q(P)| = 2" and
without loss of generality, n > 4.
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10.1. Fusion systems

Since P = (z,y)QA(P) C (z,y)®(P) = (z,y), we have shown that P is the semidirect
product of (x) with (y). Moreover

_ _ n—1 _ n—2 _1_on—2
ywe{ajl,xHZ R }.

Since Q N (x) and Q/Q N (x) = Q(x)/(z) are cyclic, we get k = 2 and 2"~ € Q. But then,
@ cannot be abelian, since n > 4. Contradiction. O

Note that in general for a metacyclic 2-group P which does not have maximal class it can
happen that P/Q(P) has maximal class.

Proposition 10.12. Let P be a bicyclic 2-group such that P' = C3, for some r > 2. Then
every fusion system on P is nilpotent.

Proof. We apply Theorem 4.9 in [I54]. The general argument is quite similar as in
but we need more details. Assume first that Q = Cym x C3 for some m > 1
is F-essential in P (m is not used in the statement of Theorem 4.9 in [I54]). Since ®(P)
has rank 2, we get Q N ®(P) = Cym x Cy. We choose B := za®vi € Q\ ®(P). Suppose
first that m > 2. Then S fixes an element § € Q N ®(P) of order 4. Now ®(P) is a
metacyclic group with Q(®(P)) = C% and C? = Qy(P') < ®(P). So implies
Q(®(P)) = (2,0 ") = C2. In case = 2 we have |P| = 27, and the claim follows by a
computer verification. Thus, we may assume r > 3. Then =02 "z = v=2" *. Moreover,
N (P(P)) CU(®(P)) = 2(®(P)) C Z(P®(P)), since ®(P) is abelian or minimal non-abelian
depending on 7. This shows that § acts as inversion on Qy(®(P)) and thus cannot fix 4.
It follows that m = 1. Then |[Np(Q) N ®(P)| < 8. In particular there exists an element
p € D(®(P)) \ (Np(Q) N B(P)). Then #5 = fp~> € Q. Since Q = (B)(Q N B(P)), we
derive the contradiction p € Np(Q).

Now assume @ = Com x Qg for some m > 1. We choose again 8 := za®v’/ € Q \ ®(P).
If ®(P) contains a subgroup isomorphic to Qg, then Q5(P(P)) cannot be abelian. So,
in case m = 1 we have Np(Q) N ®(P) = Cg x Cy. Then the argument above reveals a
contradiction (using r > 3). Now let m > 2. We write @ = (q1) X (g2, q3) where (q1) = Cam
and (g2, q3) = Qs. In case ¢; ¢ ®(P) we can choose 8 = ¢;. In any case it follows that
fixes an element of order 4 in @ N ®(P). This leads to a contradiction as above.

Finally suppose that QQ = Com x Qg = Com x Dg for some m > 2. Here we can choose
B € Q\ ®(P) as an involution. Then there is always an element of order 4 in Q N ®(P)
which is fixed by §. The contradiction follows as before. O

Proposition 10.13. Let P be a bicyclic 2-group such that P’ = Cor X Cyrist1 for some
r,s > 2. Then every fusion system on P is nilpotent.

Proof. Here Theorem 4.13 in [154] applies. The proof is a combination of the proofs of
IProposition 10.10| and [Proposition 10.12} In fact for part (a) of Theorem 4.13 we can copy
the proof of [Proposition 10.10] Similarly the arguments of [Proposition 10.12] remain correct
for case (b). Here observe that there is no need to discuss the case r = 2 separately, since

_ r+s—1 _or+s—1
z 12 r=0v"2 . O

129



10. Bicyclic groups

Now it suffices to consider the case where P’ contains a cyclic maximal subgroup. If P’ is
non-cyclic, Theorem 4.8 in [I54] applies. This case is more complicated, since |P/P’| is not
bounded anymore.

Proposition 10.14. Let P be a bicyclic 2-group such that P’ = Can x Co for some n > 2,
and P/®(P") has a normal elementary abelian subgroup of order 8. Then every fusion
system on P 1is nilpotent.

Proof. There are two possibilities for P according to if Z(P) is cyclic or not. We handle
them separately.

Case 1: Z(P) non-cyclic.
Then a®" = uz". Moreover,

a*2va2 _ afl,uuv2+4sa — u(uv3+43)3+4s _ U(3+4s)2 c U<’U8>. (10.1)

Using this we see that (a2" ', 02" ") & C2. Thus, implies Qy(P(P)) =
<a2m71,02n72>. As usual we assume that there is an F-essential subgroup Q = Cy: x C3
for some ¢t > 1. Then Q@ N ®(P) = Cyt x Cy, since ®(P) has rank 2. For t = 1 we obtain
QN ®(P) = Q(®(P)) C Z(P). Write P := P/Q(®(P)), Q := Q/Q(®(P)) and so on. Then
C5(Q) € Np(Q). So by Satz I11.14.23 in [141], P has maximal class. Hence, P’ = ®(P)
and m = 1. Contradiction. Thus, we may assume ¢ > 2. Then as usual we can find an
element § € @ N ®(P) of order 4 which is fixed by some involution 8 € @ \ ®(P). We
write 6 = a2 '192" %2 and B = zvia. Assume first that 2 | di. Then 2t dy. Since
a?" v € Z(®(P)), it follows that § = #§ = *§ = §~1. This contradiction shows 2} d;.
After replacing 0 with its inverse if necessary, we can assume d; = 1. Now we consider 3.
We have

— afluv3+4sa

1 =42 = (2/a®)? = 2%0¥ a0 = ¥  (mod P').

Since ) ) el
P on+m
2n+m:|q>(P)|: |<a >H ‘ _ ,

we get 272 | i. In case i = 22 we get the contradiction

2

(z) 3 2% = 72 g2 (B6™1)?2 = 6% € ulz).

Hence, 2™ ! | i. So, after multiplying 8 with 62 if necessary, we may assume i = 0, i.e.
B = zv?. Then 1 = zv/zv! = 22. Conjugation with a~! gives 8 = a " lzvia = zv"ta via =
2udvBH49)I~1 Since u € Q, we may assume that 8 = zv¥. After we conjugate Q by v7, we
even obtain 3 = x. Since z(a?v?)z ™' = a?uv*(1T*)~ no element of the form a?v’ is fixed
by z. On the other hand

4(1+s))2v4 _ a4v4(1+s)(3+4s)2+4(1+s)7i'

z(a*v))z™! = (a®uv
This shows that there is an i such that a*v? =: X is fixed by . Assume there is another
element A\ := a*v’/ which is also fixed by . Then A™'A\; = v/~% € (2). This holds in a
similar way for elements containing higher powers of a. In particular u = a®" 27 € (), z).
Recall that ®(P) = (v) x (a?). This shows Cg(py(x) = (A) X (2) = Cym—1 x Cy. Since
QN®(P) C Cy(p)(r) and Q = (QNP(P))(z), we deduce Cy(py(7) € Cp(Q) € Q. Moreover,
QN ®(P) = Cy(p)(x) and t = m — 1. Therefore, Q@ = (A, z, z). The calculation above shows
that there is an element p = a®v/ such that *z = uz € Q. Now u? € Co(p)(z) implies
Copy(z) = (42, 2) and p € Np(Q) = Q(v*" ). Contradiction.
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10.1. Fusion systems

Now assume @ = Cot X Qg for some t > 1. Since ®(P) does not contain a subgroup
isomorphic to Qs, we see that Q(®(P)) C Q. First assume ¢t = 1. Then we look again at
the quotients P := P/Q(®(P)) and Q := Q/Q(®(P)) = C3. Since Np(Q) acts non-trivially
on Q, we get C5(Q) C Q. In particular Proposition 1.8 in [27] implies that P has maximal
class. This leads to a contradiction as in the first part of the proof. Thus, we may assume
t > 2 from now on. Then Q(®(P)) C Q. Since @ contains more elements of order 4 than
®(P), we can choose B € Q \ ®(P) of order 4. Write 8 = xa?v’. Then 52 € Q(®(P)) C P'.
So the same discussion as above shows that we can assume § = z. In particular |(z)| = 4.
Since Cy(p) () is abelian, A centralizes (Cq(z) N ®(P))(z)(v?" ") = Co(x)(v®" ) = Q.
This shows A € Q and t = m — 1 again. More precisely we have Q = (\) x (v¥" ", z).
[Equation (10.1)| shows that v2"° still lies in the center of ®(P). It follows easily that
Np(Q) = Qv *). However, as above we also have y € Np(Q). Contradiction.

Finally, the case Q = Cy: * Qg cannot occur, since Z(P) is non-cyclic.

Case 2: Z(P) cyclic.

Here we have a2 = w? 27, n > m+2 >4 and 1 + s £ 0 (mod 2"3). Again we
begin with Q = Cy x C2 for some t > 1. By Theorem 4.3(b) in [I54] we still have
(u,z) = Q(Z(®(P))). Since ®(P) does not have maximal class, also (u, z) = Q(®(P)) holds.
In particular Q(®(P)) C Q. In case t = 1 we see that P/Q(®(P)) has maximal class which
leads to a contradiction as before. Thus, ¢ > 2. Since u € Z(®(P)), [Equation (10.1)|is
still true. Hence, Qa(®(P)) = (a2 02" 02" ) = C2. We choose an involution 5 =
zvia® € Q\ ®(P). Then as usual v*" "~ € Np(Q) \ Q. Since a2” € (u) x "%, we
find an element § = a2" o™ € Q N Q(®(P)) of order 4 fixed by 8. Now exactly the
same argument as in Case 1 shows that g = x after changing the representative of
and conjugation of @ if necessary. Similarly we get A := a0/ € Ca(p)(x). Moreover,
uw=a2"v2"7 21 e {X\T"° A2"" 2}, Therefore, Co(py(z) = (N) x (2) = Cym-1 x Ca. The
contradiction follows as before.

Now assume that QQ = Cyt X Qg or Q = Chir1 * Qg for some t > 1. [Proposition 10.8| shows
that F = Cx(z). Theorem 6.3 in [203] implies that Q := Q/(z) is an F/(z)-essential
subgroup of P := P/(z). Now P is bicyclic and has commutator subgroup isomorphic to
Can—1 x Cy. Hence the result follows by induction on t. O

Combining these propositions we deduce one of the main results of this section.

Theorem 10.15. FEvery fusion system on a bicyclic 2-group P is nilpotent unless P’ is
cyclic.

It seems that there is no general reason for [Theorem 10.15 For example there are non-
nilpotent fusion systems on 2-groups of rank 2 with non-cyclic commutator subgroup.

For the convenience of the reader we state a consequence for finite groups.

Corollary 10.16. Let G be a finite group with bicyclic Sylow 2-subgroup P. If P’ is
non-cyclic, then P has a normal complement in G.

We remark that finite groups with a Sylow 2-subgroup P such that P’ is cyclic have been
investigated by Chabot [62] [63, 65, 64], Aleev [I] and Kondrat’ev [I71].
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10. Bicyclic groups

10.1.2. The case P’ cyclic

In this section we consider the remaining case where the bicyclic 2-group P has cyclic
commutator subgroup. Here Theorem 4.4 in [I54] plays an important role. The follow-
ing theorem classifies all fusion systems on bicyclic 2-groups together with some more
information.

Theorem 10.17. Let F be a fusion system on a bicyclic 2-group P. Then one of the
following holds:

(1) F is nilpotent, i.e. F = Fp(P).
(2) P=C3, and F = Fp(P x C3) for some n > 1.

(3) P = Dy for somen > 3 and F = Fp(PGL(2,5" ")) or F = Fp(PSL(2,52"")).
Moreover, F provides one respectively two essential subgroups isomorphic to C3 up to
conjugation.

(4) P = Qs and F = Fp(SL(2,3)) is controlled, i. e. there are no F-essential subgroups.

(5) P = Qon for some n > 4 and F = Fp(SL(2,5%" ").Cy) or F = Fp(SL(2,5%"")).
Moreover, F provides one respectively two essential subgroups isomorphic to Qg up to
conjugation.

(6) P = SDon for somen > 4 and F = Fp(PSL(2,52"°) x Cy), F = Fp(GL(2,q)) or
F = Fp(PSL(3,q)) where in the last two cases q is a suitable prime power such that
q = 3 (mod 4). Moreover, in the first (resp. second) case C2 (resp. Qg) is the only
F-essential subgroup up to conjugation, in the last case both are F-essential and these
are the only ones up to conjugation.

(7) P = C9n 1 Cy for somen > 2 and F = Fp(C2 x S3), F = Fp(GL(2,q)) or F =
Fp(PSL(3,q)) where in the last two cases ¢ =1 (mod 4). Moreover, in the first (resp.
second) case C2, (resp. Con x Qg) is the only F-essential subgroup up to conjugation,
in the last case both are F-essential and these are the only ones up to conjugation.

(8) P = C2 x Can is minimal non-abelian of type (n,1) for some n > 2 and F = Fp(Ay x
Can). Moreover, Con—1 x C3 is the only F-essential subgroup of P.

(9) P~ (vza|v =22=1, v=0v"L, o =0¥ ", =0 , Yr = vx) X
Dyni1.Com forn>m > 1 and F = Fp(PSL(2,52"").Cam). Moreover, Cym-1 X C3 is
the only F-essential subgroup up to conjugation.

71+2n—m+1

(10) P (v,z,a | v?" =22 =a®" =1, "o =071, % =012 % = y2) = Dynt1 x Cgm
for max(2,n —m+2) <i < n and n,m > 2. Moreover, F = Fp(PSL(2,52" ) x Com)
and Cym—1 x O3 is the only F-essential subgroup up to conjugation. In case i = n there
are two possibilities for F which differ by Z(F) € {(a2), (a®v?" ')}

(11) P = (v,z,a | v¥" =1, 22 = a®" =¥, Tv =0}, % =y , Y= vx) =
Qon+1.Com forn >m > 1 and F = Fp(SL(2,52" ).Com). Moreover, Com—1 X Qg is
the only F-essential subgroup up to conjugation.

1 —142n-m+l

(12) P = (v,z,a |v?" =a®" =1, 22 = v2"_1, Ty =v7L, W= v_1+2i, = vr) = Qont1 X
Com for max(2,n—m+2) < i <n andn,m > 2. Moreover, F = Fp(SL(2,5%" ") xCam)
and Com-1 X Qg 1is the only F-essential subgroup up to conjugation.
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(18) P= (v,z,a | v?" =a?" =1, 22 = 02", Ty = v, 9y = o 12 ag — )
Qon+1 X Com forn>m > 1 and F = Fp(SL(2,5%" ") x Com). Moreover, Com * Qg is
the only F-essential subgroup up to conjugation.

(1) P = (v,z,a | v" =1, 22 = a®" = o¥" ", %y = oL, 9y = o712 g — yg) =
Qon+1.Com for max(2,n—m+2) <i<n andn,m > 2. In case m = n, we have i # n.
Moreover, F = Fp(SL(2, 52n_2).02m) and Com * Qg is the only F-essential subgroup up
to conjugation.

In particular, F is non-exotic. Conversely, for every group described in these cases there
exists a fusion system with the given properties. Moreover, different parameters give non-
isomorphic groups.

Proof. Assume that F is non-nilpotent. By [Theorem 10.15, P’ is cyclic. The case P = Qg
is easy. For the other metacyclic cases and the case P = Can 1 C2 we refer to Theorem 5.3 in
[73]. Here we add a few additional information. An induction on i > 2 shows 5277 =142
(mod 2+1). This implies that the Sylow 2-subgroups of SL(2,52" "), PSL(2,5%" ") and so
on have the right order. For the groups SDs» and Con { Cs it is a priori not clear if for
every n an odd prime power ¢ can be found. However, this can be shown using Dirichlet’s
Prime Number Theorem (compare with Theorem 6.2 in [300]). Hence, for a given n all
these fusion systems can be constructed.

Using [Proposition 10.3| we can assume that every F-essential subgroup has rank 3. Finally
by [Proposition 10.4|it remains to consider |P’| > 2. Hence, let P be as in Theorem 4.4 in
[154]. We adapt our notation slightly as follows. We replace a by a~! in order to write %v
instead of v®. Then we have “x = vx. After replacing v by a suitable power, we may assume
that ¢ is a 2-power (accordingly we need to change x to v"z for a suitable number 7). Then
we can also replace i by 2 4 log4. This gives

P=(v,z,a| v =1, 22,a¥" € (1)2"_1), T T Y L ). (10.2)

Since Theorem 4.4 in [154] also states that v and a2” ' commute, we obtain 7 € {max(n —
m+1,2),...,n}. We set z:=v2" " as in [I54]. Moreover, let A := v=2"'¢2. Then

— i—1 _ _91—1
szt =0 (v la) =0 aP =)

and X € Cg(py(z). Assume that also v/a® € Cy(py(x). Then we get v/a? € {\, Az}. Hence,
Ca(p)(7) € {(N), () x (2)}. It should be pointed out that it was not shown in [154] that
these presentations really give groups of order 2"+™+! (although some evidence by computer
results is stated). However, we assume in the first part of the proof that these groups with
the “right” order exist. Later we construct F as a fusion of a finite group and it will be
clear that P shows up as a Sylow 2-subgroup of order 2"+ +1 Now we distinguish between
the three different types of essential subgroups.

Case (1): Q = Oy x C3 is F-essential in P for some ¢t > 1.

As usual, Q < M = E(a?). Since @ N E is abelian and Q/QNE = QFE/E < P/E is
cyclic, it follows that F is dihedral and Q N E = C2. After conjugation of ) we may
assume QN E € {(z,z), (z,vz)}. Further conjugation with a gives Q@ N E = (z,z). Since
Cq(x) N ®(P) is non-cyclic, it follows that Cg(py(r) = (A) X (2) = Com-1 x Ca. As
usual we obtain Q = (\, z,x) and t = m — 1. Moreover, a?va™2 = v (mod (v8)). Hence,
Np(Q) = <)\’,02"*2’$>.
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We prove that @ is the only F-essential subgroup of P up to conjugation. If there is an
F-essential subgroup of rank 2, then [Proposition 10.3]implies that P is a wreath product.
However, by the proof of Theorem 5.3 in [73] all the other F-essential subgroups are of
type Cor x Qg. Hence, this case cannot occur. Thus, by construction it is clear that @ is
the only abelian F-essential subgroup up to conjugation. Now assume that @)1 = Cas X Qg
is also F-essential. Since @ has three involutions, @1 N E is cyclic or isomorphic to C3.
In either case Q/Q NE = QFE/E < P/FE cannot be cyclic. Contradiction. Suppose now
that Q1 = Cos x Qg = Cas x Dg for some s > 2. Then ()1 N E cannot be cyclic, since Q1
has rank 3. Suppose Q1 N E = C2. Then Q(Z(Q1)) C Q1 NE and expQ1/Q1 N E < 2571,
On the other hand, |Q1/Q1 N E| = 2°. In particular, @1/Q1 N E =2 Q1E/E < P/E
cannot be cyclic. It follows that @1 N E must be a (non-abelian) dihedral group. Hence,
2711 NE| = [(Q1 N E) (Q1)| < Q1] = 2°%? and Q1 N E = Dg. After conjugation of
Q1 we have Q1 N E = (v¥" ", z). Let \; € Z(Q1) \ E be an element of order 2° such that
)\%571 = z. Since # € Q1, we have A} € Cy(p)(z) = (A) x (z). This implies s = 2 and
A1 & ®(P). Since Q1 = (Q1 N ®(P))(z), we obtain \;x € Cypy(z). But this contradicts
z = A2 = (\1z)2. Hence, we have proved that @ is in fact the only F-essential subgroup of
P up to conjugation.

Now we try to pin down the structure of P more precisely. We show by induction on j > 0
that A2 = 027772 for an odd number v. This is clear for 7 = 0. For arbitrary j > 1
we have

j j—1\ 9i—1 i+i=2, oi oiti—2, oi i+i=2p, (149027 1oiti=2, ojt+l
A2 TP 2 Vo2 02 v — 2 v(—1424)% 12 V2

P2 iy27 G+1
— 2 v((—1429)% 41) ;2

Y

and the claim follows. In particular we obtain

m—1 z+m2 m
2 2 a2 )

1=\ (10.3)

We distinguish whether P splits or not.

Case (1a): a®" = 2.

Here [Equation (10.3)[shows i =n —m + 1. Then n > m > 1, and the isomorphism type
of P is completely determined by m and n. We show next that F is uniquely determined
(up to isomorphism). For this we need to describe the action of Autxz(Q) in order to apply
Alperin’s Fusion Theorem. As in the proof of |Proposition 10.4] Autz(Q) acts on (z, z) or on
(zA2""? | 2) non-trivially (recall Np(Q) = Dg X Com-1). Set 7 := zA2" " and @ := av?" "’
Then as above 7 = 202" “a2" ", Hence, 72 = 1 and v = v~1. Moreover, a2 = a2 and
thus a2 = z. Finally, %0 = % and %% = %(z20%2" "a2" ") = vzz072" *a?™" = vZ. Hence,
v, T and a satisfy the same relations as v, x and a. Obviously, P = (v, Z,a). Therefore,
we may replace x by T and a by a. After doing this if necessary, we see that Autr(Q)
acts non-trivially on (z, z) (observe that @) remains fixed under this transformation). As
usual it follows that Co(Autz(Q)) € {(\), (A\z)} (compare with proof of [Proposition 10.4)).
Define a := a2 and ¥ = 012" = vz Then a2 = a2z, 62" = 2, 0% =1, %5 = v
and @ = 142" Now we show by induction on j > 1 that ¥ xa~? = 2"y
for an odd integer v. For j = 1 we have a?za~2 = %(vz) = v2" " 2. For arbitrary 7 > 1
induction gives

G+l _oj+l J, 9  _oi\ _9j j, on—m+j 9 n—m+j,,((_149n—m-+1y27
a? " ra=2 — g2 (a2 za 2 )CL Y _ 2 ('1)2 I/x)a 2 _ 2 v((—1+2 ) +1)x

Y

_2m71

and the claim follows. In particular " 'za = zvz and %z = vz. Obviously, P =
(v,a, z). Hence, we may replace v, a, x by v, a, x if necessary. Under this transformation @
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and (z, z) remain fixed as sets and A goes to Az. So, we may assume Cg(Autz(Q)) = (A).
Then the action of Autz(Q) on @ is completely described. In particular F is uniquely
determined.

It remains to prove that P and F really exist. Let q := 52" ' It is not hard to verify that
H := PSL(2, q) has Sylow 2-subgroup E = Dyn+1. More precisely, E can be generated by
the following matrices

e w 0 S 0 1
—\0 w) T \-1 0

where w € Fy has order 2"*!. Moreover, we regard these matrices modulo Z(SL(2,q)) =
(—12). Now consider the matrix a; := (% §) € GL(2,q)/ Z(SL(2,q)). Then a; acts on H
and a calculation shows “v = v~ and 'z = vz. Let 71 be the Frobenius automorphism
of F, with respect to Fs, i.e. v1(7) = 7° for 7 € F,. As usual we may regard v as an
automorphism of H. Let v := 2" """ so that |(7)| = 2™. Recall that (Z/2"7Z)% =
(5 + 27H1Z) x (=1 + 27H1Z) = Cyar x Cy. It is easy to show that (52" "' + 27+17Z) and
(1 — 2n=mHl 4 ont17h are subgroups of (Z/2"17Z)* of order 2™. Since

5277 =1 — 2t (mod 8),

it follows that )
<52n—m7 + 2n+IZ> — <1 _ 2n—m+1 + 2n+1Z>.

2n—m—11j

In particular we can find an odd integer v such that 5 =1-2""m+ (mod 27H1).

Now we set
a:=apy’.

. . _ n—m-+1 .
Since 7, fixes x, we obtain v = v~ 112 and “x = wvx. It remains to show that

a?" =v?""" =i 2. Here we identify H with Inn(H) = H. For an element u € H we have

a*(u) = (a1y"a17”)(w) = (a17"(a1))y* (w)(a1y"(a1)) ™ = ((US w;;zno’"lu) 72”) (u).

After multiplying the matrix in the last equation by (gg)h € Z(GL(2,q)) for h =
—(52"""7' +1)/2, we obtain

-
@ (u) = ((‘*’ . w_fnm) 72”) (w.

since (1 —52""""'7)/2 = 2"~™ (mod 2"). Using induction and the same argument we get

. h;j .
2J w™ 0 20y
a = < 0 whj> Y

where 27"~ H=1 | h; and 27~™% § h; for j > 1. In particular, a®” = 2 as claimed. Now

Theorem 3.36 in [146] shows that the following non-split extension exists
G := H{a) = PSL(2,5%"").Cynm.

Moreover, the construction shows that G has Sylow 2-subgroup P. Since H is non-abelian
simple, Fp(G) is non-nilpotent. Hence, F = Fp(QG).
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10. Bicyclic groups

Case (1b): a®" = 1.
Here P = Dyni1 x Com. Moreover, by [Equation (10.3)|we have n—m+2 < 4. As in case (1a)
we may assume that Autrz(Q) acts on (z,z) using the following automorphism of P if

necessary:

2m72 277.72
A2 .

V=, T =T a — av

Now assume ¢ < n (and thus m,n > 3). Here we consider the following map

n—1 ~ n—i ~
,U1+2 a1+2 .

V= =vVz =, T —x, a =:a.

It can be seen that v, x and a generate P and satisfy the same relations as v, z and a.
n—1i n—i+1 .
Moreover, as above we have A\?" ' = za? . This shows

~_t—1 __« _91—1 n—i+1 n—1i n—i
N 22 o 2 242 — A2 ()

Hence, we obtain Cg(Autz(Q)) = (\) after applying this automorphism if necessary. This
determines F completely, and we will construct F later.

We continue by looking at the case i = n. Here we show that A\ = za? is not a square in

P. Assume the contrary, i.e. za®? = (v/z¥a')? for some j, k,1 € Z. Of course, | must be
odd. In case k = 0 we get the contradiction (v/a')? = a?. Thus, k = 1. Then [v,za'] = 1
and (vza)? = v¥ (zaza™)a? = v¥~1¢?. Again a contradiction. Hence, X is in fact a
non-square. However, Az = a? is a square and so is every power. As a consequence, it turns
out that the two possibilities Co(Autz(Q)) = Z(F) = (A) or Co(Autx(Q)) = Z(F) = (a?)
give in fact non-isomorphic fusion systems. We denote the latter possibility by F, i.e.
Z(F') = (a?).

Now for every i € {max(2,n —m+2),...,n} we construct P and F. After that we explain
how to obtain F’ for i = n. This works quite similar as in case (1la). Let ¢, H, v, z, a1
and v, as there. It is easy to see that (1 — 2 + 2""1Z) has order 271" as a subgroup of
(Z)2" 7). Set v := 7%172. Then 42" = 1, since m + i — 2 > n. Again we can find an
odd integer v such that 527" =1 -2 (mod 2"1). Setting a := a17” € Aut(H) we get
@y = v~ 12" and %z = va. It remains to prove a?" = 1. As above we obtain

This leads to a?” = 1. Now we can define G := H x (a) (notice that the action of (a)
on H is usually not faithful). It is easy to see that in fact P € Syly,(G) and Fp(G) is
non-nilpotent. Hence, for i < n we get F = Fp(G) immediately. Now assume ¢ = n. Since

w’=—-1¢ Fy, we can choose w such that W =2¢ Fs C Fy. Define

3 1
o= (2 1>€H.

A calculation shows that o has order 3 and acts on (z, 2) non-trivially. Moreover, y?* = 1,
and a? is the inner automorphism induced by z. In particular, a? does not fix . We can view
a as an element of Autz, ) (Q). Then Co(Autr,()(Q)) = (A) = Z(F) is generated by a
non-square in P. This shows again F = Fp(G). It remains to construct F’. Observe that
acts trivially on (v, z), since 52" =1 (mod 2™). Hence, we can replace the automorphism
a just by a1 = (_01 S ) without changing the isomorphism type of P. Again we define
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10.1. Fusion systems

G := H x (a1). Then it turns out that af = (% %) € Z(GL(2,¢)). In particular, a is fixed
by the element a € Autz,(¢)(Q) above. So here Z(Fp(G)) = (af) is generated by a square
in P. Thus, we obtain F' = Fp(G).

Case (2): Q = Cy x Qg is F-essential in P for some ¢ > 1.

We have seen above that E cannot be dihedral. Hence, E is (generalized) quaternion, i.e.
22 = 2. Now |Q : Z(Q)| = 4 implies Q N E = Qg. After conjugation of  we may assume
QNE= <vzn72,:ﬂ). |Proposition 10.8| implies z € Z(F). In particular, Q/(z) = Cy x C3
is an F/(z)-essential subgroup of P/(z) (see Theorem 6.3 in [203]). So by the first part
of the proof and [Proposition 10.4] (for n = 2) we get t = m — 1, and @ is the only
F-essential subgroup up to conjugation. Since Cg(x) N ®(P) is still non-cyclic, we have
Co(py(x) = (A) X (2) = Cym—1 x Cy as in case (1). Moreover, a® fixes v*"
that Q = (vzniz,x, A).

2, and it follows

Here we can handle the uniqueness of F uniformly without discussing the split and non-split
case separately. Since Inn(Q) = C3, Aut#(Q) is a group of order 24 which is generated by
Np(Q)/Z(Q) and an automorphism a € Autz(Q) of order 3. Hence, in order to describe
the action of Autz(Q) on @ (up to automorphisms from Aut(P)), it suffices to know how «
acts on Q. First of all, a acts on only one subgroup Qs = R < Q. It is not hard to see that
Q' = (z) C R and thus R<Q. In particular, R is invariant under inner automorphisms of Q.
Now let 3 be an automorphism of @ coming from Np(Q)/Q < Outz(Q). Then fa = a~ 13
(mod Inn(Q)). In particular 3(R) = o~ *(B3(R)) = R. Looking at the action of Np(Q), we
see that R € {(v¥" ", z), (02" *, zA2"*)}. Again the automorphism

m—2 n—2
V=, S S a— av?

leads to R = <’U2n_2,x>. The action of & on R is not quite unique. However, after inverting «
if necessary, we have a(z) € {v2" ", v=2"""}. If we conjugate o with the inner automorphism
induced by z in doubt, we end up with a(z) = v2""". Since o has order 3, it follows that
a(in_2) = 20" 7", So we know precisely how « acts on R. Since a is unique up to
conjugation in Aut(Q), we have Cg(a) = Z(Q) = (A, z). Hence, the action of Autz(Q) on
Q is uniquely determined. By Alperin’s Fusion Theorem, F is unique. For the construction

of F we split up the proof again.

Case (2a): a®" = 2.

Then, again n > m > 1 and i = n—m+1 by [Equation (10.3)} So the isomorphism type of P
is determined by m and n. We construct P and F in a similar manner as above. For this set
q:= 52" and H := SL(2,q). Then a Sylow 2-subgroup H is given by E = (v, z) = Qqn+1
where v and = are defined quite similar as in case (1a). The only difference is that w € F
has now order 2" and the matrices are not considered modulo Z(SL(2, ¢)) anymore. Also
the element a; as above still satisfies “'v = v~! and *z = va. Now we can repeat the
calculations in case (1a) word by word. Doing so, we obtain G := H(a) = SL(2, ¢).Com and
F =Fp(G).

Case (2b): a®" = 1.
Here [Equation (10.3)| gives max(n +m + 2,2) < i < n. For every ¢ in this interval we can
again construct P and F in the same manner as before. We omit the details.

Case (3): Q = Cy x Qg is F-essential in P for some ¢t > 2.

Again the argumentation above reveals that E is a quaternion group and 2> = z. Moreover,
QNE = (¥ " 1) = Qs after conjugation if necessary. Going over to P/(z), it follows
that t = m. Assume n = m = i and a®>" = z for a moment. Then (az)? = vza® and
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10. Bicyclic groups

Fy := (v,az) = C%, is maximal in P. Since P/®(F}) is non-abelian, we get P = Con { Cy
(compare with the proof of [Proposition 6.11)). Thus, in case n = m and a®" = z we
assume ¢ < n in the following. We will see later that other parameters cannot lead to a
wreath product. After excluding this special case, it follows as before that @) is the only
F-essential subgroup up to conjugation. Since Cg(x) contains an element of order 2, we
have Cg(p)(7) = (A). Hence, we have to replace [Equation (10.3)| by

y = )\2m—1 _ U2m+i—2ya2m
where v is an odd number. Moreover, () = (1)2”72, z, \). If a®" = z, then max(n—m+2,2) <
i < n. On the other hand, if ¢®" =1, then n > m > 1 and i = n — m + 1. Hence, these
cases complement exactly the case (2) above.

The uniqueness of F is a bit easier than for the other types of essential subgroups. Again
Autr(Q) has order 24 and is generated by Np(Q)/ Z(Q) and an automorphism o € Autx(Q)
of order 3. It suffices to describe the action of o on @ up to automorphisms from Aut(P).
By considering Q/Q’ = Cym-1 x C2 we see that R := <v2"72,a:) is the only subgroup of Q)
isomorphic to @g. In particular, o must act on R. Here we also can describe the action
precisely by changing « slightly. Moreover, Cg(a) = Z(Q) = (\), since « is unique up to
conjugation in Aut(Q). This shows that F is uniquely determined (up to isomorphism).
Now we distinguish the split and non-split case in order to construct P and F.

Case (3a): a®" = 1.

At first glance one might think that the construction in case (2) should not work here.
However, it does. We denote ¢, H and so on as in case (2a). Then a?" is the inner auto-
morphism on H induced by z. But since z € Z(H), a®" is in fact the trivial automorphism.
Hence, we can construct the semidirect product G = H X (a) which does the job.

Case (3b): a*" = 2.

Here we do the opposite as in case (3a). With the notation of case (3a), a is an automorphism
of H such that a®” =1 and a fixes z € Z(H). Using Theorem 15.3.1 in [I16] we can build
a non-split extension G := H{a) such that a®" = z. This group fulfills our conditions.

Finally we show that different parameters in all these group presentations give non-
isomorphic groups. Obviously the metacyclic groups are pairwise non-isomorphic and
not isomorphic to non-metacyclic groups. Hence, it suffices to look at the groups coming
from Theorem 4.4 in [154]. So let P be as in [Equation (10.2)|together with additional de-
pendence between x2? and the choice of i as in the statement of our theorem (this restriction
is important). Assume that P is isomorphic to a similar group P; where we attach an index
1 to all elements and parameters of P;. Then we have 2"+l = |P| = |Py| = 2mtmit]
and 2" = |P'| = |P{| = 2™. This already shows n = ny; and m = mj. As proved above,
P admits a non-nilpotent fusion system with essential subgroup Com-1 x C3 if and only
if 22 = 1. Hence, 2% = 1 if and only if 22 = 1. Now we show i = 1. For this we consider
®(P) = (v,a?). Since ®(P) is metacyclic, it follows that ®(P) = ([v,a?]) = (v2") = Cyn
where 1 := max(n —¢—1,0). Since 4,71 < n, we may assume 4,9, € {n—1,n}. In case i = n
the subgroup C := (v, ax) is abelian. By Theorem 4.3(f) in [I54], C' is a metacyclic maximal
subgroup of P. However, in case ¢ = n — 1 it is easy to see that the two metacyclic maximal
subgroups (v, a) and (v, az) of P are both non-abelian. This gives ¢ = 4. It remains to show:
a?” =1 <= a?"" = 1. For this we may assume 7> = z and 2 = 2;. In case i =n —m + 1
(and n > m > 1) we have a®" = 1 if and only if P provides a fusion system with essential
subgroup Com * Qg. A similar equivalence holds for max(n —m + 2,2) < i < n (even in
case n = m = i). This completes the proof. ]
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10.1. Fusion systems

The statement that F is non-exotic in the situation of [Theorem 10.17| has been proved
independently by Oliver [233] for a larger class of p-groups.

We present an example to shed more light on the alternative in part [(10)| of [Theorem 10.17}
Let us consider the smallest case n = m = i = 2. The group N := Ag = PSL(2, 3?) has
Sylow 2-subgroup Dg. Let H := (h) = Cy. It is well-known that Aut(N)/N = C2, and the
three subgroups of Aut(N) of index 2 are isomorphic to Sg, PGL(2,9) and the Mathieu
group Mg of degree 10. We choose two homomorphisms ¢; : H — Aut(NV) for j = 1,2 such
that ¢1(h) € PGL(2,9) \ N is an involution and @a(h) € My \ N has order 4 (we do not
define ; precisely). Then it turns out that the groups G; := N x,, H for j = 1,2 have Sylow
2-subgroup P as in part Moreover, one can show that Fi := Fp(G1) # Fp(Ga) =: Fo.
More precisely, Z(F1) = Z(G1) = {p1(h)?) is generated by a square in P and Z(F) is
not. The indices of G; in the Small Groups Library are [1440,4592] and [1440,4595]
respectively. It should be clarified that this phenomenon is not connected to the special
behavior of Ag, since it occurs for all n with PSL(2,52" ).

As a second remark we indicate a more abstract way to establish the non-exoticness of
our fusion systems. It suffices to look at the cases [(9)] to [(14)] in [Theorem 10.17] If P
does not contain an abelian F-essential subgroup, then [Proposition 10.§shows Z(F) # 1.
Here Theorem 2.4(b) in [234] reduces the question of exoticness to a fusion system on the
smaller bicyclic group P/(z). Hence, we may assume that there is an F-essential subgroup
Q = (z,7,\) = Cym-—1 x C2. Moreover, we can assume that Z(F) = 1. Now we construct
the reduced fusion system of F (see Definition 2.1 in [19]). By Proposition 1.5 in [I9] we
have O2(F) < QN *Q C (z,A). Since O2(F) is strongly closed in P, we have z ¢ Oa(F).
Hence, Oz(F) is cyclic and Q(O2(F)) C Z(F) = 1. This shows Oz(F) = 1. So in the
definition of the reduced fusion system we have Fy = F. Now we determine Fj := O*(F).
Since E = (z,vz), it turns out that the hyperfocal subgroup of F is E = Dgn+1. Using
Definition 1.21 and 1.23 in [19] it is easy to see that F; has two essential subgroups
isomorphic to C3 up to conjugation. That is F; = Fg(PSL(2, 52n_1)). Moreover, we have
Fy:= O (F1) = F1. So it follows that F; is the reduction of F. By Proposition 4.3 in [19],
F1 is tame in the sense of Definition 2.5 in [19]. Without using the classification of the
finite simple groups, Theorem 2.10 in [I9] implies that F; is even strongly tame. Hence,
also F is tame by Theorem 2.20 in [19]. In particular F is not exotic.

However, using this approach it is a priori not clear if these (non-nilpotent) fusion systems
exist at all. But this might be handled in an abstract manner as follows. Let @ be (a
candidate for) an F-essential subgroup of P. By definition, the fusion system Nz(Q) on
N := Np(Q) is constrained and thus can be realized by a finite group H. Then Theorem 1
in [261] shows that F is the fusion system of the (infinite!) free product H xy P with
amalgamated subgroup N. However, it is not clear if this construction yields saturated
fusion systems. Another problem which remains on these lines is the uniqueness of F. The
different possibilities for F differ by the ways one can embed N into H in the construction
of Hx*y P.

As another comment, we observe that the 2-groups in parts to have 2-rank 2.
Hence, these are new examples in the classification of all fusion systems on 2-groups of
2-rank 2 which was started in [73]. It is natural to ask what happens if we interchange
the restrictions on i in case[(9)] and case [(10)] in [Theorem 10.17} We will see in the next
theorem that this does not result in new groups.
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10. Bicyclic groups

Theorem 10.18. Let P be a bicyclic, non-metacyclic 2-group. Then P admits a non-
nilpotent fusion system if and only if P’ is cyclic.

Proof. By |[Theorem 10.15|it suffices to prove only one direction. Let us assume that P’ is
cyclic. Since P is non-metacyclic, it follows that P’ # 1. In case |P’| = 2, Theorem 4.1 in
[154] implies that P is minimal non-abelian of type (n,1) for some n > 2. We have already
shown that there is a non-nilpotent fusion system on this group. Thus, we may assume
|P'| > 2. Then we are again in Theorem 4.4 in [I54]. After adapting notation, P is given
as in [Equation (10.2)| In case 22 = z there is always a non-nilpotent fusion system on P
by [Theorem 10.17| Hence, let 22 = 1. Then it remains to deal with two different pairs of
parameters.

Case 1: " =landi=n—m+1>2.
Set 7 := za?""'. Then

i m—1 m—1 _ m—1 m—1 i+m—2 m
2 2 277 ()2 2T = 02 V42

r = Ta xra =z

. = 1 a~ -1 ~ . .
for an odd integer v. Moreover, v = v~!, %Z = vza®?" = vZ. This shows that P is

isomorphic to a group with parameters 22 = z, a®” =1 and i = n—m+1 > 2. In particular

[Theorem 10.17] provides a non-nilpotent fusion system on P.

Case 2: a®" = 7z and max(2,n —m +2) <i < n.
. ~ m—1
Again let 7 := 2a®" . Then ,
o i+m— m
2 =02 va?" = 2.

Hence, P is isomorphic to a group with parameters 22 = a®" = z and max(2,n —m + 2)

<
1 < n. The claim follows as before. O

Now we count how many interesting fusion systems we have found.

Proposition 10.19. Let f(N) be the number of isomorphism classes of bicyclic 2-groups
of order 2N which admit a non-nilpotent fusion system. Moreover, let g(N) be the number
of non-nilpotent fusion systems on all bicyclic 2-groups of order 2N . Then

N ‘1‘2‘3‘ > 4 even ‘ > 5 odd
FIN) O |1|2[3N2—-3N+5|(3N?+1)/4—3N+3
g(N) | 0| 1|3 |3N2—2N+5|(3N?2+1)/4—2N+5

Proof. Without loss of generality, N > 4. We have to distinguish between the cases IV even
and N odd. Assume first that N is even. Then we get the following five groups: CQN/Q,
Dyn, Qon, SDyn and the minimal non-abelian group of type (N — 2,1). From case @ of
[Theorem 10.17| we obtain exactly N/2 — 2 groups. In case the number of groups is

N-3 N/2-1 N-3 N/2-2
Z (n —max(2,2n — N +3) +1) = Z (n—1)+ Z (N—n—-2)=2 Z n
n=2 n=2 n=N/2 n=1
2
:(N/2—2)(N/2_1):NT_%+2
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The other cases are similar (observe that the wreath product cannot occur, since N is even).
All together we get

3
5+3(N/2—2)+3(N?/4 —3N/2+2) = ZN2 —3N+5

bicyclic 2-groups of order 2V with non-nilpotent fusion system.

Now if N is odd we have the following four examples: Dyn, Qon, SDyn and the minimal
non-abelian group of type (N — 2,1). From case [(9)] of [Theorem 10.17] we obtain exactly
(N —5)/2 groups. In case [(10)| the number of groups is

N-3 (N-1)/2 N-3
Z(n—max(Q,Qn—N+3)+1): Z (n—1)+ Z (N —n—2)
n=2 n=2 n=(N+1)/2

(N-5)/2

=2 > n+(N-3)/2
n=1

(N—5)(N—3)+N—3_N2—6N+9
4 2 4 ‘

Adding the numbers from the other cases (this time including the wreath product), we

obtain

N2 —4N -1 3N?2+1
4 4

In order to obtain g(/V) from f(IN) we have to add one fusion system on Dy, one on @Qyn,

and two on SDyn. If N is odd, we get two more fusion systems on the wreath product. For

all N > 5 we have to add N —4 fusion systems coming from part |[(10)|in|{Theorem 10.17, [

4+3 — 3N +3.

We present an application to finite simple groups. For this we introduce a general lemma.

Lemma 10.20. Let G be a perfect group and 1 # P € Syl (G) such that Ng(P) = P Cg(P).
Then there are at least two conjugacy classes of Fp(G)-essential subgroups in P.

Proof. Let F := Fp(G). If there is no F-essential subgroup, then F is nilpotent and G is
p-nilpotent, since Outz(P) = Ng(P)/P Cq(P) = 1. Then G’ < P' Oy (G) < G, because
P # 1. Contradiction. Now suppose that there is exactly one F-essential subgroup @@ < P up
to conjugation. Then @ lies in a maximal subgroup M < P. Moreover, P’ C ®(P) C M. Now
the Focal Subgroup Theorem (see Theorem 7.3.4 in [107]) gives the following contradiction:

P=PNG=PNG = (z"'a(z): z € P, @ morphism in F) C P'Q C M. O

Theorem 10.21. Let G be a simple group with bicyclic Sylow 2-subgroup. Then G is one
of the following groups: Cy, PSL(i, q), PSU(3,q), A7 or My, fori € {2,3} and q odd.

Proof. By the Alperin-Brauer-Gorenstein Theorem [5] on simple groups of 2-rank 2, we may
assume that G has 2-rank 3 (observe that a Sylow 2-subgroup of PSU(3,4) is not bicyclic,
since it has rank 4). Now we could apply the Gorenstein-Harada result [108] on simple groups
of sectional rank at most 4. However, we prefer to give a more elementary argument. Let
P € Syly(G) and F := Fp(G). By [Theorem 10.17| there is only one F-essential subgroup
Q@ in P up to conjugation. But this contradicts O
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10.2. Blocks

Now we consider fusion systems coming from block theory.

Theorem 10.22. Olsson’s Conjecture holds for all blocks of finite groups with bicyclic
defect groups.

Proof. Let B be a p-block of a finite group with bicyclic defect group D. Since all bicyclic
p-groups for an odd prime p are metacyclic, we may assume p = 2 (see . If
D is metacyclic, Olsson’s Conjecture holds by If D is minimal non-abelian,
the same is true by [Corollary 12.17| below. By results of Kiilshammer [I79] we can also
leave out the case where D is a wreath product. Let F be the fusion system of B. Without
loss of generality, F is non-nilpotent. Hence, we may assume that D is given by

D= (v,z,a|v? =1, 2%d®" € <122n71>, Ty =07t W= ,U71+22'7 Y =vx)

where max(2,n—m+1) < ¢ < n asin[Theorem 10.17, Moreover, there is only one conjugacy
class of F-essential subgroups of D. We use [Proposition 4.3 For this let us consider the

subsection (a, b,). Since a does not lie in the unique non-metacyclic maximal subgroup (see
Theorem 4.4 in [154]), a does not lie in any F-essential subgroup of D. In particular, (a) is
fully F-centralized. Thus, implies that b, has defect group Cp(a). Obviously,
Cpy(a) = (2). Now let v/z € Cp(a) for some j € Z. Then v/z = *(vz) = v 7tz and
v¥ = p42'J 4 contradiction. This shows Cp(a) = (a, z). Now by [Proposition 4.3 we obtain
ko(B) < |Cp(a)| = 2™+ = |D: D'|, i.e. Olsson’s Conjecture holds. O

Using |Proposition 4.7, it is not hard to see that also Brauer’s k(B)-Conjecture holds if for
the fusion system of B one of the cases|(1)/to|(10)|in Theorem 10.17| occurs. The conjecture
is open for the remaining cases.

A key feature of the groups in the next three theorems is that all their irreducible characters
have degree 1 or 2. These groups can be seen as non-commutative versions of the groups in

Theorem 10.23. Let B be a non-nilpotent 2-block of a finite group with defect group

D= (vz,a|v =22 =a"" =1, "v="0v=0"", % =vz) = Dynr1 x Com
for some n,m > 2. Then k(B) = 2m~1(2" + 3), ko(B) = 2™T! ky(B) = 27 1(2" — 1)
and [(B) = 2. In particular Brauer’s k(B)-Conjecture and Alperin’s Weight Conjecture are
satisfied.

Proof. Let F be the fusion system of B, and let z := v2""". Then by |Theorem 10.17|,
Q := (z,x,a?) is the only F-essential subgroup up to conjugation. In order to calculate
k(B) we use We will see that it is not necessary to obtain a complete
set of representatives for the F-conjugacy classes. Since (v,azx) is an abelian maximal
subgroup of D, all characters in Irr(D) have degree 1 or 2. In particular k(D) = |Irr(D)| =
|\D/D'| + (|D| — |D/D’|)/4 = 2™~ 1(2" + 3). Now we have to count how many conjugacy
classes of D are fused under Autz(Q). According tothere are two possibilities
Co(Aut£(Q)) = Z(F) € {(a?), (a®2)}. In the first case the elements of the form za® are
conjugate to corresponding elements za® under Autz(Q). In the second case a similar
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10.2. Blocks

statement is true for a®. Observe that the elements za® and zza? are already conjugate
in D. Since (a?,2) C Z(D), no more fusion can occur. Hence, the number of F-conjugacy
classes is 2™ 1(2" + 3) — 2L = 2m (2771 +1).

Now we have to determine at least some of the numbers I(b,) where u € D. The group D; :=
D/{a?) (resp. Do := D/{a?z)) has commutator subgroup D’(a?)/(a?) (resp. D'{a%z)/(a®z))
of index 4. Hence, Dy (resp. Ds) has maximal class. The block by (resp. b,2,) dominates a
block b,2 (resp. b2, ) with defect group Dy (resp. Dg). Let Fi (resp. F2) be the fusion system
of by (resp. by2,). Then in case Z(F) = (a?) (resp. Z(F) = (a®z)) Q is the only Fj-essential
(resp. Fo-essential) subgroup of Dy (resp. D) up to conjugation. Thus, implies
I(bg2) = l(bg2) = 2 (resp. l(by2,) = l(by2,) = 2). The same holds for all odd powers of a?
(resp. a®z). Next we consider the elements u := a?’ for 2 < j < m — 1. It can be seen that
the isomorphism type of D/(u) is the same as for D except that we have to replace m
by j. Also the essential subgroup @ carries over to the block b,. Hence, induction on m
gives [(b,) = 2 as well. For all other non-trivial subsections (u, b, ) we only know I(b,) > 1.
Finally, [(B) > 2, since B is centrally controlled . Applying
gives

E(B) > 2™ 4 2m(2" ! 4 1) —2m~1 = 2m~1(on 1 3) = k(D).

We already know from [Theorem 10.22f that Olsson’s Conjecture holds for B, i.e. ko(B) <
|D : D'| = 2™+, Now we apply [Proposition 4.7/ to the subsection (z,b,) which gives

|D| = 2™t 4 2™t (2" 1) < ko(B) + 4(k(B) — ko(B)) < Y 2%k;(B) < |D|.
1=0

This implies k(B) = k(D) = 2™ 1(2" + 3), ko(B) = 2™, ky(B) = 27 1(2" — 1) and
[(B) = 2. Brauer’s k(B)-Conjecture follows immediately. In order to prove Alerin’s Weight
Conjecture, it suffices to show that () and D are the only F-radical, F-centric subgroups of
D (up to conjugation). Thus, assume by way of contradiction that @ is another F-radical,
F-centric subgroup. Since () is F-centric it cannot lie inside Q. Moreover, Outr(Q1)
must provide an isomorphism of odd order, because 1 < D. However, by Alperin’s Fusion
Theorem F is generated by Autz(Q) and Autz(D). This gives the desired contradiction. [J

We add some remarks. If n = 1 we obtain the minimal non-abelian group C2 x Com for
which the block invariants are also known by results from the author’s dissertation [269]
(see . Moreover, it is an easy exercise to check that various other conjectures
are also true in the situation of [Theorem 10.23] We will not go into the details here.

The next theorem concerns defect groups which have a similar structure as the central
products Qon+1 * Com discussed in Also, this result is needed for the induction
step in the theorem after that.

Theorem 10.24. Let B be a non-nilpotent 2-block of a finite group with defect group
D= (v,z,a | v =1, *" =% = v2n_1, R )
=~ Q2n+1,02m = D2n+1.02m

for some n,m > 2 and m # n. Then k(B) = 2m*+1(2"2 + 1), ko(B) = 2™t ki(B) =
2m=1(2n — 1), k,(B) = 2™"! and I(B) = 2. In particular Brauer’s k(B)-Conjecture and
Alperin’s Weight Conjecture are satisfied.
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10. Bicyclic groups

Proof. First observe that the proof of [[heorem 10.18| shows that in fact

m 2n—1

n —
D= (v,zalv =22=1, a* =v , fo=%=v

Let F be the fusion system of B, and let y := v2"~ and z := 2. Then by
Q = (r,y,a?) = Qg * Cym is the only F-essential subgroup up to conjugation (since n # m,
D is not a wreath product). Again we use [Theorem 1.37] to get a lower bound for k(B).
The same argumentation as in [Theorem 10.23|shows that D has 2™~1(2" + 3) conjugacy
classes and we need to know which of them are fused in Q. It is easy to see that za?/ is
conjugate to yaz_j under Autz(Q) for j € Z. Observe that xa? is already conjugate to
rya® and x7'a? = 2a?*2" in D. Since Z(F) = (a?), this is the only fusion which occurs.
Hence, the number of F-conjugacy classes is again 2™(2" ! +1).

Again D/(a?) has maximal class and [(b,2) = 2 by [Theorem 8.1 The same is true for the

odd powers of a?. Now let u := a? for some 2 < j < m. Then it turns out that D/(u) is
isomorphic to the group Daon x Cy; as in [Theorem 10.23| So we obtain I(b,) = 2 as well.
For the other non-trivial subsections (u, b,) we have at least I(b,) > 1. Finally I(B) > 2,

since B is centrally controlled (Theorem 1.40)). Therefore,
k(B) > 2m+t fom(an=l 4 1) — om = gmtl(gn=2 4 1), (10.4)

Also, ko(B) < 2™+ by [Theorem 10.22l However, in this situation we cannot apply

So we use [Theorem 4.2| for the major subsection (a2, b,2). Let us determine the iso-
morphism type of D := D/{a?) precisely. Since (az)? = azar = vr?a®> = v (mod (a?)), ax
generates a cyclic maximal subgroup D. Since *(ax) = avz = axv~! = (az)~! (mod (a?)),
D = Dyny1. Hence, the Cartan matrix of b,z is given by

om 2n=l 1 2
2 4
up to basic sets (see [Theorem 8.1)). This gives k(B) < 2™(2"~! + 3) which is not quite what

we wanted. However, the restriction on ko(B) will show that this maximal value for k(B)
cannot be reached. For this we use the same method as in i.e. we analyze
the generalized decomposition numbers dy . for u := a? and IBr(b,) = {¢1, ¢2}. Since the
argument is quite similar except that n has a slightly different meaning, we only present

some key observations here. As in [Section 9.2] we write

192 = vx) 2 Doni1.Com.

2m71_1 . .
B = D @00
§=0
where ¢ := €2m/2™ Tt follows that
(ail, a;) = (2” + 2)(52']', (CLil, CL?) = 4(52']', (CL?, CL?) = 8(52']'.

Moreover, h(x) = 0 if and only if E?:g 1 a2(x) =1 (mod 2). This gives three essentially

different possibilities for a} and ajz as in [Section 9.2l Let the numbers «, 5, v and § be

defined as there. Then
y=2""1—a-g,
E(B) < (2"+6)a+ (2" +4)8+ (2" +2)y—0/2
=2l 4 60+ 48+ 2y —6/2
= omHn=l L 9m 4 4o 426 —6/2,
8a +48 — 8§ < ko(B) < 2™
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This shows k(B) < 2mtn=l 4 gm+l — om+l(9n=2 4 1) Together with [(10.4)] we have
k(B) = 2mt1(27=2 4+ 1) and I(B) = 2. The inequalities above also show ko(B) = 2™+
Now we can carry over the further discussion in word by word. In particular we
get 6 =0,

k1(B) = (2" —2)a+ (2" - 1)+ 2"y =2"T""1 24 — 3
— 2n+m71 o 2m71 — 2m71(2n o 1)

and finally k,(B) = 2™~ . The conjectures follow as usual. O

Now we can also handle defect groups of type Qon+1 X Com. It is interesting to see that
we get the same number of characters, although the groups are non-isomorphic as it was
shown in [Section 10.1]

Theorem 10.25. Let B be a non-nilpotent 2-block of a finite group with defect group

2 on—1l g a —1

m
=1, 2= ,fv="v=0v"", ¢ =vx) ¥ Qynt1 X Cym

D= (v,z,a|v? =a
for some n,m > 2. Then k(B) = 2m+1(2n=2 4 1), ko(B) = 2™, ky(B) = 2™ 12" - 1),
kn(B) =21 and I(B) = 2. In particular Brauer’s k(B)-Conjecture and Alperin’s Weight
Conjecture are satisfied.

Proof. Let F be the fusion system of B, and let y = 02" and z = 22. Then by
[Theorem 10.17, Q := (x,y,a%) = Qgns1 x Cym-1 is the only F-essential subgroup up to

conjugation. Again we use [Theorem 1.37|to get a lower bound for k(B).
The same argument as in [Theorem 10.23|shows that D has 2 ~1(2" + 3) conjugacy classes

and we need to know which of them are fused in Q. It is easy to see that za? is conjugate
to ya® under Autz(Q) for j € Z. Since Z(F) = (z,a?), this is the only fusion which
occurs. Hence, the number of F-conjugacy classes is again 27(2"~! 4 1). In case n = 2 the
group D/(z) 22 C2 x Com is minimal non-abelian, and we get I(b,) = 2 from

below. Otherwise, D/(z) is isomorphic to one of the groups in [Theorem 10.23| Hence, again
I(b,) = 2. As usual the groups D/{a?) and D/{a?z) have maximal class and it follows that

I(bg2) = l(bg2,) = 2. The same holds for all odd powers of a* and a?z. For 2 < j <m —1
the group D/(u) with u := a* has the same isomorphism type as D where m has to be
replaced by j. So induction on m shows I(b,) = 2. It remains to deal with u := a?’ z. Here
D/(u) = Qont+1.Cy; is exactly the group from [Theorem 10.24] Thus, for j # n we have
again [(by,) = 2. In case j = n, D/{(u) = Cyn ! C. Then (7.G) in [I79] gives I(b,) = 2 as
well. Now reveals

k(B) > 2™t 4 om(an—l 4 1) — om = omHl(9n=2 4 ),

For the opposite inequality we apply [Theorem 4.2| to the major subsection (u, b,) where
u := a%z. A similar calculation as in [Theorem 10.24| shows that D/(u) 22 Qqn+2. Hence, the
Cartan matrix of b, is given by
om DA
2 4

up to basic sets (see [Theorem 8.1). This is the same matrix as in [Theorem 10.24] but the
following discussion is slightly different, because a? has only order 2! here. So we copy

the proof of In fact we just have to replace m by m + 1 and n by n — 2 in
order to use this proof word by word. The claim follows. O
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10. Bicyclic groups

We describe the structure of these group extensions in a more generic way.

Proposition 10.26. Let D be an extension of the cyclic group (a) = Can by a group
M which has mazimal class or is the four-group. Suppose that the corresponding coupling
w: (a) — Out(M) satisfies the following: If w # 0, then the coset w(a) of Inn(M) contains
an involution which acts non-trivially on M /®(M). Moreover, assume that D % Cam 1 Cy
for all m > 3. Then the invariants for every block of a finite group with defect group D are
known.

Proof. Assume first that M = C3. Then in case w = 0 we get the groups Con x C2 and
Cont1 X Cy for which the block invariants can be calculated by [295] [162]. So let w # 0. If
D is non-split, it must contain a cyclic maximal subgroup. In particular, D is metacyclic
and the block invariants are known. If the extension splits, then we obtain the minimal
non-abelian group C7 x Cyn. Here the block invariants are known by results from the
author’s dissertation [269] (see [Chapter 12]).

Hence, let M be a 2-group of maximal class. Then |Z(M)| = 2. Thus, for w = 0 we obtain
precisely two extensions for every group M. All these cases were handled in [Chapter 9|
Let us now consider the case w # 0. Since the three maximal subgroups of a semidihedral
group are pairwise non-isomorphic, M must be a dihedral or quaternion group. Write
M= (az|v¥" =1, 22 € @¥""), v =v~1). Let a € Aut(M) be an involution which
acts non-trivially on M/®(M). Then there is an odd integer i such that “*z = v'z. Since
a? =1, it follows that “v = v~!. Hence, the coset aInn(M) € Out(M) is determined
uniquely. Hence, w is unique. So we get four group extensions for every pair (n,m). Two of
them are isomorphic and all cases are covered in Theorems [10.23] [10.24] and |10.25| (and
[179] for Cy2 CQ) O
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11. Defect groups of p-rank 2

In this chapter which is taken from [127, 277] we will use to show that
Olsson’s Conjecture is satisfied for controlled blocks B with certain defect groups D. Recall
that in this situation all subgroups of D are fully F-normalized where F is the fusion
system of B. In particular for a subsection (u,b,) the block b, has defect group Cp(u)
(cf. [Cemma 1.36)). Our strategy will be to find a subsection (u,b,) such that i(b,) = 1

and |[Cp(u)| = |D : D'|. Then Olsson’s Conjecture follows from [Theorem 4.12} Observe
that the inequality |D : Cp(u)| < |D’| always holds by elementary group theory. The next

proposition gives a general criterion for this situation.

Proposition 11.1. Let B be a controlled p-block of a finite group with defect group D.
Suppose that there exists an element u € D such that |D : Cp(u)| = |D'| and Cpyg,(py(u)
1s a p-group. Then Olsson’s Conjecture holds for B.

Proof. By Proposition 2.1 in [9], b, is a controlled block. Thus, it suffices to show e(b,) = 1
(see [Theorem 4.12). Let F be the fusion system of B. Since F is controlled, b, has defect

group Cp(u) and fusion system C := Cx(u) (see |Lemma 1.36)). Hence, every automorphism
in Aute(Cp(u)) extends to an element of Autz(D). By hypothesis, Aut¢(Cp(u)) is a

p-group, and the claim follows. O

Since the inertial quotient Outz(D) is always a p’-group, we can formulate [Proposition 11.1|
in the following abstract setting. Let P be a finite p-group and let A be a p’-group of
automorphisms on P. Then we can form the semidirect product G := P x A. The conclusion
of [Proposition 11.1| applies if we find an element u € P such that |P : Cp(u)| = |P’| and
Cg(u) < P. Observe that the requirement C4(u) = 1 alone is not sufficient, since for
a P-conjugate v of u we might have C4(v) # 1. In the following results we verify this
condition for several families of 2-generator p-groups. Most ideas here are due to Héthelyi
and Kiilshammer. We start with a useful lemma.

Lemma 11.2. Let P be a p-group such that |P : ®(P)| < p?. Let A < Aut(P) be a p'-group
and G = P x A. If P contains an A-invariant maximal subgroup C, then there is an element
u € P\ C such that Cg(u) < P.

Proof. In case |P : ®(P)| = p the claim is trivial. Hence, assume |P : ®(P)| = p?. By
Maschke’s Theorem there is another A-invariant maximal subgroup C; of P. Let u € P\
(CUCY). Then C4(u) acts trivially on (u)®(P)/®(P). Since P/®(P) = C/®(P)xC1/®(P),
it follows that C4(u) acts trivially on C'/®(P) and on P/C. This shows C4(u) = 1, because
A is a p-group. By way of contradiction assume that Cg(u) is not a p-group. Let o € Cz(u)
be a non-trivial p’-element. By Schur-Zassenhaus « is P-conjugate to an element of A. In
particular C4(v) # 1 for some P-conjugate v of u. However, this contradicts the first part
of the proof, since v € P\ (C'UC}). O

Proposition 11.3. Let p be an odd prime, and let P be a p-group of maximal class with
|P| > p*. If A < Aut(P) is a p’-group and G = P x A, then there exists an element u € P
such that |P : Cp(u)| = |P'| and Cg(u) < P.
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11. Defect groups of p-rank 2

Proof. Let |P| = p™. By Hilfssatz 111.14.4 in [I41], P, := Cp(K2(P)/K4(P)) is a char-
acteristic maximal subgroup of P. Moreover, Hauptsatz I11.14.6(a) tells us that the set
{Cp(K;(P)/K;12(P)) : 2 < i < n—2} contains at most one subgroup C' := Cp(K,_2(P)) <
P different from P;. By (the proof of) there exists an element v € P\ (PLUC)
such that Cg(u) < P. By Hilfssatz I11.14.13 in [141] we also have |P : Cp(u)| = |P'|. O

Proposition 11.4. Let p be an odd prime, and let P be a p-group such that P’ is cyclic,
|P: ®(P)| = p? and |P| > p*. If A < Aut(P) is a p'-group and G = P x A, then there
exists an element u € P such that |P : Cp(u)| = |P’| and Cg(u) < P.

Proof. Assume first that P is abelian. By we may assume P = Cps x Cps for
some s > 2. Since Cg(u) = P Cx(u) for all u € P, it suffices to show C4(u) = 1 for some
u € P. After replacing P by Qy(P), we may also assume that s = 2. Let z € P\ ®(P).
Suppose that Ay := C(x) # 1. Since A; acts faithfully on Q4 (P), we have Cp(A;) = (x).
The group Ay := C4(2P) must be cyclic, since it acts faithfully on Q;(P)/(zP). Thus, it
follows from A; < As that As acts on (x) = Cp(A;). But since As fixes 2P € Qq({x)), we
derive A; = Az. Now choose an element u € P such that Q;(P) C (z,u) and (uP) = (zP).
Then Ca(u) = Ca(u) N Ca(uP) = Cy,(u) = Ca,(u) C Ca((P)) = 1.

Now suppose that P has class 2. Then for P = (a,b) we have P’ = ([a,b]) = {[a,b"] : n €
Z} = {la,z] : € P}. In particular, |P : Cp(u)| = |P’| for all w € P\ ®(P). Hence, it
suffices to show C4(u) = 1 for all u in a certain P-conjugacy class lying in P\ ®(P) (compare
with proof of. For this we may replace P by P/P’. In case |P : P'| > p? the
claim follows from the arguments above. Thus, assume |P : P'| = p?. Then P’ = Z(P) and
|P'| = p. This contradicts |P| > p*.

Finally let P be a group of class at least 3. Then P’ ¢ Z(P) and 1 # P/ Cp(P') < Aut(P’) is
cyclic. Hence, C := Cp(P')®(P) is a characteristic maximal subgroup of P. By [Lemma 11.2]
there is an element v € P\ C such that Cg(u) < P. Choose z € Cp(P’) such that
P = (u,z). Now N := (x) P’ is an abelian normal subgroup of P, and P/N = (uN) is cyclic.
Thus, Aufgabe 2 on page 259 of [141] implies that P’ = {[y,u] : y € N} = {[y,u] : y € P};
in particular, we have |P'| = |P : Cp(u)|. O

We observe that GL(2, p) contains a p’-subgroup A of order 2(p — 1)? which is bigger than
p? for p > 3. Thus, when P is elementary abelian of order p?, then there is no regular orbit
of Aon P.

Next we turn to p-groups of p-rank 2. For the convenience of the reader we recall Blackburn’s
classification of these groups from Theorems A.1 and A.2 in [77].
Theorem 11.5 (Blackburn). Let P be p-group of p-rank at most 2 for an odd prime p.
Then one of the following holds:

(i) P is metacyclic.

(ii) P=C(p,n):=(a,bc|a? =W =" " =a,d =[bc =1, [a,b] =" ") for some
n > 3.

(iii) P = G(p,n,€) = {a,b,c|aP =P ="~ = [b,c] =1, [a,b71] = cP"
where n > 4 and € is 1 or a quadratic non-residue modulo p.

n—2 -3

» [a,c] =b)
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(iv) P is a 3-group of maximal class, but not C31Cs. More precisely, P = B(3,n;3,7,9)
is defined by generators s, s1,...,Sn,—1 and relations

e s, =[si_1,s] fori=2,3,....,n—1,

L4 [sla 52] = 85_17

o [s1,s8i]=1fori=3,4,...,n—1,

o P =5, 1,

o s{s3sy =5,

° s?sg’+1si+2 =1 fort=2,3,...,n—1 where s, :== sp41 1= 1.

Moreover, |P| = 3™ and one of the following holds
e n >4 and (8,7,5) = (0,0,1),
e n>5and (5,v,9) € {(0,0,0),(0,1,0),(1,0,0),(1,0,1),(1,0,2)},
e n>6 is even and (B3,7,0) = (0,2,0).
Proposition 11.6. Let p be an odd prime, and let P be a p-group of p-rank 2 with |P| > p*.

If A< Aut(P) is a p'-group and G = P x A, then there exists an element u € P such that
|P: Cp(u)| = |P'| and Cg(u) < P.

Proof. By there are four cases to consider. The metacyclic case follows from
[Proposition 11.4] If P is a 3-group of maximal class, then the result holds by |[Proposition 11.3]

Now suppose that P 2 C(p,n) for some n > 4. Then it is easy to see that P = Q4 (P) x Z(P),
where 1 (P) = (a,b) is a non-abelian group of order p* and exponent p, and Z(P) = (c) is
cyclic of order p"~2. Thus, |P’| = p. Then

U:={z € P\ZUP): ()| =p"*} # o.

For u € U we have C4(u) < C4(uP) = Cx(cP). Hence, C4(u) acts trivially on Z(P) = (c¢)
and on (u, c). Now Problem 4D.1 in [146] implies C4(u) = 1 for all u € U. Since U is closed

under conjugation in P, we obtain Cg(u) < P easily (compare with proof of [Lemma 11.2]).
Obviously, we also have |P : Cp(u)| = p = |P'| for all u € U.

Finally, it remains to handle the case P = G(p,n,e). Obviously, P = (a,c) and P’ =
(b,c?" %) = C,, x C,. Moreover, Cp(P') = (b, ¢) is abelian and maximal in P. Hence, by
we find an element u € P\ Cp(P’) such that Cg(u) < P. It remains to show
|P : Cp(u)| = |P'|. By way of contradiction suppose that Cp(u) is maximal in P. Then

®(P)=Cp(P)NCp(u) C Cp({Cp(P"),u)) = Z(P). Thus, P is minimal non-abelian and
we get the contradiction |P’| = p. This completes the proof. O

Theorem 11.7. Let D be a finite p-group, where p is an odd prime, and suppose that one
of the following holds:

(i) D has p-rank 2,
(i) D has mazimal class,

(iii) D' is cyclic and |D : ®(D)| = p>.
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11. Defect groups of p-rank 2

Then Olsson’s Conjecture holds for all controlled blocks with defect group D.

Proof. In case |D| < p? the claim follows easily from [Proposition 4.3| (observe that D is
not elementary abelian of order p®). The other cases are consequences of the previous
propositions. ]

In connection with (iii)| in [Theorem 11.7| we mention that by a result of Burnside, D’ is
already cyclic if Z(D’) is (see Satz I11.7.8 in [141]).

If u is an element of D such that |D : Cp(u)| = |D’|, then D' = {[u,v] : v € D}; in
particular, every element in D’ is a commutator. Thus, one cannot expect to prove Olsson’s
Conjecture for all possible defect groups in this way (see for example [114]).

Now we discuss Olsson’s Conjecture for blocks which are not necessarily controlled. We
begin with a special case for which the previous method does not suffice. For this reason
we use the classification of finite simple groups.

Proposition 11.8. Let B be a block of a finite group G with a non-abelian defect group
D of order 53 and exponent 5. Suppose that the fusion system F of B is the same as the
fusion system of the sporadic simple Thompson group Th for the prime 5. Then B is Morita
equivalent to the principal 5-block of Th. In particular, Olsson’s Conjecture holds for B.

Proof. By the Second Fong Reduction, we may assume that Os (G) is central and cyclic. The
ATLAS [69] shows that T'h has a unique conjugacy class of elements of order 5. Thus, by our
hypothesis, all non-trivial B-subsections are conjugate in G. In particular, all B-subsections

are major. Since O5(G) < D, this implies that O5(G) = 1. Thus, F(G) = Z(G) = O (G).

Let N/ Z(G) be a minimal normal subgroup of G/ Z(G). By the First Fong Reduction, we
may assume that B covers a unique block b of N. Then D N N is a defect group of b. We
may also assume that D NN = 1. Since all non-trivial B-subsections are conjugate in G this
implies that DN N = D, i.e. D C N. In particular, N/ Z(G) is the only minimal normal
subgroup of G/ Z(G). Hence, N = F*(G), and E(G) is a central product of the components
Ll,...,Ln of G.

For ¢ = 1,...,n, b covers a unique block b; of L;. Let D; be a defect group of b;. Then
D =Dy x...x D, by This shows that we must have n = 1. Hence, E(G) is
quasisimple, and S := E(G)/ Z(E(G)) is simple. Since F*(G) = E(G) F(G) = E(G) Z(G), we
conclude that Cg(E(G)) = Co(F*(Q)) = Z(F(G)) = Z(G), so that G/ Z(G) is isomorphic
to a subgroup of Aut(E(G)).

Now we discuss the various possibilities for S, by making use of the classification of finite
simple groups. In each case we apply [14].

If S is an alternating group then, by Section 2 in [14], the block b cannot exist. Similarly, if
S is exceptional group of Lie type then, by Theorem 5.1 in [14], the block b cannot exist.

Now suppose that S is a classical group. Then, by Theorem 4.5 in [14], p = 5 must be the
defining characteristic of S. Moreover, S has to be isomorphic to PSL(3,5) or PSU(3,5).
Also, D is a Sylow 5-subgroup of E(G). But now the ATLAS shows that S contains non-
conjugate elements T and 7 of order 5 such that |Cg(T)| # |Cs(7)|. Thus, there are elements
x and y of order 5 in E(G) which are not conjugate in G. This contradicts the fact that all
non-trivial B-subsections are conjugate in G.
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The only remaining possibility is that S is a sporadic simple group. Then Table 1 in [14]
implies that S € {HS, McL, Ru,Coy,Cos,Th}. In all cases D is a Sylow 5-subgroup of S.
In the first five cases we derive a contradiction as above, using the ATLAS. So we may
assume that S = Th. Since Th has trivial Schur multiplier and trivial outer automorphism
group, we must have G = S x Z(G). Thus, B = b®p O = b, and b is the principal 5-block
of Th, by [294]. Moreover, we have ko(B) = ko(b) = 20 < |D : D'|. This completes the
proof. O

Theorem 11.9. Let p > 3. Then Olsson’s Conjecture holds for all p-blocks with defect
groups of p-rank 2.

Proof. Let B be a p-block with defect group D of p-rank 2 for p > 3. Then, by the
Theorems 4.1, 4.2 and 4.3 in [77], B is controlled unless D is non-abelian of order p* and

exponent p (see also [290]). Hence, by [Theorem 11.7| we may assume that D is non-abelian
of order p? and exponent p.

If in addition p > 7, Hendren [122] has shown that there is at least one non-major B-
subsection. In this case the result follows easily from [Proposition 4.3 Now let p = 7. Then
the fusion system F of B is one of the systems given in [266]. Kessar and Stancu showed
using the classification of finite simple groups that three of them cannot occur for blocks
(see [166]). In the remaining cases the number of F-radical and F-centric subgroups of
D is always less than p + 1 = 8. In particular, there is an element v € D \ Z(D) such
that (u) Z(D) is not F-radical, F-centric. Then by Alperin’s Fusion Theorem, (u) is not
F-conjugate to Z(D). Hence, the subsection (u,b,,) is non-major, and Olsson’s Conjecture
follows from |Proposition 4.3|

In case p = 5 the same argument shows that we can assume that F is the fusion system of the
principal 5-block of T'h. However, in this case Olsson’s Conjecture holds by [Proposition 11.8|
O

As usual we denote the non-abelian (extraspecial) group of order p* and exponent p by
p}ﬁ? For p = 3, there are two fusion systems on pl+Jr2 in [260] such that all subsections
are major. These correspond to the simple groups 2Fy(2)’ and J4. It appears to be very
difficult to prove Olsson’s Conjecture for these fusion systems. Using the Cartan method
(plus additional arguments) I was able to show k(B) < 15 for the fusion system of 2Fy(2)’.
However, Olsson’s Conjecture holds for the 3-blocks of 2Fy(2)’, 2F4(2), Js4, Ru and 2.Ru
(see [7, 18, 18, [17]; cf. Remark 1.3 in [266]). More generally, Olsson’s Conjecture is known to
hold for all principal blocks with defect group 3f2 by Remark 64 in [217]. In addition to
3-blocks of defect 3, there are infinitely many non-controlled 3-blocks whose defect groups
have 3-rank 2. In the following we consider these cases in detail. The results come from

1277.

Proposition 11.10. Let B be a 3-block of a finite group with defect group D. Assume that
D has 3-rank 2, but not maximal class. Then Olsson’s Conjecture holds for B.

Proof. By we may assume that the fusion system F of B is not controlled.
Then |D| > 3%, since D does not have maximal class. By Theorem 4.1 and 4.2 in [77]
it remains to handle the groups D = G(3,r,¢€) of order 3" where r > 5 and € € {£1}
as in Theorem 4.7 in [77] (by Remark A.3 in [77], G(3,4, ¢) has maximal class). Assume

the notation of [Theorem 11.5| Consider the element x := ac. By Lemma A.8 in [77], x
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11. Defect groups of p-rank 2

is not contained in the unique F-essential (F-Alperin) subgroup C(3,7 — 1) = (a, b, c3).
In particular, (x) is fully F-centralized, and the block b, of the subsection (z,b,) has
defect group Cp(z). It is easy to see that D' = (b3 ") = Cp x Cp. It follows that
23 =3 #£1 (mod D) and |(z)| > 373, As usual we have |Cp(z)| > |D: D/| = 372.
In case |Cp(z)| > 3"~! we get the contradiction b € D' C Cp(z). Hence, |Cp(z)| = |D : D|
and Cp(x)/(x) is cyclic. Now Olsson’s Conjecture for B follows from [Proposition 4.3] [

The next theorem says that for a given defect group order, we can prove Olsson’s Conjecture
for all but one defect group.

Theorem 11.11. Let B be a 3-block of a finite group with defect group D of 3-rank 2.
Assume that D is neither isomorphic to 3?2 nor to B(3,n;0,0,0) for some n > 4. Then
Olsson’s Conjecture holds for B.

Proof. By [Proposition 11.10] we may assume that D has maximal class of order at least
3%. By [Theorem 11.7] we may assume that the fusion system F of B is not controlled.
Then F is given as in Theorem 5.10 in [77]E In particular D = B(3,r;0,7,0) where
v € {1,2}. Let Dy := Cp(Ko(D)/K4(D)). Observe that in the notation of [77, 32] we
have D1 = 71(D). Proposition A.9 in [77] shows z := ss; ¢ D;. Moreover, we have 23 # 1
also by Proposition A.9 in [77]. Then by Lemma A.15 in [77], = does not lie in one of the
centric subgroups D1, E; or V; for i € {—1,0,1}. This shows that z is not F-conjugate to
an element in Dq. By Satz I11.14.17 in [141], D is not an exceptional group. In particular,
Hilfssatz I11.14.13 in [141] implies |Cp(y)| =9 = |D : D’| for all y € D\ D;. Hence, (z) is
fully F-centralized. Thus, the block b, of the subsection (z,b;) has defect group Cp(x).
Now Olsson’s Conjecture follows from [Proposition 4.3] O

We remark that the method in [Theorem 11.11| does not work for the groups B(3,7;0,0,0).
For example, every block of a subsection of the principal 3-block of 3D4(2) has defect at

least 3 (here r = 4). However, |D : D'| = 32 for every 3-group of maximal class.

!Chris Parker has informed the author that some fusion systems have been overlooked in [77]. However
these fusion systems can be excluded in a similar fashion, see arXiv:1809.01957v1
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12. Minimal non-abelian defect groups

A non-abelian group G is minimal non-abelian if all its proper subgroups are abelian.

Lemma 12.1. A finite p-group P is minimal non-abelian if and only if P has rank 2 and
|P'| = p.

Proof. Assume first that P is minimal non-abelian. Choose two non-commuting elements
xz,y € P. Then (z,y) is non-abelian and P = (x,y) has rank 2. Let a € ®(P) and
b € P be arbitrary. Then b lies in a maximal subgroup M < D and so does a. Since
M is abelian, it follows that [a,b] = 1. This shows that ®(P) C Z(P). In particular
[z,y] € P' C ®(P) C Z(P). Since P/{[z,y]) is abelian, we have P’ = ([z, y]). Hilfssatz I11.1.3
in [141] gives [z,y]P = [2P,y] = 1, because aP € ®(P) C Z(P). Therefore, |P'| = p.

Next, suppose that P has rank 2 and |P’| = p. Then P’ < Z(P). For z,y € P we have
[zP,y] = [z,y]P = 1 (see Hilfssatz I11.1.3 in [141]). Hence, ®(P) = P'(zP : x € P) < Z(P).
Since P is non-abelian, we obtain ®(P) = Z(P). For any maximal subgroup M < P it
follows that |M : Z(P)| = |M : ®(P)| = p. Therefore, M is abelian and P is minimal

non-abelian. O

Reédei [267] classified all minimal non-abelian p-groups as follows.
Theorem 12.2 (Rédei). Every minimal non-abelian p-group is isomorphic to one of the
following groups
(i) (x,y|a? =P =1, sy =y ") forr >2 and s > 1,
(i) MNA(r,s) == (z,y | 2" =y* =[x,y = [z,2,9] = [y, z,y] = 1) forr >5>1,
(11i) Qs.

It can be seen that the groups in [Theorem 12.2 are metacyclic except in case For the
metacyclic, minimal non-abelian groups with have complete information by

and [Theorem 8.13| In case We say that P is of type (r, s). The group structure is clarified

by the following result.
Lemma 12.3. Let P be a minimal non-abelian group of type (r,s). Then the following
holds:
(i) |P| = prs+l,
(it) ®(P) =Z(P) = (22,9, [, y]) = Cpr—1 X Cps—1 X Cp.
(iii) P' = ([z,y]) = Cbp.

12

Proof. It is easy to see that |P| < p"+*+1. Conversely, Rédei constructed groups of order
p 5+ with the given generators and relations. Hence, |P| = p"+**1. The other properties
can be easily verified. O
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12. Minimal non-abelian defect groups

It seems natural to compute the invariants of blocks with minimal non-abelian defect groups.
For p = 2 this project was started in the author’s dissertation [269] (see also [268]) and
later completed in [86]. Preliminary work was done by Olsson [237]. For primes p > 2 we
present a minor result from [127].

12.1. The case p =2

First, we state the main result of this section.

Theorem 12.4. Let B be a 2-block of a finite group G with a minimal non-abelian defect
group D. Then one of the following holds:

(i) B is nilpotent. Then k(B) = 2|D|, ko(B) = 3|D|, k1(B) = g|D| and I(B) = 1.
Moreover, [{x(1) : x € Irr(B)}| = 2.

(ii) |D| = 8. Then|Theorem 8.1 applies.

(iii) D = MNA(r,1) for some r >2. Then k(B) =5-2""1, ko(B) = 2"}, ky(B) =271
and l(B) = 2. The decomposition and Cartan matrices of B are given by

T
1 «o- 1 . v 1 -1 —1(3 1
<, R B T T 1) and 2 <1 3)
up to basic sets (here the characters are ordered with respect to their heights). Moreover,
Irrg(B) contains four 2-rational characters and two families of 2-conjugate characters
of size 2° fori = 1,...,r — 1. The characters of height 1 split into two 2-rational

characters and one family of 2-conjugate characters of size 2° fori = 2,...,r — 2.
Also, the characters of height 1 have the same degree and |[{x(1) : x € Irro(B)}| < 2.

(iv) D = MNA(r,r) for some r > 2. Then B is Morita equivalent to O[D x C3]. In
particular, k(B) = (5-2%72+16)/3, ko(B) = (22" +8)/3, k1(B) = (2272 +8)/3 and
[(B) = 3. Moreover, the Cartan matriz of B is

22r 49 922r_ 1 9% _ 1
22r_1 22r+2 22r_1
2% _1 2 _1 922r4 9

Let B be as in [Theorem 12.4] If D is metacyclic, we see from Theorems and
that B is nilpotent or |D| = 8. Hence, assume that B is nilpotent. Since |D’| = 2, we get

ko(B) = |D : D'| = 1|D|. Since |D : Z(D)| = 4, the number of conjugacy classes of D is
DI —12(D)| _ 5
k(B) = k(D) = 2| + PPN 2y

Now |D| is the square sum of k(D) character degrees. This shows ki(B) = ki(D) =
k(D) — ko(D) = £|D|. The claim about the character degrees of Irr(B) follows from the
action of D/foc(B) = D/D’ (see |[Proposition 1.33|). This proves the first two parts of
Theorem 12.4, Thus for the remainder of the section, we may assume D = M N A(r, s) with
r > 2. The following results are extracted from [268].

Lemma 12.5. The automorphism group Aut(D) is a 2-group, if and only if r # s.
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12.1. The case p =2

Proof. Tt is easy to see using that the maximal subgroups of D are isomorphic
t0 Coyr—1 X Cys X Oy, Cayr X Cys—1 X Cy and Cor X Cys—1 X Co respectively. If r # s, then an
automorphism of order 3 on D cannot permutes these maximal subgroups. Hence, in these
cases Aut(D) must be a 2-group. Thus, we may assume 7 = s > 2. Then one can show that
the map = + y, y — o~ 'y~ ! is an automorphism of order 3. O

Lemma 12.6. Let P = Cgny X ... X Cony, withny, ... ,ng, k € N. Then Aut(P) is a 2-group,
if and only if the n; are pairwise distinct.

Proof. See for example Lemma 2.7 in [237]. O

Proposition 12.7. Let F be a fusion system on D. Then one of the following holds
(i) F is nilpotent,

(i) r=5>2 and F = Fp(D x C3) is controlled,

(111) s =1 and F = Fp(As x Cor) is constrained.

Proof. Let Q < D be an F-essential subgroup. Since @ is also F-centric, we get Cp(Q) = Q.
This shows that @ is a maximal subgroup of D. By Lemma one of the following holds:

(i) r=s=2and Q € {(2%,y,2), (z,v%, 2), (zy, 22, 2)},
(i)
(iii) 7 =s+1and Q = (22, y, 2),
(iv) s=1and Q = (22,y, 2).

We show that the first three cases cannot occur. In all these cases Q(Q) C Z(P). Let us
consider the action of Autz(Q) on Q(Q). The subgroup 1 # P/Q = Np(Q)/Cp(Q) =
Autp(Q) < Autr(Q) acts trivially on ©(Q). On the other hand every non-trivial auto-
morphism of odd order acts non-trivially on Q(Q) (see for example 8.4.3 in [I78]). Hence,
the kernel of this action is a non-trivial normal 2-subgroup of Autz(Q). In particular
O2(Aut£(Q)) # 1. But then Autz(Q) cannot contain a strongly 2-embedded subgroup.
This shows that F is controlled unless s = 1. Hence, if r # s # 1, shows that
F is nilpotent.

r>s=2and Q€ {(z,9% 2), (zy,2% 2)},

Now let s = 1. There is only one candidate Q = (22, y, z) for an F-essential subgroup and
Aut£(Q) = S3 by [Proposition 6.12f Since Aut(Q) has only one element of order 3 up to
conjugation, the action of Autz(Q) on @ is essentially unique. Moreover, P/Q acts non-
trivially on (y, z) and on <a:2r_1y, z). After replacing y by x?_ly if necessary, we may assume
that Autrz(Q) acts non-trivially on (y, z). Similarly, we may assume that z? is fixed by
Aut£(Q) after replacing x by xy if necessary. In particular, F is unique up to isomorphism
and it suffices to construct a non-trivial constrained fusion system. Let A4 be the alternating
group of degree 4, and let H := () = Cor. Moreover, let ¢ : H — Aut(A4) = Sy such
that ¢z € Aut(A4) has order 4. Write y := (12)(34) € A4 and choose ¢ such that
©z(y) := (13)(24). Finally, let G := A4 x, H. Since all 4-cycles in Sy are conjugate, G is
uniquely determined up to isomorphism. Because [z,y] = (13)(24)(12)(34) = (14)(23), we
get (z,y) = D. The fusion system Fp(G) is non-nilpotent, since A4 (and therefore G) is
not 2-nilpotent. O
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12. Minimal non-abelian defect groups

Now we are in a position to give a new proof of case [(iii)| of [Theorem 12.4| which is much
shorter than the one in [268]. Since we know the fusion system F (on A4 x Cor for example),
it is easy to see that |D : foc(B)| = 2". In particular, 2" | ko(B) by [Proposition 1.33|
Moreover, [Proposition 1.34| implies 2"t < ko(B). Since |Z(D) : Z(D) Nfoc(B)| = 2" 71, we
also have 2"~! | k;(B) by [Proposition 1.33| Finally, there is an element z € Z(D) such that
Cz(z) is trivial. Hence, [Proposition 4.7] yields

2742 < ko(B) + 4k1(B) < > ki(B)2”¥ < |D| =27,
=0

This gives ko(B) = 272, k1 (B) = 2"~! and k(B) = ko(B) + k1(B) = 5-2"L. Tt is easy
to see that D has 2"*! F-conjugacy classes where 2”1 of them lie in Z(F) = (x?). Using
induction on r and [Theorem 1.37 we obtain [(B) = 2. Now we consider the decomposition

and Cartan matrices of B.

Proposition 12.8. Let B be a non-nilpotent 2-block with defect group M N A(r,1) for some
r > 2. Then the decomposition and Cartan matrices of B are given by

T
1 o 1 . e 1 -1 (3 1
(. R T T 1) and 2 (1 3)
up to basic sets.

Proof. Let C' be the Cartan matrix of B. First we show that C' has elementary divisor 2r—1,
Let 2 := 22 € Z(F). Then [(b,) = 2. Moreover, b, covers a block b, of Cg(z) with defect

group D/(z) = Ds. By [Theorem 8.1] b, has Cartan matrix 2"~*(3%). By [Lemma 1.46

(z) is a lower defect group of b,. It is easy to see that Ng((z),b.) = Cg(z). Therefore,

Lemma 1.44| implies mg)(<z>,bz) = mé?((z)) > 0. This shows that C' has elementary

divisors 271 and |D| = 272, Hence, C := 21""C is an integral matrix with elementary
divisors 1 and 8. The reduction theory of quadratic forms shows that C is

o 2) . (1 3)

up to basic sets (see [Equation (3.1)|). By way of contradiction, suppose that C = ((1) g). As

we have seen above, Irr(B) splits under the action of D/foc(B) into three orbits. Two orbits
have length 2" and consists of characters of height 0 and one orbit has length 2"~! and
consists of characters of height 1. For two characters in the same orbit the corresponding
decomposition numbers coincide. Hence, there are non-negative integers «, 3,7, 9, €, £ such
that

_ 202 + 292 + €2 208 + 276 + €
T \2aB + 295+ €€ 282 +282+€2 )

O}
I
A/~
™ R
™ R
> 2
(SRS
M M
N~
A2 29
ST @

Iy

It follows that « = v = 0 and € = 1. Moreover, £ = 0 and 5% + 6% = 4. However, this means
that 3 =0 or § =0 and |Propositi0n 1.38| gives a contradiction. Therefore, C' = ($1) and
we get €€ = 1, aff = 48 = 0 and o + 2 = 32 + 62 = 1. This gives the decomposition
matrix. [
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12.1. The case p =2

The proof of [Proposition 12.8| gives evidence for [Question Al It remains to determine the
distribution into 2-conjugate and 2-rational characters.

Proposition 12.9. Let B be a non-nilpotent 2-block with defect group M N A(r,1) for some
r > 2. Then Irrg(B) contains four 2-rational characters and two families of 2-conjugate
characters of size 2° fori=1,...,7 — 1. The characters of height 1 split into two 2-rational
characters and one family of 2-conjugate characters of size 2¢ fori=2,...,r —2. Also, the
characters of height 1 have the same degree and |[{x(1) : x € Irro(B)}| < 2.

Proof. Since Irr;(B) is just one orbit under D/foc(B), we see that all characters of height
1 have the same degree. The same argument gives |[{x(1) : x € Irro(B)}| < 2. We note that
it is conjectured that |[{x(1) : x € Irro(B)}| = 2 (see [206]).

As usual, we study the action of the Galois group G first (see . Let R be a set
of representatives for the F-conjugacy classes of D. As we have already seen, |R| = 271,
The columns {dy,, :x € Irr(B)} with u € R\ Z(D) split in two orbits of length 271 For
i = 1,2, the columns {d%,, : x € Irr(B)} with u € (2%) and IBr(b,) = {1, 2} split in 7
orbits of lengths 1,1,2,4,...,2"2 respectively. Finally, the columns {dY,, : x € Trr(B)}
with u € Z(D) \ (z?) consist of r orbits of lengths 1,1,2,4,...,2"~2 respectively. This gives
3r + 2 orbits altogether. By Lemma IV.6.10 in [93] there also exist exactly 3r 4 2 families
of 2-conjugate characters. (Since G is noncyclic, one cannot conclude a priori that also the
lengths of the orbits of these two actions coincide.)

Now consider the generalized decomposition numbers d® := (dy,, : x € Irr(B)) where

IBr(bz) = {pz}. As usual we can write d* = Z?;Blfl a;¢* for a primitive 2"-th root

of unity ¢. By |[Proposition 5.1| we obtain (a;,a;) = 4 for i = 0,...,2""! — 1. On the
other hand all 2”1 entries of d” for characters of height 0 must be non-zero by
This shows that for every x € Irrg(B) there is a i such that d}, = a;(x).
It follows that the irreducible characters of height O split in at most 2(r + 1) orbits
of lengths 1,1,1,1,2,2,4,4,...,2"~1 2"~ respectively. Finally let u := 222 € Z(D) and
d* = Z?;Bz_l a;¢* for a primitive 2"~!-th root of unity ¢. Then, again by |Proposition 5.1|We
have (a;,a;) =16 for i = 0,...,2""2 — 1. Also 2 | a;(x) provided h(x) =1 by [Lemma 1.39
Since all entries of d“ are non-zero, it follows that there is a x € Irri(B) such that
dyo, = 2¢* for some i € Z. Since Z(D)/ Z(D) N foe(B) = (u(Z(D) N foe(B))), it follows
that {dy,, :x € liri(B)} ={2¢":i=0,... , 2"t — 1}. Thus, there are at most r orbits of
lengths 1,1,2,4,...,2"~2 of characters of height 1. Since 2(r + 1) + 7 = 3r + 2, these orbits
do not merge further, and the claim is proved. O

If G is solvable, one has also information on the Brauer character degrees and the precise
Cartan matrix of B (see [220], [145]).

In [268], T did not prove the Ordinary Weight Conjecture. This was done later in [190], and
we will provide the result here with a simpler proof.

Proposition 12.10. Let B be a 2-block of a finite group with minimal non-abelian defect
group M N A(r,1) for some r > 2. Then the Ordinary Weight Congecture holds for B.
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12. Minimal non-abelian defect groups

Proof. Let D =2 MNA(r,1) be a defect group of B, and let @ < D be an F-centric,
F-radical subgroup where F is the fusion system of B. Since Cp(Q) C Q, |D : Q| < 2.
It follows from [Proposition 12.7| that Q@ = (22,9,2) or Q@ = D. In both cases we have
H?(Out£(Q), F*) = 1. Hence, all 2-cocycles appearing in the OWC are trivial. Therefore
the conjecture asserts that k;(B) only depends on F. Since the conjecture is known to hold
for the principal block of the solvable group G = A4 x Cor, the claim follows. O

The rest of this section is devoted to the proof of part|(iv)|in[Theorem 12.4, Many arguments
here are due to Eaton, one of the coauthors of [86]. The classification of the finite simple
groups is needed.

We gather together some useful facts about blocks with defect groups as in
Lemma 12.11. Let B be a 2-block of a finite group G with defect group D = M N A(r,r)
(r > 2) and fusion system F. Then

(1) F is controlled;

(ii) either B is nilpotent or e(B) = 3, and in the latter case z := [z,y] is the only
non-trivial fized point of Z(D) under the action of I1(B);

(i11) if B is not nilpotent, then O2(Z(G)) < (z);
(iv) if @ < Z(D) and Q £ D', then there is a B-subpair (Q,bg) with bg nilpotent;
(v) if D € Syly(G), then G is solvable.

Proof. The first two parts follow from [Proposition 12.7| and [Lemma 12.5| (and its proof).
Now we turn to the third part of the lemma. As usual O2(Z(G)) < O2(G) < D. Hence, the
second part shows the claim. Let @ < Z(D) and Q £ D’. Since F is controlled, @ is fully
F-normalized, and bg has defect group Cp(Q) = D and fusion system Cx(Q) = Fp(D).

It remains to prove the last part. By Feit-Thompson, we may assume Oy (G) = 1. Now
the Z*-Theorem (see Theorem XII.8.1 in [93]) implies z € Z(G), and it suffices to show
that G := G/(z) is solvable. Obviously, G has Sylow 2-subgroup D/(z) = C3,. A result of
Brauer (see Theorem XII.5.1 in [93]) shows the claim. O

In our proof of the following result will be very useful.

Lemma 12.12. Let G, B, D be as in|Theorem 12.4(iv). Moreover, let b be a 2-block of a
normal subgroup H of G which is covered by B. If a defect group d of b satisfies |d| < |D|,
then b is nilpotent.

Proof. It is well-known that d is conjugate to D N H. Replacing D by a conjugate if
necessary, we may assume that d = DN H. If d < D then also d®(D) < D. By Lemma
12.11} B has inertial index e(B) = 3. Since |D : ®(D)| = 4, this implies that Ng(D)
permutes the three maximal subgroups of D transitively. Since d®(D) is normal in Ng(D),
we must have |D : d®(D)| > 4. But then d C ®(D), and [Ny(D),D] C DN H = d C ®(D).
Thus, Ny (D) acts trivially on D/®(D). Hence, Ny (D)/Cy(D) is a 2-group. Let 8 be
the unique 2-block of DH covering b. Then D is a defect group of 8, by Theorem E in
[180]. Let 8p be a 2-block of D Cpg (D) such that (3p)PH = 3. Then Ny (D, Bp)/ Cr (D)
and Npg (D, fp)/ Cpu(D) are also 2-groups, i.e. 5 has inertial index e(/3) = 1. Since
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is a controlled block, by Lemma [12.11] this implies that 3 is a nilpotent block. But now
shows that b is also nilpotent. O

Corollary 12.13. Let G, B, D be as in|Theorem 12.4iv)|. If H < G has index a power of
2, then D < H.

Proof. There is a block b of H covered by B with defect group DN H. If D £ H, then by
emma 12.12] b is nilpotent. But then by B is nilpotent, a contradiction. [

Proof (of|[Theorem 12.4(iv))). We assume that [Theorem 12.4(iv)| fails, and choose a coun-
terexample G, B, D such that |G : Z(G)| is as small as possible. Moreover, among all such
counterexamples, we choose one where |G| is minimal. Then, by the First Fong Reduction,
the block B is quasiprimitive, i.e. for every normal subgroup N of GG, there is a unique
block of N covered by B; in particular, this block of N is G-stable. Moreover, by the Second
Fong Reduction Oy (@) is cyclic and central.

We claim that @ := O2(G) C D’. Since @ < G we certainly have Q C D. If Q@ = D, then
B has a normal defect group, and B is Morita equivalent to O[D x Cs], by
Thus, we may assume that 1 < @ < D; in particular, @) is abelian. Let Bg be a block of
Q Ca(Q) = Ca(Q) such that (Bg)® = B. Since Cq(Q) <G, the block Bg has defect group
Cp(@), and either Cp(Q) = D or |D : Cp(Q)| = 2. Since B has inertial index e(B) = 3,
N¢ (D) permutes the maximal subgroups of D transitively. Since Cp(Q) <Ng(D), we must
have Cp(Q) = D, ie. Q C Z(D).

Thus, Bg is a 2-block of C(Q) with defect group D. If Q € D’ then By, is nilpotent, by

Lemma [12.11] Then, by [Theorem 7.3| B is Morita equivalent to a block of Ng(D) with
defect group D, and we are done by [Theorem 1.20]

This shows that we have indeed O2(G) C D’; in particular, |O2(G)| < 2 and thus O2(G) C
Z(G). Hence, also F(G) = Z(G).

Let b be a block of E(G) covered by B. If b is nilpotent, then, by B is Morita
equivalent to a 2-block B of a finite group G having a nilpotent normal subgroup N such
that G/N = G/ E(G), and the defect groups of B are isomorphic to D. Thus by minimality,
we must have E(G) = 1. Then F*(G) = F(G) = Z(G), and G = C¢(Z(G)) = Cq(F*(Q)) =
Z(F*(G)) = Z(G), a contradiction.

Thus, b is not nilpotent. By |[Lemma 12.12] b has defect group D. Let Lq,..., L, be the
components of G and, for ¢ = 1,...,n, let b; be a block of L; covered by b. If by, ..., b, were

nilpotent, then b would also be nilpotent by Lemma a contradiction. Thus, we may
assume that by is a non-nilpotent 2-block (of the quasisimple group Li). By [Lemma 12.12

D is a defect group of b;. But now the following proposition gives a contradiction. O

Proposition 12.14. Let D = MNA(r,r) for some r > 2, and let G be a quasisimple
group. Then G does not have a 2-block B with defect group D.

Note that the proposition holds for classical groups by [14], where blocks whose defect
groups have derived subgroup of prime order are classified. However, since our situation is
less general we are able to give new and more direct arguments here.
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Proof. We assume the contrary. Then we may also assume that B is faithful. Note that

by [16], B cannot be nilpotent since D is non-abelian. By [Lemma 12.11] D is not a Sylow
2-subgroup of G in particular, 64 = 25 divides |G].

Suppose first that G := G/ Z(G) = A,, for some n > 5. If |Z(G)| > 2, then n € {6,7} and
|Z(G)| | 6, by [110]. But then |G| is not divisible by 64, a contradiction. Thus, we must
have |Z(G@)| < 2. Then Z(G) C D, and B dominates a unique 2-block B of G with defect
group D := D/ Z(G) # 1. Let B be a 2-block of S,, covering B. Then B has a defect group
D such that D € D and |D : D| = 2, by . Let w denote the weight of B.
Then, by D is conjugate to a Sylow 2-subgroup of S,. We may assume
that D is a Sylow 2-subgroup of So,,. Then D = DN A, = DN Soy N A, = DN Ay, is a
Sylow 2-subgroup of As,,, and D is a Sylow 2-subgroup of As,, or Cs.As,,. Thus, As, is

solvable by [Lemma 12.11} so that w < 2 and |D| < 4, |D| < 8. Since |D| > 32, this is a

contradiction.

Suppose next that G is a sporadic simple group. Then, using Table 1 in [16], we get a
contradiction immediately unless G = Ly and |D| = 27. In this remaining case, we get a
contradiction since, by [194], D is a Sylow 2-subgroup of Cy.A4g, and Ag is non-solvable.

Now suppose that G is a group of Lie type in characteristic 2. Then, by the
2-blocks of G have either defect zero or full defect. Thus, again leads to a

contradiction.

It remains to deal with the groups of Lie type in odd characteristic. We use three strategies
to deal with the various subcases.

Suppose first that G = PSL(n, q) or PSU(n,q) where 1 < n € N and ¢ is odd. Except
in the cases PSL(2,9) and PSU(4, 3), there is E = SL(n, q) or SU(n, q) such that G is a
homomorphic image of E with kernel W say. We may rule out the cases G/ Z(G) = PSL(2,9)
or PSU(4, 3) using [103]. Let H = GL(n,q) or GU(n,q) with E < H. There is a block Bg
of E with defect group Dg such that DgW/W = D. Let By be a block of H covering
Bpg with defect group Dy such that Dy N E = Dg. Now By is labeled by a semisimple
element s € H of odd order such that Dy € Syly(Cr(s)) (see, for example, [50, 3.6]). It
follows that D € Syly(Cg(s)/W) and so Cg(s)/W is solvable by Now W
and H/E are solvable, so Cg(s) is also solvable. By [97, 1A], Cg(s) is a direct product of
groups of the form GL(n;,¢™) and GU(n,, ¢™). Write

t1 to
Cu(s) = [[GL(ni, ™) x ] GU(ni,q™)
i=1

i=t1+1
where t1,t2 € N, ny,...,ny, € N, and mq,...,my, € N, with n; > 3 for ¢ > ¢;. Solvability
implies that t5 = ¢ and that for ¢ = 1,...,¢; we have either n; = 1 or n; = 2, where in the
latter case m; = 1 and ¢ = 3. Since D, Dg, and Dy are non-abelian, we cannot have n; = 1
for all i« = 1,...,t;. Thus, we must have ¢ = 3 and, without loss of generality, n; = 2,

m1 = 1. Then Dy is a direct product of factors which are either cyclic or isomorphic to
SDis. Moreover, we have |Dp : Dg| < 2 and |[W| < 2. Since |D : ®(D)| = 4, we also have
|Dp : ®(Dg)| <8 and |Dy : ®(Dpy)| < 16.

Suppose first that |Dg : ®(Dg)| = 16. Then |Dg : ®(Dg)| = 8, |Dy : Dg| = 2, and
\W| = 2. Since W € ®(Dg), Dp = D x W. If Dy & SDj x SDys, then |Dy| = 2% and
|D| = 2% which is impossible.
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~

Thus, we must have Dy = SDqg X Cy x C; where k and [ are powers of 2. Observe
that ®(Dg) C ®(Dpy) and |Dy : ®(Dy)| = 16 = |Dy : ®(Dg)|. So we must have
@(DE) = (I)(DH) Since (I)(DE) = (I)(D) = 02r—1 XCZ’I’—l XCQ and @(DH) = C4><Ck/2><01/2,
this implies that 4 = 2"~1 i.e. 7 = 3 and ®(D) = ®(Dg) = Cy x Cy x Cs. So we may assume
that k =8, = 4. Thus, Dp = D x Cy and Dy = SDjs x Cg x Cy. Hence, D'y = D' x 1,
’D/E’ = 2 and DIE - D}-I N Z(DH) = Z(SDlﬁ) x 1 x 1, so that D/E' = Z(SDlﬁ) x 1 x 1.
Moreover, Dg /D", = Cg x Cg x Cy is a subgroup of Dy /D’ = Dg x Cg x Cy. Hence,
U2(Cs x Cg x Cq) = (5 x (4 is isomorphic to a subgroup of Uy (Dg x Cg x Cy) = Cy which
is impossible.

Next we consider the case |Dy : ®(Dg)| = 8. In this case we have Dy = SDig x C
where k is a power of 2. Then ®(Dg) C ®(Dy) = Cy X Cyjy and ®(D) = @(DpW/W) =
O (D)W /W . However, this contradicts ®(D) = Cyr—1 X Coyr-1 x Co.

The case |Dp : ®(Dp)| < 4 is certainly impossible.

A similar argument applies to the other classical groups, at least when they are defined over
fields with ¢ > 3 elements, and we give this now. Suppose that G is a classical quasisimple
group of type B,(q), Cn(q), Dn(q) or 2D, (q), where ¢ > 3 is a power of an odd prime.
Note that in these cases there is no exceptional cover.

Let E be the Schur cover of G/Z(G), so that G is a homomorphic image of E with kernel
W say. Note that Z(F), and so W, is a 2-group. There is a block By of E with defect group
Dp such that D = Dg/W. Details of the following may be found in [61] and [56]. We may
realize F as Ef', where E is a simple, simply-connected group of Lie type defined over the
algebraic closure of a finite field, F' : E — E is a Frobenius map (in this setting F' is not
a field!) and Ef is the group of fixed points under F. Write E* for the group dual to E,
with corresponding Frobenius map F*. Note that if H is an F-stable connected reductive
subgroup of E, then H has dual H* satisfying |[H| = |(H*)™"|.

By [90}, 1.5] there is a semisimple element s € E* of odd order such that Dg is a Sylow
2-subgroup of L, where L < E is dual to C%. (s), the connected component of Cg-(s) con-
taining the identity element. Now W < Z(E) < Dg < LY. Hence, D/W € Syly (L /W).
By Lemma , LY /W, and so LY, is solvable. Now by [60] Cg«(s) factorizes as MT,
where T is a torus and M is semisimple, Cg.r (5) = Cg+(s)f" = MF" T and the compo-
nents of M¥" are classical groups defined over fields of order a power of g. Hence, C(E*) F*(8)
is either abelian or non-solvable. It follows that L% is either abelian or non-solvable, in
either case a contradiction.

Let G be a quasisimple finite group of Lie type with |G| minimized such that there is a
block B of G with defect group D as in [Theorem 12.4{(iv), We have shown that G cannot
be defined over a field of characteristic two, of type A, (q) or 2A,,(q) or of classical type for
q > 3.

We group the remaining cases into two.

Case 1. Suppose that G is a quasisimple finite group of Lie type with center of odd order,
and further that ¢ = 3 if G is classical. We analyze C¢(z), where we recall that D' = (z).
There is a non-nilpotent block b, of Cg(z) with defect group D. As z is semisimple, Cg(2)
may be described in detail. By [I10] 4.2.2] C¢(z) has a normal subgroup C° such that
Ca(z)/C is an elementary abelian 2-group and C° = LT, where L = Ly % --- % L, <<C? is
a central product of quasisimple groups of Lie type and T is an abelian group acting on
each L; by inner-diagonal automorphisms.
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If G is a classical group or any exceptional group of Lie type except Eg(q), 2Eg(q) or E7(q),
then by [110, 4.5.1] and [110} 4.5.2], T is a 2-group. In particular Cg(z)/L is a 2-group,
so by |[Corollary 12.13] D < L. Let by, be a block of L covered by b, with defect group D.
If by, is nilpotent, then by b, is also nilpotent since Cg(z)/L is a 2-group,
a contradiction. Hence, by, is not nilpotent. By for each 7 we have that b,
either covers a nilpotent block of L;, or D < L;. It follows that either D < L; for some ¢
or by, covers a nilpotent block of each L;. In the latter case by by, would be
nilpotent, a contradiction. Hence, D < L; for some % and there is a non-nilpotent block of
L; with defect group D. But |L;| < |G| and L; is quasisimple, contradicting minimality.

If G is of type Es(q) or 2Eg(q), then in the notation of [110, 4.5.1] G has (up to isomorphism
of centralizers) two conjugacy classes of involutions, with representatives ¢; and to. Suppose
first of all that z is of type ¢;. In this case Cg(z) has a normal subgroup X of index a power
of 2 such that X is a central product of L = Ly and a cyclic group A. Arguing as above, b,
either covers a nilpotent block of X, and so is itself nilpotent (a contradiction) or D < X.
So b, covers a non-nilpotent block bx of X with defect group D. Applying the argument
again, either bx covers nilpotent blocks of L and A, in which case by would be nilpotent
by (a contradiction), or D < L. We have |L| < |G| and L is quasisimple, so
by minimality we obtain a contradiction. Consider now the case that z has type t5. Then
Cg(z) has a normal subgroup of index 2 which is a central product of quasisimple groups,
and we can argue as above to again get a contradiction.

If G is of type E7(q), then in the notation of [110, 4.5.1] G has (up to isomorphism of
centralizers) five conjugacy classes of involutions, with representatives t1, t4, t}, t7 and
tf.. In the first three of these cases T is a 2-group and we may argue exactly as above. In
case t7 and t, we have |Cg(2) : C°| = 2 and by a now familiar argument D < C? and
b. covers a non-nilpotent block of C? with defect group D. There is X <1 C° of index 3
such that X = LA, where L = L; and A is cyclic of order ¢ & 1. Now by
02(Z(A)) = (2), s0 |A|]2 = 2 and D < L. By minimality this situation cannot arise since L
is quasisimple, and we are done in this case.

Case 2. Suppose that G is a quasisimple group of Lie type with center of even order, and
further that ¢ = 3 if G is classical. Note that G cannot be of type A, (q) or 2A,(q). Here we
must use a different strategy since we may have C;(z) = G. Let u € Z(D) be an involution
with u # z. By there is a nilpotent block b, of Cg(u) with b = B. As before
we refer to [110, 4.5.2| for the structure of Cg(u), and Cg(u) = LT, where L is a central
product of either one or two quasisimple groups and 7" is an abelian group acting on L
by inner-diagonal automorphisms. We take a moment to discuss types D, (3) for n > 4
even and 2D,,(3). In these two cases the universal version of the group has center of order
4, and the information given in [I10, 4.5.2] applies only to the full universal version. In
order to extract the required information when |Z(G)| = 2 it is necessary to use [110, 4.5.1],
taking advantage of the fact that if Y is a finite group, X <Z(Y) with |[X| =2 andy €Y
is an involution, then |Cy, x(yX) : Cy(y)/X| divides 2. Note also that [I10, 4.5.2] gives
the fixed point group of an automorphism of order 2 acting on GG, and that not every such
automorphism is realized by an involution in G (this information is contained in the column
headed |£]). We will make no further reference to this fact.

Now Z(Cg(u)) and T are both 2-groups, and in each case there is a direct product E of
quasisimple groups of Lie type and abelian 2-groups, with W < Z(FE) such that L = E/W
and W is a 2-group, and there is a direct product H of finite groups of Lie type such that
E < H has index a power of 2 and H/W has a subgroup isomorphic to Cg(u) of index a
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power of 2. Since W and H/E are 2-groups, by [I88, 6.5] there are nilpotent blocks Bg
of E and By of H with defect groups Dg and Dy such that D < Dy and Dg/W has a
subgroup isomorphic to D. By [Lemma 7.5, Bg is a product of nilpotent blocks of finite
groups of Lie type, and so by [16], Dg is abelian. But then D is abelian, a contradiction. [

Proposition 12.15. Let B be as in|Theorem 12./iv). Then D is the vertex of the simple
B-modules.

Proof. First we consider the situation in the group D x Cj. Here the three irreducible
Brauer characters are linear and can be extended to irreducible ordinary characters. By
there is a Morita equivalence between O[D xC3] and B. Under this equivalence
the three ordinary linear characters map to irreducible characters of height 0 in B. These
characters are again extensions of three distinct Brauer characters, since the decomposition
matrix is also preserved under Morita equivalence. Now the claim follows from Theorem 19.26
in [74]. O

Corollary 12.16. Let D = M N A(r,r) for some r > 2. Then Donovan’s Conjecture holds
for 2-blocks of finite groups with defect group D.

Corollary 12.17. FEvery 2-block B with minimal non-abelian defect groups satisfies the
following conjectures:

o Alperin’s Weight Conjecture

o Brauer’s k(B)-Conjecture

e Brauer’s Height-Zero Conjecture

e QOlsson’s Conjecture

o Alperin-McKay Conjecture

o Ordinary Weight Conjecture

o Gluck’s Conjecture

e Faton’s Conjecture

e Faton-Moreto Conjecture

e Malle-Navarro Congecture

e Robinson’s Conjecture

Moreover, the Gluing Problem for B has a unique solution.

Proof. Most conjectures are obviously true by [Theorem 12.4] and [Proposition 12.10, Gluck’s
Conjecture only applies if B is nilpotent or |D| = 8. We have already seen in
that the conjecture holds here. It remains to deal with the Gluing Problem (which was
done in [268]). The nilpotent case and case are controlled and thus uninteresting (see
Example 5.3 in [202]). Now let B be a 2-block with defect group M NA(r,1) for some
r > 2. Let F be the fusion system of B. Then the F-centric subgroups of D are given by
My = (22,y, 2), My := (z, 2), M3 := (zy,2) and D. Moreover, Autz(M;) = Outz(M;) =
S3, AutF(M;) = D/M; = Oy for i = 2,3 and Autz(D) = D/ Z(D) = C3. Using this, we
get H (Autz(0), F*) =0 for i = 1,2 and every chain ¢ of F-centric subgroups (see proof
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of Corollary 2.2 in [242]). Hence, HO([S(F¢)], A%) = H*([S(F¢)], AL) = 0. Now the claim
follows from Theorem 1.1 in [242]. O

12.2. The case p > 2

For odd primes p, Gao, Yang and Zeng already obtained some incomplete results about
minimal non-abelian defect groups (see [102] [320]). Here we settle Olsson’s Conjecture in
almost all cases. The result was obtained in [127].

Theorem 12.18. Let B be a block of a finite group with minimal non-abelian defect group
D% 3i_+2. Then Olsson’s Conjecture holds for B.

Proof. By[Theorem 12.4) we may assume p > 3. Then by Rédei’s classification
we may assume that D = MNA(r,s) for r > s > 1. We set z := [z,y] € Z(D). Observe

that ®(D) = Z(D) = (2P, y?, z) and D’ = (z). Let F be the fusion system of B.

First assume s > 2. Then we show that B is controlled. By Alperin’s Fusion Theorem it
suffices to show that D does not contain F-essential subgroups. By way of contradiction,
assume that ) < D is F-essential. Since Cp(Q) C @, @ is a maximal subgroup of D.
Let a € D be an element of order p. Then also aD’ € D/D" = Cpr x Cps has order p.
Since r > s > 2, we see that a € Z(D) and Q;(D) C Z(D). This shows that 1 # D/Q =
Autp(Q) < Autz(Q) acts trivially on ©4(Q). On the other hand every p’-automorphism of
Autz(Q) acts non-trivially on €4 (Q) (see Theorem 5.2.4 in [107]). Hence, Op(Aut#(Q)) # 1
which contradicts the choice of ). Thus, we have proved that B is a controlled block. Now
the claim follows from [Theorem 11.7iii)}

Now assume that s = 1. If also » = 1, then D is non-abelian of order p? and exponent p. By
hypothesis, p > 3 here. In this case we have seen in the proof of that Olsson’s
Conjecture holds for B. Thus, let 7 > 2. Since Z(D) has exponent p"~!, we see that z is
not F-conjugate to an element in Z(D). In particular (z,b,) is a non-major B-subsection.
Moreover, (x) is fully F-centralized, since Cp(z) is a maximal subgroup of D. Hence, Cp(x)
is a defect group of b, by Now the claim follows from [Proposition 4.3] O
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13.1. Results on the k(B)-Conjecture

After we have computed the block invariants for many specific defect groups, it is interesting
to see what is the smallest open case. Obviously, the smallest non-metacyclic group Cj
comes to mind. Landrock [I95] gave partial results here, and later the case was settled by
Kessar, Koshitani and Linckelmann [162] using the classification of the finite simple groups.
The result also follows easily from (still using the classification). We add

some information about Cartan matrices.

Theorem 13.1 (Kessar-Koshitani-Linckelmann). Let B be a block of a finite group with
elementary abelian defect group of order 8. Then k(B) = ko(B) = 8, and one of the following
holds:

(i) e(B) =1(B) =1 and B is nilpotent.
(ii) e(B) =1(B) = 3 and the Cartan matriz of B is

2 11
211 2 1
11 2
up to basic sets.

(i11) e(B) =1(B) =7 and the Cartan matriz of B is (14 0;;j)1<i j<7 up to basic sets.
(iv) e(B) =21, [(B) =5 and the Cartan matriz of B is

[\
N
I I e

up to basic sets.

Proof. Let D be a defect group of B. As usual, I(B) < Aut(D) = GL(3,2) has odd
order. Hence, e(B) € {1,3,7,21}. By [162] there is a so-called isotypy between B and its
Brauer correspondent b in Ng(D). Since b has normal defect group D, we may compute

the invariants in the group algebra D x I(B) by [Theorem 1.20 O
The Cartan matrices in can also be determined by the Cartan method
(Section 4.2) without using the isotypy (after one knows k(B) = ko(B)). Recently, Eaton [84]
has obtained the possible Morita equivalence classes in the situation of

Theorem 13.2 (Eaton). Let B be a block of a finite group with defect group D = C3. Then
B is Morita-equivalent to the principal block of one of the following groups:
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(i) D, (v) SL(2,8),
(i1) Ag x Co, (vi) D x (C7 x Cs),
(iii) As x Cs, (vii) Ji,
(iv) D x Cy, (viii) 2Ga(3) = Aut(SL(2,8)).

Moreover, Broué’s Conjecture holds for the 2-blocks of defect at most 3.

The next interesting case of a small defect group is the elementary abelian group of
order 9. Here we have already mentioned the incomplete results by Kiyota [167] (see also
Watanabe [313]). For example, it is still open whether Alperin’s Conjecture holds in case
D = C2 and I(B) = Cs.

This shifts the focus to 2-blocks of defect 4. It turns out that we have already handled the
non-abelian defect groups of order 16. Next we settle the elementary abelian case. We begin
with a special case.

Lemma 13.3. Let B be a block of a finite group G with elementary abelian defect group D
of order 16. If e(B) = l(B) = 9, then the elementary divisors of the Cartan matriz of B
are 1,1,1,1,4,4,4,4,16. Moreover, the two I1(B)-stable subgroups of D of order 4 are lower
defect groups of B. Both occur with 1-multiplicity 2.

Proof. Let C be the Cartan matrix of B. As in the proof of [Theorem 13.4] there are four
subsections (1, B), (u1,b1), (u2,b2) and (us, bs) such that I(b;) =1 and I(b2) = l(b3) = 3
up to conjugation. In order to determine C' up to basic sets, we need to investigate the
generalized decomposition numbers d% for i = 1,2,3. The block by dominates a block by of

Ca(u2)/{ug) with defect group D/(uz) and inertial index 3. Thus, by [Theorem 13.1| the

Cartan matrix of by has the form
2 1 1
411 2 1
11 2

up to basic sets. Since k(B) = 16, we may assume that the numbers d}'2 take the form

1 11111 . . . . T
1 1 . . . . 1111
1 1

—_ =
—_ = =

11 11
For the column of decomposition numbers d}'! we have essentially the following possibilities:

(i):(1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1, -1 T,
(i) : (1,1,1,-1,1,-1,-1,-1,1,—1,-1,—-1,1,-1, -1, -1)",
(iii) - (1,1,-1,-1,1,1,—-1,-1,1,1,-1,-1,1,1, -1, - 1) ™.

Now we use a GAP program to enumerate the possible decomposition numbers d*3. After
that the ordinary decomposition matrix M can be calculated as the orthogonal space. Then
C = MTM up to basic sets. It turns out that in some cases C' has 2 as an elementary
divisor. Using the notion of lower defect groups we show that these cases cannot occur.
If 2 is an elementary divisor of C, then there exists a lower defect group @ < D of order

2 such that mg)(Q, bg) > 0 by |Proposition 1.431 Since Ng(Q) = Ca(Q), it follows from
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(1)
b
matrix of bg. Since (@, bg) is a B-subsection, we see that bg is conjugate to by or b3. But

we have seen above that all elementary divisors of the Cartan matrix of by (and also b3)
must be divisible by 4. This contradiction shows that 2 does not occur as elementary divisor
of C. After excluding these cases the GAP program reveals the following two possibilities
for the elementary divisors of C: 1,1,1,1,4,4,4,4,16 or 1,1,4,4,4,4,4,4,16.

Lemma 1.44] that also m; ’(Q) > 0. Hence, 2 is also an elementary divisors of the Cartan

Now [Proposition 1.43| implies

4<m) = my(R,bg)
ReER

where R is a set of representatives for the I(B)-conjugacy classes of subgroups of D of
order 4. Let @Q < D be of order 4 such that mg)(Q, bg) > 0. Then by |Lemma 1.44| we have
mgc)Q(Q) > 0 where Bg := bgG(Q’bQ). If @ is not fixed under I(B), then we would have

the contradiction e(Bg) = {(Bg) = 1. Thus, we have shown that @ is stable under I(B).
Hence,
4 <m§(Q,bg) + miy (P.bp) (13.1)

where P # @ is the other I(B)-stable subgroup of D of order 4. Since 16 is always an
elementary divisor of C, we have mg (D) = 1. Observe that bg has defect group D and

inertial index 3, so that [(bg) = 3 by [Theorem 13.4] Thus, [Lemma 1.45| shows

3=1(bg) > m) (Q) +mig) (D).

Therefore, mgzz (Q) <2 and similarly mg})j(P) < 2. [Equation (13.1)|yields mg)(Q, bg) =

mg)(R bp) = 2. In particular, 4 occurs as elementary divisor of C' with multiplicity 4. It is

easy to see that we also have mg)(Q) = mg)(P) = 2 which proves the last claim. O

The next result is an enhanced version of [190] 85].

Theorem 13.4. Let B be a block of a finite group with elementary abelian defect group D
of order 16. Then one of the following holds:

(i) B is nilpotent. Then e(B) =1(B) =1 and k(B) = ko(B) = 16.

(ii) e(B) =1(B) =3, Cp(I(B)) =1, k(B) = ko(B) = 8 and the Cartan matriz of B is

6 1 1
1 21
1 1 2

up to basic sets.

(iii) e(B) =1(B) =3, |Cp(I(B))| =4, k(B) = ko(B) = 16 and the Cartan matriz of B is

2 1
411 2
11

N = =

up to basic sets.
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(iv) e(B) =1(B) =5, k(B) = ko(B) = 8 and the Cartan matriz of B is

—_ = =
— = = N
— =N =
— DN = =
N — = = =

up to basic sets.

(v) e(B) =1(B) =17, k(B) = ko(B) = 16 and the Cartan matriz of B is 2(1 + 0;;)1<i j<7
up to basic sets.

(vi) e(B) =1(B) =9, k(B) = ko(B) = 16 and the Cartan matriz of B is

4 2 2112 211
242121121
224211112
112 41 21 2 2
121141 2 2 2
2112142 21
21112241 2
1212 2 2141
112 2 21214

up to basic sets.
(vii) e(B) =9, I(B) =1 and k(B) = ko(B) = 8.

(viti) e(B) = 1(B) =15, k(B) = ko(B) = 16 and the Cartan matriz of B is (14 6;5)1<i j<15
up to basic sets.

(iz) e(B) =21, (B) =5, k(B) = ko(B) = 16 and the Cartan matriz of B is

[\

[\
N
I N e e

up to basic sets.

Moreover, all cases actually occur.

Proof. First of all by [Theorem 7.14| we have k(B) = ko(B). The inertial quotient I(B) is
a subgroup of Aut(D) = GL(4,2) of odd order. It follows that e(B) € {1,3,5,7,9,15,21}

(this can be shown with GAP [I03]). If e(B) # 21, the inertial quotient is necessarily
abelian. Then by Corollary 1.2(ii) in [257] there is a non-trivial subsection (u, b) such that
I(b) = 1. Hence, implies that |D| = 16 is a sum of k(B) odd squares. This
shows k(B) € {8,16} for these cases. In order to determine [(B) we calculate the numbers
[(b) for all non-trivial subsections (u,b). Here it suffices to consider a set of representatives
of the orbits of D under I(B), since B is a controlled block. If e¢(B) = 1, the block is
nilpotent and the result is clear. We discuss the remaining cases separately:
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13.1. Results on the k(B)-Conjecture

Case 1: ¢(B) =3

Here by results of Usami and Puig (see [295] 251]) there is a perfect isometry between B
and its Brauer correspondent in Ng (D). According to two different actions of I(B) on D,
we get k(B) =8 if Cp(I(B)) =1 or k(B) =16 if |Cp(I(B))| = 4. In both cases we have
[(B) = 3. The Cartan matrices can be obtained from the group D x I(B).

Case 2: ¢(B) =5

Then there are four subsections (1, B), (u1,b1), (ug,bs) and (us, bs) with (b)) = l(be) =
I(bs) = 1 up to conjugation. By way of contradiction, suppose k(B) = 16. We derive a
contradiction using the Cartan method. It is easy to see that the three columns of the
generalized decomposition matrix corresponding to b1, bs and b3 can be arranged in the
form

1 11 1 1 1 1 1 1 1 1 1 1 1 1
1 11 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
111 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

—_ = =

Hence, the Cartan matrix C' of B is given by

4 3 3 3 111111 -1 -1 -1
3 4 3 3 111111 -1 -1 -1
3 3 4 3 111111 -1 -1 -1
3 3 3 4 111111 -1 -1 -1
1 1 1 1 211
1 1 1 1 1 21

c=11 1 1 1 1 1 2 .
1 1 1 1 1
1 1 1 1 1 21
1 1 1 T . . .11 2 . . .
-1 -1 -1 -1 . . . . . . 2 1 1
-1 -1 -1 -1 . . . . . . 1 2 1
-1 -1 -1 -1 . . . . . . 1 1 2

up to basic sets. In particular det C' = 256. However, this contradicts [Proposition 1.48|
Therefore, k(B) = 8 and {(B) = 5. Hence, by the main theorem of [312] we may assume
that D < G. Using [Proposition 15.2[ we obtain the Cartan matrix of B.

Case 3:e(B) =7

There are again four subsections (1, B), (u1,b1), (u2,b2) and (us,bs) up to conjugation.
But in this case I(b;) = I(b2) = 1 and I(b3) = 7 by [Theorem 13.1} Thus, k(B) = 16 and
[(B) = 7. Again by the main theorem of [312], and [Proposition 15.2] we obtain the Cartan
matrix of B.

Case 4: e(B) =9

There are four subsections (1, B), (u1,b1), (u2,b2) and (us, bs) such that [(b;) = 1 and
l(b2) = I(b3) = 3 up to conjugation. This gives the possibilities and We only need
to determine the Cartan matrix in . Here we use the algorithm from As
in we obtain a list of possible Cartan matrices of B. However, since we are
considering 9 x 9 matrices it is very hard to see if two of these candidates only differ by basic
sets. In order to reduce the set of possible Cartan matrices further we apply various ad hoc
matrix manipulations as permutations of rows and columns and elementary row/column
operations. After this procedure we end up with a list of only ten possible Cartan matrices
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13. Small defect groups

of B. One can show with GAP that the corresponding quadratic forms all have minimum
4. Using Magma [35], one can show further that the ten quadratic forms all lie in the
same genus. Moreover, this genus consists of just ten isometry classes of quadratic forms.
However, a quadratic form from only one of these isometry classes has minimum 4 (all the
other possibilities yield a minimum of 2). This shows that in fact all ten Cartan matrices
differ only by basic sets. We have given the Cartan matrix of the principal block of the
group C3 Cg.

Case 5: e¢(B) =15
This case was handled in [85] as a byproduct. We will not give the proof which is very
complicated. It turns out that occurs. The usual argument gives the Cartan matrix.

Case 6: ¢(B) =21

Here I(B) is non-abelian. Hence, we get four subsections (1, B), (u1,b1), (uz2,bs) and (us, bs)
up to conjugation. We have I(b1) = I(b2) = 3 and I(b3) = 5 by [Theorem 13.1] Since I(B)
has a fixed point on D, it follows that [(B) = 5 and k(B) = 16 by [Theorem 1.41] The

Cartan matrix of b3 is given by

2

e

.2
11 11
up to basic sets. Using this, it is easy to deduce that the generalized decomposition numbers
corresponding to (us,bs) can be arranged in the form

1 1 11 L.
11 11 .
1 1 11 .

e A e e |
T+ . . 1r1 . . 11 . . 11
It is also easy to see that the columns of generalized decomposition numbers corresponding
to by and by consist of eight entries +1 and eight entries 0. By 2 occurs as
elementary divisor of the Cartan matrix of B. Now we use GAP to enumerate all possible
arrangements of these columns. It turns out that the Cartan matrix of B is equivalent to
the Cartan matrix of bs.

For all cases except examples are given by the principal block of D x I(B). In case
we can take a non-principal block of the group SmallGroup(432,526) = D x E where
E is the extraspecial group of order 27 and exponent 3 (see Small Groups Library and
[Proposition 1.21)). O

In order to prove Alperin’s Weight Conjecture, only one case causes difficulties.

Proposition 13.5. Let B be a block of a finite group G with elementary abelian defect
group D of order 16. If e(B) =9, then Alperin’s Weight Conjecture holds for B.

Proof. Let bp be a Brauer correspondent of B in Cg(D), and let Bp be the Brauer corre-

spondent of B in Ng(D,bp). Then it suffices to show that {(B) = [(Bp). By [Theorem 13.4
we have to consider two cases [(B) € {1,9}.
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13.1. Results on the k(B)-Conjecture

We start with the assumption [(B) = 9. Then by there is an I(B)-stable
subgroup @) < D of order 4 such that mg;(Q) = mg)(Q, bg) > 0 where Bg := bgG(Q’bQ).
In particular [(Bg) = 9. Let P < D be the other I(B)-stable subgroup of order 4. Moreover,
let bp == bI;)G(Q’bQ)mCG(P) such that (P,b}) is a Bg-subpair. Then by the same argument

we get
m§) (P) =m) (P,bp) >0

where 3 := (b%)NG(Q’bQ)mNG(Rb}’) is a block with defect group D and [(8) = 9. Now D = QP
implies

Ng(D,bp) < Ng(Q,bq) NNg(P,bp) < Ng(D).
Since BgG(Q’bQ)mNG(P’bIP) = (3, it follows that I(Bp) = 9 as desired.

Now let us consider the case {(B) = 1. Here we can just follow the same lines except that
we have mgé(Q) =0 and mg)(P) =0. O

We want to point out that Usami showed in [297] that in case 2 # p # 7 there is a perfect
isometry between p-blocks with abelian defect group D and inertial quotient C3 and their
Brauer correspondents in Ng (D).

Now we present a result on Gluck’s Conjecture whose proof is new.

Proposition 13.6. Gluck’s Conjecture holds for the 2-blocks of defect at most 4.

Proof. By Corollary 3.2 and Theorem B in [105] the claim holds for 2-blocks of defect at
most 3. Thus, let B be a 2-block with defect group D of order 16. We may assume that D
has exponent 4 and nilpotency class 2 by Lemma 2.1 in [105]. Moreover, by Lemma 3.1 in
[105] it suffices to show that the generalized decomposition numbers dy,, of B are (rational)
integers. This is trivial if |(u)| < 2. Hence, assume |(u)| = 4. Let F be the fusion system of
B. Since D is rational, u is not F-conjugate to an element of Z(D). In particular, b, has
defect group Cp(u) of order at most 8. As usual, b, dominates a block b, with defect at
most 1. This shows I(b,) = 1. Now Lemma 3.3 in [105] implies that d},, is integral. O

We collect the state of the conjectures for the 2-block of defect at most 4.

Theorem 13.7. Let B be a 2-block of a finite group with defect at most 4. Then the
following conjectures are satisfied for B:

o Alperin’s Weight Conjecture

Brauer’s k(B)-Conjecture

Brauer’s Height-Zero Conjecture

Olsson’s Conjecture

Alperin-McKay Conjecture

Ordinary Weight Conjecture

Gluck’s Conjecture

Eaton’s Conjecture
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13. Small defect groups

o Faton-Moretd Congecture
e Malle-Navarro Conjecture
e Robinson’s Conjecture

Moreover, the Gluing Problem for B has a unique solution.

Proof. We may assume that B has defect group D of order 16. Then the situation splits
into the following possibilities:

(a) D is metacyclic

(b) D is minimal non-abelian

(c) D is abelian, but non-metacyclic
(d) D= Dg x Cs

(o)

(f) D= DgxCy

The metacyclic case was done in and the minimal non-abelian case follows
from [Corollary 12.17] In the last three cases we refer to It remains to consider
the abelian case. Here it is known that the Gluing Problem has a unique solution (see [202]).
We have two possibilities: D = Cy x Cy x Cy or D is elementary abelian. We may assume
that B is non-nilpotent.

In case D = C4 x Cy x Oy, 3 is the only odd prime divisor of [Aut(D)|. Thus, by Usami and
Puig (see [295] 251]) there is a perfect isometry between B and its Brauer correspondent in
Ng(D). Then it is easy to see that the conjectures are true.

Now we consider the elementary abelian case. By Brauer’s k(B)-Conjecture,
Brauer’s Height-Zero Conjecture, Olsson’s Conjecture, Eaton’s Conjecture, the Eaton-
Moret6 Conjecture, the Malle-Navarro Conjecture and Robinson’s Conjecture are satisfied.
Alperin’s Weight Conjecture is equivalent to I(B) = k(I(B)) unless e(B) = 9. However, for
e(B) =9, AWC holds by [Proposition 13.5 Since k(B) —I(B) = ko(B) — l(B) is determined
locally, the Alperin-McKay Conjecture follows from Alperin’s Weight Conjecture. Now
consider the Ordinary Weight Conjecture. In case 9 # e(B) # 21, the OWC reduces to

KB)= Y M (13.2)

x€lrr(D)/I(B)

which is true. Now assume e(B) = 21. Here the number of 2-blocks of defect 0 in F[I(B)] is
5. We have to insert this number for |I(x)| in [Equation (13.2)|if x is invariant under I(B).
Finally, let e(B) = 9. Here the Brauer correspondent b of B in Ng(D) is Morita equivalent
to a twisted group algebra of D x I(B) (see . If the corresponding 2-cocycle
a is trivial, we have I(B) =9 and [(B) = 1 otherwise. In turn we have z(F,I(B)) =9 or
2(FolI(B)) = 1 respectively. Now the OWC follows as before. O

Even more information about 2-blocks of defect 4 can be found in [271]. For example in
most cases Cartan matrices and the distribution into 2-rational and 2-conjugate characters
are known. We omit these information here, since they are of no further use.

We use the previous results to obtain a major theorem about Brauer’s k(B)-Conjecture.
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13.1. Results on the k(B)-Conjecture

Theorem 13.8. Brauer’s k(B)-Conjecture holds for defect groups with a central cyclic
subgroup of index at most 16. In particular, the k(B)-Conjecture holds for the 2-blocks of
defect at most 5 and 3-blocks of defect at most 3.

Proof. Let B be a p-block of a finite group G with defect group D. By hypothesis, there
exists an element u € Z(D) such that |D/(u)| < 16. Let (u, b,) be a corresponding (major)
subsection. Then b, dominates a block b, with defect group D/{u). Hence, we can apply the
previous results. If D/(u) is cyclic, then D is abelian of rank at most 2. In this case Brauer’s

k(B)-Conjecture has been known for a long time (see (7D) in [44]). By [Theorem 4.10| we

may assume that /(b,) > 4 for p = 2. It follows that D/(u) is elementary abelian of order 8,

9 or 16. Assume first that |D/(u)| = 8. Then by [Theorem 13.1{ we have I(b,) € {5,7}. In
case [(b,) = 7, Brauer’s k(B)-Conjecture follows from [Theorem 4.2, This also works for
I(b,) = 5, but here we need to take the quadratic form ¢ corresponding to the positive
definite matrix

2 1 . |
1 2 . .o —1

1
5| - . 2 |
2 -1

-1 -1 -1 -1 2

Now let |D/(u)| =9 (and p = 3). Again we use the Cartan method. For sake of simplicity,

we assume that B itself has defect group C%. By [Theorem 4.9 we may assume [(B) > 3.
Let C be the Cartan matrix of B. By Kiyota’s result [167], we need to handle the following

cases.

Case 1: e(B) = 4.
If the inertial group I(B) is cyclic, we obtain C' up to basic sets as follows

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

from Puig-Usami [251]. If I(B) is non-cyclic, we may also assume that I(B) = 4. Here it
follows from [250] that C is given by

4 1 2 2
1 4 2 2
2 2 41
2 21 4

up to basic sets. In both cases [Theorem 4.2 applies. (Later we will handle these situations
in a generic way, see [Lemma 14.4])

Case 2: I(B) = Cs.

Then I(B) acts regularly on D\ {1}. Thus, there are just two B-subsections (1, B) and
(u,b) with I(b) = 1 up to conjugation. Kiyota did not obtain the block invariants in this
case. Hence, we have to consider some possibilities. By Lemma (1D) in [I67] we may
assume k(B) € {6,9}. Since u is conjugate to u~! in I(B), the generalized decomposition
numbers dj; are integers. In case k(B) = 6 (which contradicts Alperin’s Weight Conjecture)
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the column corresponding to (u,b) in the generalized decomposition matrix is given by
(£2,41,41,41,4+1,4+1)T, and C is

— = =N
== =N
= =N =
— N = =
W = = =

up to basic sets. In case k(B) = 9 we get C' = (1 + d;j)1<i j<g up to basic sets. In both
cases [Theorem 4.2] works.

Case 3: I(B) = Ds.

By Proposition (2F) in [167] we may assume k(B) = 9 and [(B) = 5. There are three
subsections (1, B), (u1,b1) and (ug, b2) with I(b1) = I(b2) = 2 up to conjugation. The Cartan
matrix of by and by is given by (§2). The numbers dy} and d;? are integers (see Subcase (a)
on page 39 in [I67]). Thus, we may assume that the numbers d;i form the two columns

111111 . .\
... .1 11111} "
Now we use a GAP program to enumerate the possibilities for the columns (d{?, d5?

17 dyss e dg?)
(j = 1,2). It turns out that C' is

3 .1 1

3 1 1
1131 .
| 1
11 . 13

up to basic sets. Here we can take the positive definite quadratic form ¢ corresponding to
the matrix
2 .. -1 . -1
1 . 2 -1 1 -1
-1-1 -1 2 -1 1
2 . 1 -1 2 -1
-1 -1 1 -1 2
in Theorem 4.21
Case 4: I(B) = Qs.
Then I(B) acts regularly on D \ {1}. Hence, the result follows as in the case I(B) = Cs.
Case 5: e¢(B) = 16.
Then there are two B-subsections (1, B) and (u,b) up to conjugation. This time we have
[(b) = 2. By Watanabe [313] we have k(B) =9 and [(B) = 7. The Cartan matrix of b is
given by (§2). By way of contradiction, suppose that the columns dy := (d¥y,dY, ..., d4)
and dy = (dYy,d%, ...,dY;) are algebraic conjugate. We write d; = a + b¢ with a,b € Z°
and ¢ = €>™/3. Then dy = a + b. The orthogonality relations show that (a,a) = 5,
(b,b) = 2 and (a,b) = 1 (cf. [Section 5.2). This gives the contradiction k(B) < 6. Hence, the
columns dy and dy have the form

111111 . . A"
. . 11111 1)
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Thus, we obtain C' up to basic sets as follows:
2 1
1 2 .
2 1
1 2

S R e T e

21
... .1 2
111111

In this case we can take the positive definite quadratic form ¢ corresponding to the matrix

2 -1 -1
-1 2 .
2 -1 -1
1 -1 2 1
2 2 -1 -1
1 -1 2
-1 -1 -1 2

in Mheorem 4.21
Finally, it remains to deal with the case |D/(u)| = C3. Again we replace b, by B. By

Theorem 4.10 we may suppose that [(B) > 4. Apart from case, the proof is an application
of [Theorem 13.4] and [Theorem 4.2] In fact, we have seen on[page 44 that the Cartan method

fails in case e(B) = [(B) = 9. Here however, the inverse Cartan method works. One can

show with GAP that ¢(B) = 9 with the notation of [Theorem 4.4} O

It seems reasonable that one can avoid the use of the classification of the finite simple

groups in the proof of just by considering more cases. For example, the
original proof of Brauer’s k(B)-Conjecture for 2-blocks of defect 4 does not rely on the

classification (see [270]).
The k(B)-Conjecture for defect groups of order 27 extends results of Hendren (see Section 6.1
in [122]). Now we prove a similar result.
Theorem 13.9. Let D be a 2-group and let u € Z(D) such that D/(u) is isomorphic to
one of the following groups

(i) a metacyclic group,

(ii) a minimal non-abelian group,

(iii) 11y Comi where |[{m; :i=1,...,n}| >n—1,

(iv) M x C where M has mazimal class and C is cyclic,

(v) M % C where M has mazimal class and C is cyclic,

(vi) Dan X Com, Qon X Com and Dan.Com as in|Theorem 10.25,|10.25 and|10.24)

Then Brauer’s k(B)-Conjecture holds for every block with defect group D.
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Proof. Let B be a block with defect group D. As usual we consider the subsection (u, by,)
and the dominated block b,. One of the groups in the theorem appears as defect group

of b,. By [Theorem 4.10| it suffices to show I(b,) < 3. By our previous results this is
true except possibly in case Thus, assume that b, has defict group [[_, Com; where
{m; : i =1,...,n}| > n— 1. Then it is easy to see that e(b,) < 3 (cf. [Lemma 14.10).

Hence, results by Usami and Puig [295] 251] imply 1(b,,) < 3. O

It is straightforward to give similar results on ko(B) by dropping the condition u € Z(D) in
the last two theorems. Here [[’heorem 4.13]is relevant. We leave the details to the reader.

By means of defect group orders, the next interesting case consists of 5-blocks of defect 2. It
is hard to obtain strong results here, but I computed a few Cartan matrices (unpublished).

13.2. 2-blocks of defect 5

Since our methods for the prime p = 2 are stronger, it is worthwhile to take a look at the
defect groups of order 32. One of our aims here is to give a proof of Olsson’s Conjecture
(for this special case).

For the abelian defect group Cy x C3 the invariants are not known so far. We handle more
general abelian defect groups in the next theorem. This result relies on the classification of
the finite simple groups.

Theorem 13.10. Let B be a block of a finite group G with defect group Caon x C§ for some
n > 2. Then we have k(B) = ko(B) = |D| = 2"*3 and one of the following holds:

(i) e(B) =1(B) =1.
(ii) e(B) =1(B) =
(iit) e(B) =1(B) =17
() e(B)=21,1(B)=5

Proof. Let D = Cqn x C3. Since Aut(D) acts faithfully on Q(D)/®(D) = C3, we have
e(B) € {1,3,7,21}. In case e(B) = 1, the block is nilpotent and the result is clear. Now we
consider the remaining cases.

Case 1: e(B) = 3.
Then there are 2”2 subsections (u, b, ) up to conjugation and 2"*! of them satisfy I(b,) = 1.

For the other 2”1 subsections [Theorem 1.41|implies I(b,) = 3. This gives k(B) = 2"*3 =
|D|. Moreover, k(B) = ko(B) by [Theorem 7.14

Case 2: e(B) =T.

Here we have 2" subsections (u,b,) up to conjugation where 2" of them satisfy 1(b,) = 1.

For the other 2" subsections we use [Theorem 1.41] in connection with [Theorem 13.1l This
gives (b,) = 7 for these subsections. It follows that k(B) = |D| and k(B) = ko(B) by

Case 3: ¢(B) = 21.
Here we have again 2"! subsections (u, b,) up to conjugation. But this time 2" subsections
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satisfy [(b,) = 3 and the other 2" subsections satisfy [(b,) = 5. The result follows as
before. =

Next we study another group of order 32 with an easy structure.

Proposition 13.11. Let B be a non-nilpotent block of a finite group with defect group
D = MNA(2,1) x Cy. Then k(B) = 20, ko(B) = 16, k1(B) = 4 and I(B) = 2. In particular
Olsson’s Conjecture and Alperin’s Weight Conjecture hold for B.

Proof. Let F be the fusion system of B. Since |D : Z(D)| = 4, every F-essential subgroup
is maximal, and there are three candidates for these groups. Let Z(D) < M < D such that
M = Cy x C3. Then Autz(M) must act non-trivially on Q(M)/®(M). However, it can be
seen that Np(M) acts trivially on Q(M)/®(M). In particular M is not F-radical. Hence,
there is only one F-essential subgroup @ = Cj (up to conjugation). Since Q < D, F is
constrained and thus uniquely determined by Outrz(Q). By we have some
possibilities for Out#(Q). However, a GAP calculation shows that only Outz(Q) = Ss is
realizable. Then F is the fusion system on the group SmallGroup(96,194) = (A4 x Cy) x Cs.
In particular there are exactly 16 F-conjugacy classes on D. Moreover, Z(F) = C2, and
for 1 # z € Z(F) we have D/(z) € {MNA(2,1),Dg x Co}. Hence, we get I(b,) = 2 as
usual. For all other non-trivial subsections (u, b,) we have [(b,) > 1. Since B is centrally
controlled, implies [(B) > 2. gives k(B) > 20. If x € D has

order 4, then Cp(x)/(z) has order 4. Hence, Olsson’s Conjecture follows from [Theorem 4.13
i.e. ko(B) < |D : D'| = 16. For an element z € Z(D) \ Z(F) the block b, is nilpotent. Thus,

[Proposition 4.7] implies

|D| =32 < ko(B) + 4(k(B) — ko(B)) < iQ%ki(B) <|D|.
=0

The claim follows as usual. O

Our next result handles rather unknown groups of order 32. The key observation here is
that the fusion system is constrained and thus quite easy to understand.

Proposition 13.12. Let B be a non-nilpotent block of a finite group G with defect group
D = SmallGroup(32,q) for q € {28,29}. Then k(B) = 14, ko(B) = 8, k1(B) = 6 and
I(B)=2.

Proof. Let F be the fusion system of B. Using GAP one can show that Aut(D) is a
2-group. In particular e(B) = 1. Moreover, one can show using results in that
D contains only one F-essential subgroup Q. Here C3 x Cy4 & Q < D. In particular F is
constrained. Another GAP calculation shows that F is the fusion system of the group
SmallGroup(96, 187) or SmallGroup(96,185) for ¢ € {28,29} respectively. We have ten
B-subsections up to conjugation. The center of D is a four-group and ®(Q) C Z(D). Hence,
an odd order automorphism of @) cannot act on Z(D). It follows that we have four major
subsections (1, B), (z,b;), (v,b,) and (w, by,) up to conjugation. Here we may assume that
l(by) = l(by) = 1. On the other hand b, dominates a non-nilpotent block with defect group
D/(z) = Dg x Co. Thus, by [Theorem 9.7 we have I(b.) = 2. Also we find an element u € Q
such that b, is non-nilpotent with defect group @. Here I(b,) = 3 by Usami and Puig
[295, 251]. The remaining non-major subsections split into one subsection (ug, b1) of defect
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13. Small defect groups

16 and four subsections (u;, b;) (i = 2,3,4,5) of defect 8. Here I(b;)) =1 fori=1,...,5. In
particular Olsson’s Conjecture ko(B) < 8 = |D : D’| follows at once. Since B is centrally
controlled, we also obtain [(B) > 2 and k(B) > 14. So the generalized decomposition
numbers dj; consist of eight entries &1 and six entries +2. Hence, k(B) = 14, ko(B) = 8,
ki1(B) =6 and I(B) = 2. O

Also in the next proposition the corresponding fusion system is easy to understand, since it is
controlled. Another advantage here is that k(B) is relatively small so that the computational
effort is small as well.

Proposition 13.13. Let D be a central cyclic extension of SmallGroup(32,q) for q €
{33,34}. Then Brauer’s k(B)-Conjecture holds for all blocks with defect group D.

Proof. As usual it suffices to consider a block B with defect group D = SmallGroup(32,q)
for ¢ € {33,34}. GAP shows that B is a controlled block with inertial index 3. Hence, the
fusion system of B is the same as the fusion system of the group D x C3. It follows that
there are only six B-subsections up to conjugation; two of them are major. For 1 # 2z € Z(D)
we have [(b,) = 1. Let us denote the four non-major subsections by (u;,b;) fori =1,...,4.
We may assume that b has defect group Cj. It is easy to see that Autz(D) restricts to
the inertial group of b;. In particular [(b;) = e(b1) = 3. The Cartan matrix of b; is given
by 2(1 + d;j)1<4,j<3 up to basic sets (see . Moreover, by has defect 3 and b3
and by have defect 4. Here, I(b2) = I(b3) = I(bs) = 1. In particular Olsson’s Conjecture
ko(B) < 8 = |D : D'| follows. Looking at di; we get k(B) < 14. The numbers d;! can
certainly be arranged in the form

1111 . .
11 . .11 . .
11 11

Using the contributions it follows that ko(B) = 8. We can easily add the column for (ug, bs)
as

(1,1,-1,...,-1,0,...,0)% or (1,-1,1,-1,1,-1,1,-1,0,...,0)T.

We investigate next the elementary divisors of the Cartan matrix of B. For this we consider
the multiplicity of (u;) as a lower defect group. The multiplicity of 2 as an elementary
divisor of the Cartan matrix of by is certainly 2. Since (u1) is the only lower defect group
of order 2 of by, we have m(2) = mg)((ul),bl) = mé?((uﬁ) = 2. This shows I(B) > 3
and k(B) > 10. Now we show m(d) = 0 for 2 < d < 32. By way of contradiction
suppose that mg)(Q, bg) > 0 for Q < D such that |Q| = d. As usual, mgzz(Q) > (0 where

Bg = bgG(Q’bQ). We conclude that Bg is not nilpotent. Since F is controlled, @ is fully

F-normalized. In particular, Bg has fusion system Nz (@) (Lemma 1.44). By definition
every morphism in Nz(Q) is a restriction of a morphism in F and thus a restriction from
Autz(D). Since Bg is non-nilpotent, an automorphism o € Autz(D) of order 3 must act
on Q. A GAP calculation shows that () is abelian and normal in D. In particular, bg has
fusion system Cx(Q) by Theorem IV.3.19 in [2I]. Since « fixes only two elements of D, we

derive that bg is nilpotent. Now gives the contradiction

1= 1(bg) 2 mi),(Q) +miz) (D) > 2.
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13.2. 2-blocks of defect 5

Therefore, m(d) = 0 for 2 < d < 32.

We have essentially four possibilities for the numbers d;:
e cight entries 1 and six entries £2,
e ecight entries +1, two entries +2 and one entry +4,
e seven entries +1, four entries £2 and one entry +3,
e six entries £1, two entries +2 and two entries £3.

In particular k(B) determines k;(B) for i > 1 uniquely. It remains to add the generalized
decomposition numbers corresponding to (us, b3) and (uq4, bs). Here the situation is distin-
guished by ¢ € {33,34}. Assume first that ¢ = 34. Then ugl (resp. uzl) is conjugate to
us (resp. ug). Hence, the numbers dé‘f and d?j“ are integers. It is easy to see that such a
column must consist of the following (non-zero) entries:

e eight entries +1 and two entries £2,
e seven entries £1 and one entry +3.

In contrast, for ¢ = 33 the elements ugl and u4 are conjugate. So we may assume 4 := Us L
and it suffices to consider the column dl-“f’ whose entries are Gaussian integers. Let us

write dy3, = a(x) + b(x)i where IBr(bs) = {p3}, a,b € 7ZFB) and i := /—1. Then
(a,a) = (b,b) = 8 and (a,b) = 0. Since we have only one pair of algebraically conjugate
subsections, there is only one pair of 2-conjugate characters (see Lemma IV.6.10 in [93]).
This shows that b consists of two entries £2. Now ko(B) = 8 implies that a has eight entries

+1.

As usual we enumerate all these configurations of the generalized decomposition matrix
and obtain the Cartan matrix of B as orthogonal space. However, we get two possibilities
[(B) € {3,4}. We are not able to exclude the case [(B) = 4 despite it contradicts Alperin’s
Weight Conjecture. Anyway in both cases {(B) € {3,4} all candidates for the Cartan matrix

satisfy The claim follows. O

We add a short discussion about the defect group

D := SmallGroup(32,27) = (a,b,c | a®> = v* = ¢* = [a,b] = [a,a] = [‘a,b] = [b,b] = 1)
= Cél A CQ.

Let F be a non-nilpotent fusion system on D. It can be shown that Q := {(a, b, “a, °b) = C3
is the only possible F-essential subgroup. In particular, F is constrained or even controlled.
In the controlled case we have F = Fp(D x C3) = Fp(SmallGroup(96,70)). In the non-
controlled case we have various possibilities for F according to Outz(Q) € {53, D19, S3 X

C'3,SmallGroup(18,4), Dig x C3} (see |Lemma 6.13]). These possibilities are represented by
the following groups:

e SmallGroup(96,195), e SmallGroup(288,1025),
e SmallGroup(96,227), e SmallGroup(288,1026),
e SmallGroup(160,234), e SmallGroup(480,1188).
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13. Small defect groups

Here observe that in case Outrz(Q)) = Ss there are essentially two different actions
of Outz(Q) on Q. The cases Outr(Q) € {S3 x C5,SmallGroup(18,4)} also differ by
Outr(D) € {Cs,1} respectively. Additionally, for Outr(Q) = SmallGroup(18,4) there
exists a non-trivial 2-cocycle on Outxz(Q) (on the other hand the Kiinneth formula implies
H2(S3 x C3, F*) = 0). This gives even more examples for blocks with defect group D. For
example a non-principal 2-block of SmallGroup(864,3996) has defect group D and only one
irreducible Brauer character. In all these examples [(B) assumes the values 1,2,3,5,6,9.
We will not consider the block invariants in full generality although it might be possible. We
also end the discussion about the remaining groups of order 32. In most cases (especially
when 9 x 9 Cartan matrices show up) the computational effort to compute the corresponding
block invariants is too big. We also do not state the partial results on the extraspecial
defect groups Dg* Dg and Dg * Qs which were obtained in [277].

In we enumerate all groups of order 32 by using the Small Groups Library
and give information about blocks with corresponding defect groups. In many cases it can
be shown with GAP that there are no non-trivial fusion systems. These cases were also
determined in [300]; however with the Hall-Senior enumeration [I17]|. Using a conversion
between both enumerations provided by Eamonn O’Brien (see [229, 216]), we confirm the
results in [300]. We denote the modular group of order 2" > 16 by Man, i.e. the unique
group of class 2 with a cyclic maximal subgroup.

We prove some consequences.

Proposition 13.14. Let D be a 2-group and let u € Z(D) such that D/{u) is isomorphic
to one of the following groups

(1) SmallGroup(32,q) for q € {11,22,28,29,33,34},
(ii) a group which admits only the nilpotent fusion system.

Then Brauer’s k(B)-Congecture holds for every 2-block with defect group D.

Proof. This is an application of [Theorem 4.10, For the wreath product we refer to [I79].

All other cases were handled above. O

One can use GAP and the previous results to verify Brauer’s k(B)-Conjecture for 244 of
the 267 defect groups of order 64. Here we also use the following elementary observation:
Let z € Z(D) such that every fusion system on D/(z) is controlled. If Cpy(py(2) is a
2-group, then Brauer’s k(B)-Conjecture holds for every block with defect group D (cf.
[Proposition 11.1)).

For the purpose of further research we state all indices ¢ such that Brauer’s k(B)-Conjecture
for the defect group SmallGroup(64,q) is not known so far:

134,135,136, 137, 138, 139, 202, 224, 229, 230, 231, 238,
239, 242, 254, 255, 257, 258, 259, 261, 262, 264, 267.

This implies the following corollary.

Corollary 13.15. Let B be a 2-block with defect group D of order at most 64. If D is
generated by two elements, then Brauer’s k(B)-Conjecture holds for B.
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small group id structure invariants comments reference
1 Cso known nilpotent
2 MNA(2,2) known controlled
3 Cs x Cy known nilpotent
4 Cs x Cy known nilpotent Theorem 8.1
5 MNA(3,1) known Theorem 12.4
6 MNA(2,1) x Cy known nilpotent GAP
7 Mg x Co known nilpotent GAP
8 C3.MNA(2,1) known nilpotent GAP
9 Dg x Cy known bicyclic Theorem 10.23
10 Qs x Cy known bicyclic Theorem 10.25
11 Cy1Cy known 11L79]
12 Cy % Cg known nilpotent Theorem 8.1
13 Cg x Cy known nilpotent Theorem 8.1
14 Cs x Cy known nilpotent Theorem 8.1
15 Cg.Cy known nilpotent Theorem 8.1
16 Cig x Cy known nilpotent
17 M3o known nilpotent Theorem 8.1
18 Dso known maximal class Theorem 8.1
19 S D35 known maximal class Theorem 8.1
20 Q32 known maximal class Theorem 8.1
21 C2 x Cy known controlled [295]
22 MNA(2,1) x Cy known constrained |Propositi0n 13.11|
23 (Cy ¥ Cy) x Oy known nilpotent GAP
24 C3? % Cy known nilpotent GAP
25 Dg x Cy known
26 Qs x Cy known Theorem 9.28
27 Cél X CQ
28 (Cy x C3) x Cy known constrained | [Proposition 13.12
29 (Qs x C3) x Cy known constrained Proposition 13.12
30 (Cy x C3) x Cy known nilpotent GAP
31 (Cy x Cy) x Oy known nilpotent GAP
32 C3.C3 known nilpotent GAP
33 (Cy x Cy) x Cy partly controlled Proposition 13.13
34 (Cy x Cy) x Oy partly controlled Proposition 13.13
35 Cy ¥ Qs known nilpotent GAP
36 Cg x C32 known controlled [295]
37 Mg x Co known nilpotent GAP
38 Dg x Cg known Theorem 9.18
39 Dig x Cy known Theorem 9.
40 SDig x Co known Theorem 9.37
41 Q16 x Co known Theorem 9.28
42 Dig*xCy known Theorem 9.18
43 (Dg X 02) X Cg
44 (Qg X CQ) Pl CQ
45 Cy x C3 known controlled
46 Dg x C2
47 Qg x C2 controlled
48 (DgxCy) x Cy controlled
49 Dg * Dg partly controlled [277)
50 Dg * Qg partly controlled 277
51 Cc3 controlled

Table 13.1.: Defect groups of order 32

13.2. 2-blocks of defect 5
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13. Small defect groups

Corollary 13.16. Let D be a 2-group containing a cyclic subgroup of index at most 4.
Then Brauer’s k(B)-Conjecture holds for every block with defect group D.

Proof. We may assume that D is not metacyclic. In particular, |D|/exp D = 4. If D is
abelian, the result follows from Hence, let us assume that D is non-abelian.
Then D is one of the groups given in Theorem 2 in [225]. We will consider this list of groups
case by case and apply the results above. In many cases we get a cyclic central extension of
a metacyclic group where applies. We remark that the terms “quasi-dihedral”
and “semidihedral” have different meanings in [225].

The group G is metacyclic. For the groups Gs and G3 we even know the block invariants
precisely. Now consider G4. Here the element a lies in the center. In particular the group
is a cyclic central extension of a group of order 4. The k(B)-Conjecture follows. For the
group G5 the element b lies in the center. Moreover, G5/(b) is abelian and has a cyclic
subgroup of index 2. Again the claim holds. The groups Gg, G7, Gg and Gg are metacyclic.
The groups G1p and Gq; are cyclic central extensions of metacyclic groups. In G2 the
subgroup (a) is normal; in particular a2 * € Z(G12). Moreover, b is central in G1/(a?" ")
and G12/<a2m_3> > Dgym-2 X Cy. The claim follows. In G13 and G14 we see that b is
central and the corresponding quotient is certainly metacyclic. Next, 2" € Z(G15) and
G15/<a2m_3> & Dym—2 X Cs. Exactly the same argument applies to G14. For G17 we have
cLa2c = abab = a2 and a* € Z(G17). Since G17/(a*) has order 16, the claim follows.

The group Gig is slightly more complicated. In general, the core of (a) has index at most 8.
Thus, a2 is always central (in all of these groups). Adjusting notation slightly gives

-3

G18/<a2m_3> =~ (a,b,c|a®" " == =[a,b] =1, cac=a"'b).

m—4

We define new elements in this quotient by @ := a?b, T := bc and @ := ac. Then 72 =1,
@? = b and a* = 1. Moreover, cbc = c(acac)c = b. It follows that 72 = 1 and 7oz = v "
Hence, (0,7) & Dym-3. Now ava * = ca’bc = a=2b = v~ ! and finally a7a_! = a’c = v7.

Since Gig/(a2" ") = (U, %,4a), we sce that this is precisely the group from [Theorem 10.23]
The claim follows.

The groups G1g, Gao and Ga; are metacyclic. In Gay the element a* is central and Gas/(a*)
has order 16. Let us consider Go3. Similarly as above we have

G23/<a2m73> = (a,b,c| 2=t =2 = la,b] =1, cac = a_1+2m74b>
(observe that the relation [b,¢] = 1 (mod (a2"")) follows from b = a'*2" "cac). Here
we define v = a2+2m_4b, Z := bc and a := ac. Then, again (v,Z) = Dym-3. Moreover,

~ —4 ~ P _ —4 ~—~ -3, .
a?=a*"""b,a* =1and aza"! = bea " 'cac = a®t?" ¢ = 0x. So Ga3/(a*" ") is the group

from [Theorem 10.23} Now it is easy to see that Gos/(a2" °) = Gas/(a2" ") = Gas/(a®" ).
Finally the group Gag has order 32; so also here the k(B)-Conjecture holds. This completes
the proof. 0

For every integer n > 6 there are exactly 33 groups of order 2™ satisfying the hypothesis of
[Corollary 13.16] For Olsson’s Conjecture we get partial results.

Proposition 13.17. Let D be a 2-group and x € D such that |D : (z)| < 4, and suppose
that one of the following holds:

(i) = is conjugate to x5 in D for some n € Z,
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13.2. 2-blocks of defect 5

(ii) (z) < D.
Then Olsson’s Conjecture holds for all blocks with defect group D.

Proof. Let B be a block with defect group D and fusion system F. We may assume that
D is non-metacyclic.

(i)

By hypothesis, = is conjugate to 2=>" in F. This condition is preserved if we replace
x by an F-conjugate. Hence, we may assume that (x) is fully F-normalized. Then x is
conjugate to x7°" in D. In particular, |Cp(x)/(z)| < 2. Hence, b, dominates a block
of Cg(x)/(x) with cyclic defect group Cp(z)/(x). This shows I(b;) = 1. Now we can

apply [Theorem 5.3| which gives ko(B) < 8. In case |D : D'| = 4 a theorem of Taussky
(see Satz II1.11.9 in [141]) implies that D has maximal class which was excluded.

We consider the order of Cp(x).
Case (1): Cp(z) = (x).

Since D is non-metacyclic, D/(z) is non-cyclic. Hence, we are in case [(i)]

Case (2): z € Z(D).

If D is abelian, the result follows from |[Corollary 13.16] Thus, we may assume that
D is non-abelian. Then every conjugacy class of D has length at most 2. By a
result of Knoche (see for example Aufgabe I11.24b in [141]) this is equivalent to
|D'| = 2. Let y € D\ Z(D). Then Cp(y) is non-cyclic. After replacing y by zy
if necessary, we have |(z)| = |(y)|. By |[Proposition 4.3|it suffices to show that (y)
is fully F-normalized. By Alperin’s Fusion Theorem every F-isomorphism on (y)
is a composition of automorphisms of F-essential subgroups containing y or of D
itself. Assume that £ < D is F-essential such that (y) < E. Since FE is metacyclic
and Aut(E) is not a 2-group, [Proposition 10.2|implies £ = Qg or E = Cy x Cs. In
particular, |D| < 16. Moreover, [Proposition 6.11] implies that D has maximal class.
This contradiction shows that there are no F-essential subgroups containing y. Then
of course (y) is fully F-normalized.

Case (3): |Cp(z)/(z)| = 2.

Let y € Cp(z) \ (z) be of order 2. If z € D\ Cp(z), we may assume that (x, z) is
a modular 2-group by . In particular we have |(z)| = 2 after replacing z by zz™
for some m € Z if necessary. Let |(x)| = 2" for some r € N. Since (z) < D, we have

zyzte {y,yajy_l}. In case zyz~! = 22 it s easy to see that |D : (xy)| = 4 and
xy € Z(D). Then we are done by case (2). Thus, we may assume that zyz~! = y and
y € Z(D). Then D is given as follows:

D = <x,z> X (y> = M27‘+1 x Cs.
Now we have |D’| = 2 and the claim follows from [Proposition 4.3| applied to the
subsection (z, b;). Here observe that (x) is fully F-normalized, since (z) < D. O

Theorem 13.18. Olsson’s Conjecture holds for all 2-blocks of defect at most 5.

Proof. Let B be a block with defect group D of order 32. Assume first that B is controlled.
One can show with GAP that there is always an element 2z € D such that |Cp(x)| = |D : D'|.
If in addition D is abelian, Olsson’s Conjecture coincides with Brauer’s k(B)-Conjecture

183



13. Small defect groups

and we are done. If D is non-abelian, then |Cp(z)/(z)| < 8. Thus, an application of
Theorems 1.2 and [I3.1] gives Olsson’s Conjecture.

Now suppose that B is not controlled. Then by it suffices to consider only the
defect groups D := SmallGroup(32,m) where m € {27,43,44,46}. Let F be the fusion
system of B. Then we can find (with GAP) an element u € D such that |Cp(u)| = |D : D'|.
Moreover, we can choose u such that every element v € D of the same order also satisfies
|Cp(u)| =|D : D'|. Hence, the subgroup (u) is fully F-centralized. In particular Cp(u) is a
defect group of the block b,. Since |Cp(u)/(u)| < 8, the claim follows as before. O

13.3. Minimal non-metacyclic defect groups

In this section we prove a minor result on minimal non-metacyclic defect groups. As usual,
minimal non-metacyclic means the whole group is not metacyclic, but all proper subgroups
are. Blackburn [34] showed that there are only five minimal non-metacyclic 2-groups. This
allows us the give a complete classification of the corresponding blocks. This result appeared
in [271].

Theorem 13.19. Let B be a 2-block with minimal non-metacyclic defect group D. Then
one of the following holds:

(i) B is nilpotent.

(ii) D = C3. Then k(B) = ko(B) = 8 and I(B) € {3,5,7}.
(i1i)) D= Qg x Cy or D = DgxCy. Then k(B) =14, ko(B) =8, k1(B) =6 and [(B) = 3.
Proof. By Theorem 66.1 in [28], D is isomorphic to C3, Qg x Cy, DxCy or to

SmallGroup(32,32). Hence, the result follows from Theorems [13.1} [9.28] [9.18 and
O
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14. Abelian defect groups

14.1. The Brauer-Feit bound

Let B be a p-block of a finite group G with defect d. Then there is a well-known bound on
k(B) proved by Brauer and Feit in 1959.

Theorem 14.1 (Brauer-Feit [47]). If d > 2, then k(B) < p®®~2.

In this chapter (which is an enhanced version of [279]) we are interested in the case where
B has an abelian defect group D. Brauer himself already verified the k(B)-Conjecture if D
is abelian of rank at most 2. For abelian defect groups of rank 3, he obtained k(B) < p°¥/?
(see for example Theorem VII.10.13 in [93]; observe that < and < are mixed up there).

Using a recent result by Halasi and Podoski [I15] we substantially improve the Brauer-Feit
bound for abelian defect groups.

Theorem 14.2. Let B be a p-block of a finite group with abelian defect group of order
p? > p. Then
k(B) < p3¥/271/2, (14.1)

Proof. Let D be a defect group of B. By Corollary 1.2 in [I15] there exist elements z,y € D
such that Cyp)(z) N Crpy(y) = 1. Without loss of generality, z # 1. Consider a B-
subsection (z,b;). As usual, b, dominates a block b, with defect group D := D/(z) and
I(by) = Cyp)(x). We write 5 := y(z) € D. Choose a b,-subsection (7, 8y) and a € I(8y).
We may regard « as an element of Cr(py(z). Hence, o acts trivially on (z) and on (x,y) /().
Since « is a p'-element, it must act trivially on (z,y) (see for example Theorem 5.3.2
in [I07]). This shows a = 1 and e(8y) = 1. Thus, b, satisfies the k(B)-Conjecture. In
particular, I(b,) = I(bs) < k(b;) < |D| < p?=! (or I(by) = k(b)) = 1 < p?~1). Since B has
abelian defect groups, shows k(B) = ko(B). Now implies

k(B) < p®\/1(by) < p>¥/271/2, O

Robinson [257, Theorem 2.1(iii)] gave a proof of [Equation (14.1) under the hypothesis that
p does not belong to a finite set of primes which depends on the rank of D. For p = 2,
can be improved further by invoking [Theorem 4.13| (see [Proposition 14.15)).
In special situations one may choose x € D in the proof above such that the order of x
is large. We illustrate this by an example. Suppose D = Ci for some n,m € N. Then
I(B) acts faithfully on D/®(D). Thus, by [115] we may assume that x has order p". Then
IEquation (14.1)| becomes k(B) < p3¢/2=7/2,
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14.2. Abelian groups of small rank

already improves Brauer’s bound for abelian defect groups of rank 3. We
give an even better bound.

Proposition 14.3. Let B be a p-block of a finite group with abelian defect group of rank 3
and order p*. Then
k(B) < p/3.

Proof. Let D be a defect group of B, and let z € D be an element of maximal order p°.
Then for the B-subsection (z,b;) the block b, dominates a block b, with defect group

D/{z) of rank 2. Hence, I(b;) = I(b;) < k(b;) < |D/(x)| = p?~¢. Since D has rank 3, it
follows that p?—¢ < p?¥/3. By [Theorem 7.14 we have k(B) = ko(B). Thus, [Theorem 4.12

implies
k(B) < p®\/1(by) < p*¥/3. O

In the following we improve [Proposition 14.3] for small primes.

Lemma 14.4. Let D be an abelian p-group, and let A < Aut(D) be a p'-group such that
|A| <4 or A= S3. Then for the Cartan matriz C = (c;;j) of F[D x A] there exists a positive
definite, integral quadratic form q = Zlgigjgk(A) gijxixj such that

> gy <D

1<i<j<k(A)

Proof. Let H := D x A. After going over to H/Z(H), we may assume that Z(H) = 1
and A # 1. Now we determine the decomposition matrix of FFH by discussing the various
isomorphism types of A. Assume first that |A| = 2. The irreducible Brauer characters of
H are just the inflations of H/D = Cs. Since D = [D, A] C H' C D (see Theorem 5.2.3
in [I07]), we see that H has just two linear characters. Hence, the character group D:=
Irr(D) = D splits under the action of A into one orbit of length 1 (containing the trivial
character) and (|D| — 1)/2 orbits of length 2. We compute the irreducible (ordinary)
characters of H via induction. The trivial character contributes two rows (1,0), (0,1)
to the decomposition matrix of H. An orbit of length 2 in D gives just one row (1,1).
For x € Irr(H) we denote the corresponding row in the decomposition matrix by r,. Let
q = 22 + 23 — 1179 the positive definite quadratic form corresponding to the Dynkin diagram
of type As. Then we have

Y agijes= Y, alry) =kH) <|D|.

1<i<5<2 Xx€lrr(H)

Here the last inequality holds by the affirmative solution of Brauer’s k(B)-Conjecture for
solvable groups, but one could certainly use more elementary arguments. Exactly the same
proof works for |A| = 3.

Suppose next that A = C4. Here the action of A on D gives one orbit of length 1, «
orbits of length 2, and § orbits of length 4. As before we get rows of the form (1,0, 0,0),
(0,1,0,0), (0,0,1,0), (0,0,0,1) and (1,1,1,1) in the decomposition matrix. Let x € Dbea
character in an orbit of length 2. Then x extends to D x ®(A). Hence, if we arrange the
Brauer characters of H suitably, x contributes two rows (1,1,0,0) and (0,0,1,1) to the
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decomposition matrix. Again we have ¢(ry) =1 for all x € Irr(H) where ¢ is the quadratic
form corresponding to the Dynkin diagram of type A4. The claim follows.

The case A = C3 is slightly more complicated. First note that p > 2. Again D splits into
one orbit of length 1, o orbits of length 2, and S orbits of length 4. Suppose first that there
is an element 1 # g € A which acts freely on D. In this case we may arrange the four
irreducible Brauer characters of H in such a way that every row of the decomposition matrix
has the form (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,0,0), (0,0,1,1), (1,0,0,1),
(0,1,1,0) or (1,1,1,1). Let ¢ be the quadratic form corresponding to the positive definite

matrix
2 -1 1 -1

Then it can be seen that ¢(ry) = 1 for every x € Irr(H). The claim follows as above. Now
we treat the case where every non-trivial element of A has a non-trivial fixed point on
D. We write A = {1,91,92,93}, Ai := Cp(gi) and «; := |4;] > 1 for i = 1,2,3. Without
loss of generality, a1 < ag < as. Since A acts faithfully on 15, we have Ao N A3 = 1 and
Ay x A < D. Moreover, a = (a1 + ag + as —3)/2 and B = (|D| — a1 — oy — a3 + 2) /4 >
(e — aq — ag — ag + 2) /4. Now the inequality

a<3(6-1)

reduces to a1 + as + a3 < 3as < agas which is true since ag > p > 2. We may arrange the
irreducible Brauer characters of H such that the decomposition matrix consists of (a3 —1)/2
pairs of rows (1,0, 1,0), (0,1,0,1), (ag — 1)/2 pairs of the form (1,0,0,1), (0,1,1,0), and
(a3 —1)/2 pairs of the form (1,1,0,0), (0,0, 1,1). Let ¢ be the quadratic form corresponding
to the Dynkin diagram of type A4. Then ¢(1,0,1,0) = ¢(0,1,0,1) = ¢(1,0,0,1) = 2 and
q(r) = 1 for all other types of rows 7. Since (a3 — 1)/2 > /3 and (a1 — 1)/2 < /3, it
follows that

2 4
Z QijCij = Z C](Tx)§4+§04+04+§04+5
1<i<5<4 x€Irr(H)

=4+43a+B<1+20+48=|D|=|D|.

Finally assume that A = S3. Then p > 5. We may arrange the three irreducible Brauer
characters of H such that their degrees are (1,2,1). As above we get three rows in the
decomposition matrix (1,0,0), (0,1,0) and (0,0, 1). Again we consider the action of A on D.
Let a be the number of orbits of length 2, let 5 the number of orbits of length 3, and let ~
be the number of regular orbits. Then we get « triples of rows (0, 1,0), (0,1,0), (1,0,1), 8
pairs of rows (1,1,0), (0,1,1), and 7 rows of the form (1,2,1) in the decomposition matrix
of H. Let g be the quadratic form corresponding to the Dynkin diagram of type As. We
discuss some special cases separately. In case a = 0 we obtain with the notation introduced
above:
> ogijeg= Y, alry)=3+28+2y<1+38+6y=D|.
1<i<5<3 x€lrr(H)

Thus, in the following we suppose that a > 0. Let h € A be an element of order 3 and
Ay := Cp(h). Obviously, a = (|A1|—1)/2 > 2, since p > 5. We denote the three involutions
in A by g1, g2 and g3. Moreover, let B; := Cz(g;). It is easy to see that h permutes the sets
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Bi, By and Bjg transitively. In particular, 8 = |B;|—1. Also, AiNB; =1 and A x By < D.
We conclude that
|ID|-20—38-1_ a+1)(B+1)-2a-38-1 aB-p
T 6 = 6 ~ T3

In case 8 > 0 we even have f > p—1 >4 and v > 2. Then it follows that o < 3v/5+1 <
37y — 2. For 8 = 0 we still have |[D| > (2 + 1)p and v > 2(2a + 1)/3. So in any case the
inequality

a<3y—2

holds. Now we change the ordering of the Brauer characters such that their degrees are
(1,1,2). Then as above

> ayeii= Y, qlry) =3+3a+38+3y<1+2a+38+6y=|D|.
1<i<j<3 x€lrr(H)

This finishes the proof. O

By it is known that [Lemma 14.4| fails for example for A = C%. Our next lemma

is quite technical, but powerful.

Lemma 14.5. Let B be a p-block of a finite group with defect group D. If there exists an
element x € Z(D) such that D/(z) is abelian, and |Crpy(z)| < 4 or Cppy(v) = S3, then
Brauer’s k(B)-Conjecture holds for B.

Proof. We consider a B-subsection (x,b,). The aim of the proof is to apply [Theorem 4.2 in
connection with [Lemma 14.4] Let C be the Cartan matrix of b,. As usual, b, dominates

a block b, with abelian defect group D := D/(z), Cartan matrix C := KTI)IC = (cij),

and I(b;) = Cppy(z). By work of Usami and Puig [295], 251, 250, 296] there exists a
perfect isometry between b, and its Brauer correspondent with normal defect group. By
Theorem 4.11 in [53] the Cartan matrices are preserved under perfect isometries up to basic
sets. Thus, we may assume that b, has normal defect group D. By [Theorem 1.20} b, is
Morita equivalent to the group algebra F[D x I(b;)] except possibly if 1(b,) = C5 (which
has non-trivial Schur multiplier H?(C2, F*) = C3). Let us first handle this exceptional case.
Here b,, is Morita equivalent to a (non-trivial) twisted group algebra F,[D x C3] where the
2-cocycle v is uniquely determined. By [Proposition 1.21| the Cartan matrix of b, is the
same as the Cartan matrix of a non-principal block of a group of type D x Dg (note that
Ds is a covering group of C3). The group algebra of D x Dg has k(Dg) = 5 irreducible
Brauer characters. Four of them lie in the principal block. Therefore, the Cartan matrix of
b, has dimension 5 — 4 = 1. Hence, we are done in the exceptional case.

Now assume that b, is Morita equivalent to F'H where H := D x I(b,). Then by|Lemma 14.4
there is a positive definite quadratic form ¢ =3, i<h(by) G TiT; such that

Z gijci; < |DJ.

1<i<j<k(bs)

The result follows easily by O

The following lemma generalizes Corollary 1.2(ii) in [257].
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Lemma 14.6. Let B be a block of a finite group with abelian defect group D. If I(B)
contains an abelian subgroup of index at most 4, then Brauer’s k(B)-Conjecture holds for
B.

Proof. Let A < I(B) be abelian such that |[I(B) : A| < 4. It is well-known that A has
a regular orbit on D, i.e. there exists an element x € D such that C4(xz) = 1. Hence,

|Cr(p)(7)| <4, and the claim follows from [Lemma 14.5 O

We also have a dual version.

Lemma 14.7. Let B be a block of a finite group with abelian defect group. If |I(B)'| < 4,
then Brauer’s k(B)-Conjecture holds for B.

Proof. By [157, Theorem 1.1] there exists an element u € D such that |Cy(p)(u)| < 4. Now
the claim follows from [Lemma T4.5] O

We remark that also holds under the more general hypothesis that I(B)
contains a subgroup R of index at most 4 such that R has a regular orbit on D. Since many
non-abelian groups also guarantee regular orbits, it is worthwhile to study small groups
with this property in detail. We begin with a special case.

Proposition 14.8. Let A = Do, with n > 3 and let p be a prime such that p 1 2n. Suppose
that for any d | n, d — 1 is not a non-trivial p-power (this is always true if n is odd). Then
any faithful action of A on an elementary abelian p-group provides reqular orbits.

Proof. Let V be an absolutely irreducible F,A-module where ¢ = p™ for some m € N. Then
by Lemma 3.1 in [94] it suffices to show that A := A/ C(V) has a regular orbit on V.
Since A has an abelian subgroup of index 2, we have dim V' € {1,2}. We may assume that
dimV = 2. Then A is non-abelian of order 2d for some d | n. Write A = (o) x () such
that |(c0)| = d > 2. By way of contradiction suppose that A does not have a regular orbit
on V. Let M be the set of subgroups of A of prime order. Then

v=J cv).
HeM

Since V' is not a union of ¢ proper subspaces, we have g < M| < 2d — 1. Let M € GL(2,q)
be the matrix which describes the action of ¢ on V. Let A be an eigenvalue of M in the
algebraic closure of F,. Since M¢ = 1, X is a d-th root of unity. Since M is diagonalizable in
the algebraic closure of F,;, we may even assume that A is a primitive d-th root of unity (recall
that A acts faithfully). Since M is conjugate to its inverse, also A~! # X is an eigenvalue
of M. In particular, the characteristic polynomial has the form (X — A\)(X — A7!) =
X2 A+ A HX +1€eF,[X]. Hence, \+ A1 € Fpand M+ A9 = A+ A" 1)7=X + "1,
This shows that ¢ = +1 (mod d). Suppose first that d | ¢ + 1. Since ¢ < 2d — 1, we obtain
d = q + 1. However, this contradicts our hypothesis. Thus, we have d = ¢ — 1 and A € F,.
Therefore, we may assume M = (())‘ )\91 ) Let T be the matrix which describes the action
of 7. Since T? = 1 and TMT = M, we may assume T = ((1) é) Then C4(1,0) =1, and
we have a contradiction. O
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190

size | id || size | id || size | id size | id size | id size | id size | id
8 3 40 | 6 64 | 41 64 | 253 || 80 | 50 96 | 111 || 108 | 23
12 | 4 40 | 8 64 | 52 64 | 254 || 80 | 51 96 | 117 || 108 | 24
16 7 40 | 10 || 64 | 95 64 | 258 || 81 7 96 | 121 || 108 | 28
16 8 40 | 12 || 64 | 101 || 64 | 261 | 84 12 96 | 135 || 108 | 42
16 | 11| 40 [ 13 || 64 | 115 || 64 | 263 | 84 13 96 | 179 || 112 | 4
16 13 48 5 64 118 64 | 265 84 14 96 186 || 112 | 5
20 | 4 48 | 6 64 | 119 || 72 5 88 5 96 | 189 || 112 | 15
21 1 48 7 64 | 124 || 72 8 88 7 96 | 192 || 112 | 25
24 | 5 48 | 25 || 64 | 129 || 72 17 88 9 96 | 200 || 112 | 28
24 | 6 48 | 29 || 64 | 131 || 72 20 93 1 96 | 206 || 112 | 29
24 | 8 48 |33 || 64 | 134 || 72 25 96 6 96 | 207 || 112 | 30
24 | 14 || 48 | 35| 64 | 137 | 72 27 96 7 96 | 208 || 112 | 31
28 3 48 | 36 || 64 | 138 || 72 28 96 12 96 | 209 || 112 | 38
32 9 48 | 37 || 64 | 141 || 72 30 96 | 27 96 | 210 || 112 | 40
32 | 11 || 48 | 43| 64 | 142 || 72 46 96 | 28 96 | 212 || 112 | 42
32 |19 || 48 |47 || 64 | 146 || 72 48 9 | 34 96 | 213 || 120 | 18
32 | 25 48 | 48 64 152 72 49 96 44 96 | 215 || 120 | 20
32 | 27 || 48 | 51| 64 | 157 || 76 3 96 | 54 96 | 219 || 120 | 23
32 | 28| 52 | 4 64 | 173 || 80 4 96 | 62 96 | 223 || 120 | 25
32 | 34| 56 | 4 64 | 187 || 80 6 96 | 64 96 | 226 || 120 | 27
32 |39 56 | b5 64 | 189 || 80 16 96 | 67 96 | 230 || 120 | 28
32 |40 | 56 | 9 64 | 196 || 80 | 25 96 | 68 || 100 | 4 120 | 30
32 |42 || 56 | 12| 64 | 198 || 80 | 26 96 78 || 100 | 14 || 120 | 46
32 |43 || 60 | 12| 64 | 202 || 80 | 29 96 | 80 || 104 | 5 124 | 3
32 |46 | 63 | 3 64 | 203 || 80 | 31 96 | 87 || 104 | 8
32 | 48| 64 | 6 64 | 211 || 80 | 36 96 | 98 || 104 | 10
32 |50 64 | 12 || 64 | 226 || 80 | 37 96 | 106 || 104 | 12
36 | 4 64 | 32| 64 | 230 || 80 | 39 96 | 107 || 104 | 13
36 | 12 || 64 | 34| 64 | 250 || 80 | 44 96 | 109 || 105 1
40 | 5 64 | 38 | 64 | 251 || 80 | 46 96 | 110 || 108 | 4

Table 14.1.: Small groups without regular orbits
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Proposition 14.9. Let A be a group of order less than 128. Then there is a finite p-group
P such that A < Aut(P), pt|A| and A does not have regular orbits on P if and only if A

is isomorphic to SmallGroup(n,i) where (n,i) is one of the pairs given in|Table 1/.1.

Proof. The proof is computer assisted. Suppose that A does not have a regular orbit on P.
By Lemma 2.6.2 in [120], we may assume that P is an elementary abelian p-group, i.e. a
vector space over F,,. Let M be the set of subgroups of A of prime order. Then

P=|J Cp(H).
HeM

Since P cannot be the union of p proper subgroups, we get p < |[M| < |A|. Hence, p is
bounded in terms of A.

By Maschke’s Theorem, P decomposes into irreducible A-invariant subgroups P = P; &
...® P,. Suppose that P,_ is isomorphic to P, as [F, A-module. Then A still acts faithfully
on P ®...® P,_1 and there is still no regular orbit. Thus, we may assume that the P; are
pairwise non-isomorphic. In particular, there are only finitely many possibilities for P up
to isomorphism. In order to make the computation efficient, we need some more details.

If A is abelian, then it is well-known that A always has regular orbits. More generally, Yang
[321] proved that a nilpotent group A has regular orbits provided the following holds: A
does not involve Dg and if p = 2, then A does not involve C;.? C, for any Mersenne prime
r. Therefore, we do not need to consider these cases.

While building combinations of the P;, we can certainly leave out the trivial representation.
Suppose that A acts faithfully on P = P @ ... ® P,, but not faithfully on any proper
subsum P, @©...® P, . Let

K;i:=Ca(P1)N...NC4a(Pi_1)NCa(Piy1) N...NCa(Py)

for i = 1,...,n. Since K; N K; = 1 for @ # j, every K; contains a minimal normal
subgroup N; and N; # N; for i # j. In particular, n is bounded by the number of minimal
normal subgroups of A. Moreover, every P; contains at least n — 1 distinct minimal normal
subgroups.

Let us consider the (faithful) action of A4; := A/ C4(P;) on P;. Suppose we have already
found regular orbits of A; on P; for all i. Then there exist z; € P; such that C4(x;) = Ca(F;).
Then Ca(zy...2,) = 1 and we are done. Hence, in order to find actions without regular
orbits it suffices to consider sums P; & ... @ P, such that at least one A; has no regular
orbit on P;. This allows us to apply induction on |A].

Now we consider the opposite situation. Assume that A is a direct product A = A1 x As
such that Ay acts faithfully without regular orbits on an elementary abelian p-group P;.
Suppose further that p{|Az|. Then we may choose any faithful F,, Ap-module P». It is easy
to see that A has no regular orbit on the inflation P; @ Ps.

Another interesting inductive condition is the following. Suppose that we have found a
subgroup A; < A such that A; always has regular orbits and AoNA; # 1 forall 1 # Ay < A.
Then for x € P such that Cy4, () = 1 we also have C4(z) = 1, i.e. A has a regular orbit.
This applies for example to quaternion groups A with A; = Z(A).

We also need to discuss the question, how to check for regular orbits efficiently. We pick
elements x € P randomly and check if C4(x) = 1. This usually works quite well if |P| is
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large. However, if we did not find regular orbits among the first, say 30, random choices,
we compute all the orbits sizes. Since there are usually many regular orbits, we only have
to compute all the orbits sizes in small cases.

While working through the list of groups A of order less than 128 in GAP, it turns out
that certain irreducible representations are not available. This concerns the dihedral groups

A= D, where

m € {46,50, 58, 74,82, 86,92,94, 98,102,106, 110, 116, 118, 122, 124}

and the group A = (37 x Cs. [Proposition 14.8 works for all dihedral groups above except
the last one A = Dq94. But here, GAP shows that there is in fact an irreducible, faithful
representation on F%l without regular orbits. Now we handle the group A = (37 x C3 by
hand. Let S € Syls,(A) and Syl3(A) = {T1,...,T37}. Assume that A acts faithfully on the
elementary abelian p-group P without regular orbits. Then

37
P =Cp(S)UlJCr(Th).
i=1

Since S has a regular orbit on P, we have Cp(T;) # 1 for some 4. Since A acts transitively
on Cp(T), ...,Cp(Ts7), we also have |Cp(Th)| = ... = |Cp(T37)| =: p°. Let |Cp(9)| =: p*.
Since Cp(S)NCp(T;) = Cp((S,T;)) = Cp(A) =1 and Cp(T;) N Cp(T};) =1 for i # j, we
obtain

0=|P|=p*+37(p" —1) =p®» — 37 (mod p).

This implies a = 0 (because p # 37). Thus, p | 36 and p = 2. Since 1 +37(2 - 1) = 38
and 1+ 37(4 — 1) = 112 are not 2-powers, we have b > 3. However, then 0 = |P| = —36
(mod 8). A contradiction.

Our algorithm takes very long for the group Dg x C3 x C3. We will also give a theoretical
argument here. If a group A has regular orbits on any elementary abelian p-group for a
prime p, then A also has regular orbits on any finite-dimensional vector space over [Fp»
for any n € N (since GL(m,Fyn) < Aut(Cy™)). Our algorithm shows that Dg x C3 has
regular orbits for all p > 5 (however not for p = 3). Now Theorem 5.1 in [94] shows that
Dg x C2 x C3 has regular orbits for all p > 5 and we are done. O

One can show that 84% of the groups of order less than 128 provide regular orbits in the
situation above (for this reason we list the complementary set in|Table 14.1)). [Proposition 14.9|
will be applied later in [Proposition 14.13] but we need to settle a special case for p = 2
first.

Lemma 14.10. Let A be a p'-automorphism group of an abelian p-group P =[], C;Zi.
Then A is isomorphic to a subgroup of

H GL(m;, p)

=1

where GL(0,p) := 1.
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Proof. As a p/-group, A acts faithfully on P/®(P). Hence, the canonical homomorphism

A — [ Aut(Qi1(P)R(P) /2 i(P)D(P)) (14.2)
i=1

is injective. Since ;(P)®(P)/Qi—1(P)P(P) is elementary abelian of rank m; fori =1,...,n,
the claim follows. O

Combining [Lemma 14.6] and [Lemma 14.10] gives the following result which is probably not
new.

Corollary 14.11. Let B be a p-block of a finite group with abelian defect group D =
| C;-” such that m; <1 fori=1,...,n. Then Brauer’s k(B)-Conjecture holds for B.

Now we turn to abelian p-groups with homocyclic factors. Here it is necessary to restrict
p.
Theorem 14.12. Let B be a 2-block of a finite group with abelian defect group D =
[[i2, C5. Assume that one of the following holds:

(i) For somei € {1,...,n} we have m; <4 and mj <2 for all j # 1.

(i) D has rank 5.
Then Brauer’s k(B)-Congecture holds for B.

Proof.

(i) For each k € {1,...,n} we define Ay to be the image of the canonical map

I(B) — Aut(Qy_pr1(D)B(D)/Qp_1n(D)®(D)) = GL(1my, p).

Then we can refine the monomorphism from [Equation (14.2)[to I(B) — [[,_; Ax-
Since GL(2,2) = S3, we have A; < Cs for j # i. In order to apply it
suffices to show that A; < GL(4,2) contains an abelian subgroup of index at most 4.
Since A; has odd order, we have |A;] | (2* —1)(23 —1)(22 —1) =32-5-7. It can be
seen further that |4;| € {1,3,5,7,9,15,21}. The claim follows.

(ii) Now assume that D has rank 5. The case | D| = 32 was already handled in[Theorem 13.8|
Thus, by part [(i)] we may assume that C§ < D and I(B) < GL(5,2). As usual, e(B)
is a divisor of 32-5-7-31. Suppose first that 31 | e(B). One can show that every group
whose order divides 3%-5-7-31 has a normal Sylow 31-subgroup. Therefore I(B) lies in
the normalizer of a Sylow 31-subgroup of GL(5,2). Thus, we may assume e(B) = 31-5.
Here does not apply. However, we can still show the existence of a regular
orbit. Obviously, I(B) cannot have a regular orbit on D/®(D) = C3. However, using
GAP one can show that I(B) has a regular orbit on Q5(D) 2 C3. So we can find a
subsection (u, b,) such that [(b,) = 1. The claim follows in this case.

Now we can assume that 31 1 e(B). In case 7 | e(B) we see again that I(B) has a
normal Sylow 7-subgroup and e(B) = 32 - 7 without loss of generality. It is easy to
see that every group of order 32 - 7 has an abelian subgroup of index 3. Thus, we
may finally suppose that 7 { e(B). Then I(B) is abelian itself. This completes the
proof. O
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Theorem 14.12 improves an unpublished result by Robinson [254]. In the next proposition
we investigate how far we can go only by restricting the inertial index.

Proposition 14.13. Let B be a block of a finite group with abelian defect group and
e(B) < 255. Then the k(B)-Conjecture is satisfied for B.

Proof. Let I(B) be an arbitrary group of order at most 255, and let D be a defect group of
B. We compute with GAP the set L of subgroups of I(B) which have order less than 128
and are not on the list in [Table T4.1] For every H € £ we check the following condition:

VL<I(B):LNH=1=|L| <4V L=S;. (14.3)

By [Proposition 14.9| there is an x € D such that Cypy(r) N H = Cy(x) = 1. Hence, if
Condition |(14.3)|is true for some H € L, we get |Cy(p)(x)| < 4 or Cypy(z) = S3. Then the

k(B)-Conjecture follows from [Lemma 14.5 It turns out that |(14.3)|is false for only a few

groups which will be handled case by case.

For I(B) = (31 x C5 one can show that we have a regular orbit unless p = 2. Thus, let
p = 2. We study the (faithful) action of I(B) on (D). By we may assume
|Q(D)| > 25. A GAP calculation shows that I(B) has eight irreducible representations over
Fy and their degrees are 1,4,5,...,5. Moreover, the image of the second representation has
order 5 while the last six representations are faithful. In particular the action of I(B) on (D)
is not irreducible. So we decompose Q(D) = Vj x ... x V,, into irreducible I(B)-invariant
subgroups V;. Without loss of generality, V; is faithful. Hence, we find an element v; € V
such that Cy(py(v1) has order 5. If there is at least one more non-trivial summand, say V2, we
find another element vy € Va such that Cy(py(v1) € Crp)(v2). It follows that Cr(p)(v) = 1
for v := vjve. Therefore, we may assume that I(B) acts trivially on Vo x ... x V,,. By
Theorem 5.2.3 in [107], also D decomposes as D = Cp(I(B)) x [D,I(B)]. It follows that
[D, I(B)] = C3, for some a > 1. In case a > 2 we have seen in the proof of
that I(B) has a regular orbit on [D, I(B)]. Hence, [D, I(B)] is elementary abelian of order
32. Define |Cp(I(B))| =: 2¥. Then B has 2¥*! subsections up to conjugation. Half of them
have inertial index 155 while the other half have inertial index 5. Let (u,b,) be one of
the B-subsections with I(b,) = I(B). In order to determine [(b,) we may suppose that
Cp(I(B))=1hby (applied inductively). Now take a non-trivial b,-subsection
(v, By). Then the Cartan matrix of 3, is given by 2(3 +d;;)1<4,j<5 up to basic sets (see proof
of [Theorem 13.8]). [Theorem 4.2 gives k(b,) < 16. Since (v, 3,) is the only non-trivial b,-
subsection up to conjugation, we obtain [(b,) < 11. Similarly we can show that I(b,) <5 if
(u,by,) is a B-subsection such that e(b,) = 5. Now we get k(B) < 2F.1142%.5 = 2k+4 < | D,
because k(B) is the sum over the numbers I(b,) (see [Theorem 1.37). This completes the
case e(B) = 155.

The next exceptional group is I(B) = SmallGroup(160,199). Here Z(I(B)) is the unique
minimal normal subgroup of I(B). In particular every faithful representation contains a
faithful, irreducible representation as a direct summand. Using GAP we show that only the
prime p = 3 is “interesting”. If I(B) acts faithfully and irreducibly on D, then one can find
an element z € D such that |Cj(p)(7)| < 2. Therefore, the k(B)-Conjecture follows from
Lemma. 14.5

We continue with I(B) = GL(3,2). Here the algorithm of [Proposition 14.9 shows that
I(B) has regular orbits. Finally, we have the following exceptions: I(B) € {Cq9 x C7,Cy1 X
C5,Co3 x Cy1}. Here the arguments for Cs7; x C3 from the proof of [Proposition 14.9| show
that there are always regular orbits. We omit the details. O
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For e(B) = 256 the arguments in |[Proposition 14.13|fail as one can see by the following
example. There is a subgroup A < GL(4,3) of order 256 such that Cj splits under the
action of A into orbits of lengths 1, 16, 32 and 32. Hence, the corresponding stabilizers
have order at least 8.

As an application of various results we present two other propositions on 2-blocks.

Proposition 14.14. Let B be a 2-block with abelian defect group of order 64. Then
k(B) < 3-64.

Proof. Let D be a defect group of B. By [Theorem 14.12| we may assume that D is elementary
abelian. Moreover, by [Proposition 14.13| we may assume that e(B) > 256. As usual, I(B)

is a subgroup of H := GL(6,2). Since I(B) has odd order, I(B) is solvable. In particular,
there exists a prime p such that O,(I(B)) # 1. Hence, I(B) < Ny (O,(I(B))). Now we can
use GAP to run through the local subgroups of H. It turns out that I(B) = (C7 x C3)?.
Since C2 has a regular orbit on D, there exists a B-subsection (u, b,) such that I(b,) = C3.
We consider the block b, of Cg(u)/(u) with defect group C5 dominated by b,,. Since C3 has
a non-trivial fixed point v on C3, implies I(by) = 1(by) = 1(8,) where (v, 8,) is
a by-subsection. Again 3, dominates a block /3, with defect group C4. Thus, [Theorem 13.4
shows 1(b,) = I(B,) < 9. Now the claim follows from [Theorem 4.12| and [Theorem 7.14, [

Proposition 14.15. Let B be a 2-block with abelian defect groups and odd defect d > 1.
Then

d—1

k(B) <2%(27 —1).

Proof. As in [Theorem 14.2| we find a subsection (u,b,) such that 1(b,) < 2¢7!. Since
|[V2d-1 1] = 2% —1is odd, the claim follows from |Theorem 4.13| and |Theorem 7.141 O

A corresponding result for even defects would be a bit confusing.

The next theorem handles the k(B)-Conjecture for 3-blocks with abelian defect groups of
rank at most 3 as a special case.

Theorem 14.16. Let B be a 3-block of a finite group with defect group D = [[i_, C¥
such that for two i,j € {1,...,n} we have m;,m; <3, and my, <1 for all i # k # j. Then
Brauer’s k(B)-Conjecture holds for B.

Proof. As in the proof of [Theorem 14.12| we may assume that I(B) < GL(3,3) x GL(3, 3).
By [Lemma 14.6| it suffices to show that every 3/-subgroup of GL(3,3) has an abelian
subgroup of index at most 2. In order to do so, we may assume I(B) < GL(3,3). Then e(B)

is a divisor of (3% —1)(3%2 —1)(3 — 1) = 25 13. In case 13 | e(B), Sylow’s Theorem shows
that I(B) has a normal Sylow 13-subgroup. Hence, I(B) lies in the normalizer of the Sylow
13-subgroup in GL(3,3). Thus, e(B) = 2 - 13 without loss of generality. The claim holds.
Suppose next that I(B) is a 2-group. It can be shown that a Sylow 2-subgroup of GL(3, 3)
is isomorphic to SD1g x C9; so it contains an abelian maximal subgroup. Obviously the
same holds for I(B) and the claim follows. O

For p = 5 it is necessary to restrict the rank of the defect group.
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14. Abelian defect groups

Theorem 14.17. Let B be a 5-block of a finite group with abelian defect group of rank 3.
Then Brauer’s k(B)-Conjecture holds for B.

Proof. We consider the (faithful) action of I(B) on Q(D) = C2. In particular, I(B) <
GL(3,5). Fortunately, GAP is able to compute a set of representatives for the conjugacy
classes of 5'-subgroups of GL(3,5). In particular we obtain e(B) | 27 -3 or e(B) | 22 -3 - 31.
A further analysis shows that there is an element x € Q(D) such that |Cygy(z)| < 4 or

Cr(py(z) = S3. The claim follows by [Lemma 14.5 O

For the defect group C2 the proof above would not work. More precisely, it is possible here
that I(B) has order 6%, the largest orbit on D has length 62 and the corresponding stabilizer
is isomorphic to Cg. Hence, the existence of a perfect isometry for b, is unknown.
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15. Blocks with few characters

In the previous chapters we investigated the numerical invariants of a block B for a given
defect group D. In this chapter we consider the opposite situation, i.e. we determine D
if k(B) is given. In general, this is a difficult task. Problem 21 on Brauer’s list [41] asks
whether there are finitely many choices for D if k(B) is fixed. This is known to be true
provided the Alperin-McKay Conjecture holds (see [I89)]).

For small values of k(B), the following things are known:
(i) We have k(B) =1 if and only if D = 1.
(ii) We have k(B) = 2 if and only if |D| = 2 (see [37]).
(iii) If k(B) < 4 and [(B) = 1, then |D| = k(B) (see [181]).
(iv) If k(B) =5 and I(B) = 1, then D € {C5, Ds, Qs} (see [66]).

In this chapter we study the case k(B) = 3 and [(B) = 2. Most of the results come from
[186]. We will show under additional hypotheses that |D| = 3, and it is conjectured that
this holds in general.

We start with the classification of the transitive linear groups. Here
TL(1,p") :=Fjn x Aut(Fpn) = Cpn_1 x G,

21+4

denotes the semilinear group of degree 1. Moreover, is the extraspecial group Dg * Qg

of order 32.

Theorem 15.1 (Hering). Let G < GL(n,p) act (naturally and) transitively on ¥y \ {0}.
Then n = km and one of the following holds:

(i) G <TL(1,p",
(ii) k > 2 and SL(k,p™) <G,
(111) k >4 is even and Sp(k,p™) 4G,
(iv) k=6, p=2 and G3(2™) <G,
(v) G is given in[Table 15.1]

Proof. In §5 of Hering’s paper [124] which is quoted in Remark XIL.7.5 in [143] the
classification appeared in a slightly inaccurate form. For example part IV (part (4) in
[143]) states for n = 2 and p = 23 that G contains a normal subgroup N = Qg such that
Cg(N) = Z(N). Then |G| < 48 and G cannot act transitively on a set with 232 — 1 = 528
elements.

The classification we use here is from Theorem 69.7 in [I55]. Observe that G»(2)" = PSU(3, 3)
(and G2(2™)" = G5(2™) for m > 2). Hence, we do not need case E5 in [124]. Moreover, the
exceptional case G = Ag for p™ = 2% in both references is unnecessary, since Ag = Sp(4,2)’.
On the other hand, Sp(k,p™)" = Sp(k,p™) for k > 6 or p™ > 3 (see Propositions 3.7,
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15. Blocks with few characters

degree ‘ order ‘ structure ‘ small group id | primitive group id
52 24 SL(2,3) 3 15
48 SL(2,3) x Co 33 18
96 SL(2,3) x Cy 67 19
7° 48 SL(2,3).Cy 28 25
144 | (SL(2,3).Co) x C3 121 29
112 120 SL(2,3) x C5 15 39
240 GL(2,3) x Cs 103 42
120 SL(2,5) 5 56
600 SL(2,5) x Cs 54 57
192 | 1080 SL(2,5) x Cy 63 86
232 528 (SL(Q, 3).02) X 011 87 59
29 840 SL(2,5) x C7 13 106
1680 | (SL(2,5).Co) x Cr 408 110
592 | 3480 SL(2,5) x Cag — 84
24 2520 Ay — 20
34 160 217 5 O 199 71
320 214 Dy 1581 90
640 214 (C5 % Cy) 21454 99
1920 21+ Ay 241003 130
3840 21+ 5y - 129
240 SL(2 5). 02 89 124
480 SL(2,5).C. 221 126
480 ( ( 5) 02) X CQ 947 127
960 | (SL(2,5).Cy4) x Cy 5688 128
36 2184 SL(2,13) 396

Table 15.1.: Sporadic transitive linear groups

3.8 and 3.9 in [I13]). Thus, we do not weaken the statement by replacing Sp(k, p™) with
Sp(k, p™)'.

Presentations of the solvable exceptional groups are given in Huppert [140]. The groups
where p™ = 32 are already included in case In order to find all exceptions, we do the
following. The group H := F)) x G acts 2-transitively and thus primitively on Fj). Hence,
we can run through the library of primitive permutation groups (of degree less than 2'2) in
GAP. In the table we list the id number of H in this library and in case |G| < 2000 we list
additionally the id number of G in the Small Groups Library. O

Although depends on the classification of the finite simple groups, the
following result only uses Passman’s classification [243] of the p-solvable transitive linear
groups which is CFSG-free. It was developed mostly by Kiilshammer and already announced
in the introduction of [I84] without proof.

Proposition 15.2. Let B be a block of a finite group G with normal defect group D, and
suppose that k(B) = 3. Then |D| = 3.
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Proof. By results of Fong and Reynolds, we may assume that D is a Sylow p-subgroup of G,
and that Z := O, (G) is cyclic and central in G. By the remark above, we may also assume
that I(B) = 2. By we know that B has only two subsections. In particular,
G acts transitively on D \ {1} by conjugation. Hence, D is elementary abelian. We write
|D| = p?. By the Hall-Higman Lemma, the kernel of the action of G on D is ZD. Observe
that G/ZD is a p’-group. Hence by apart from finitely many exceptions,
G/ZD is isomorphic to a subgroup of TL(1, p?). In particular, G/ZD has a cyclic normal
subgroup H/ZD whose order s divides p? — 1 such that G/ H is cyclic of order ¢ dividing d.
Since G/ZD acts transitively on D \ {1}, we also have (p? — 1) | |G : ZD| = st.

It is well-known that IBr(B) = IBr(G|¢) := {x € IBr(G) : (x|z,¢) # 0} for some ¢ € IBr(Z).
Let us consider IBr(H|¢). On the one hand, [IBr(G|¢)| = |IBr(B)| = I(B) = 2 implies that
G has at most two orbits on IBr(H|(). Moreover, each of these orbits has length at most
|G : H| =t. Thus, [IBr(H|()| < 2t < 2d.

On the other hand, we have ZD/D < Z(H/D). Since H/ZD is cyclic, H/D has to be
abelian. In particular we have |IBr(H|()| = |H : ZD| = s. Thus, s = |IBr(H|()| < 2d, and
p? —1<|G: ZD| < st < 2d%.

If p =2, then our result follows easily since ko(B) =0 (mod 4) for d > 2. Thus, we may
assume that p > 3. If d = 1, then the claim follows easily from Hence, we
may assume that d > 2 and p > 3. If d = 2, then p?> < 148 =9, i.e. p = 3. This case leads
to a contradiction by making use of the results in [167]. Therefore, we may assume that
d >3 and p > 3, so that 34 < pd < 1+ d?. However, this is impossible.

It remains to deal with the exceptional cases in so we may assume that
|D| € {52,7%,11%,19?, 232,292,592, 31},

Suppose first that d = 2, and choose a non-trivial B-subsection (u,b,). Then b, dominates
a unique block b, of Cg(u)/(u), and b, has defect 1. Since 1 = I(b,) = I(b,) we conclude
that b, has inertial index 1. Thus, b, has inertial index 1 as well, and G/ZD acts regularly
on D\ {1}. Hence, G/Z is a Frobenius group with Frobenius kernel ZD/Z and Frobenius
complement G/ZD. In particular the Sylow subgroups of G/Z D are cyclic or (generalized)
quaternion. Thus, the Schur multiplier of G/ZD is trivial. Hence, we may assume that
Z = 1. But then B is the only p-block of G, so that G has class number 3. This implies
that |G| < 6, a contradiction.

We are left with the case |D| = 3%. By we have |G/Z| = 2¥3%5 with k € {5,6,7}.
Since as above b, does not have inertial index 2, only k& € {6,7} is admissible. Hence,
G/ZD = SmallGroup(320,1581) or G/ZD = SmallGroup(640,21454). In the latter case
the Schur multiplier of G/ZD is trivial again. Hence, let |G/ZD| = 320. Here GAP
shows that the Schur multiplier has order 2. Thus, we may assume that |Z| = 2 and
G/D = SmallGroup(640,19095) (a Schur covering group). Moreover, B is not the principal
block of G (see Proposition 1V.5.32 in [21]). By Brauer’s First Main Theorem (and its
extensions) one can see that OG consists of just two blocks. The whole group algebra has
k(G/D) = 22 simple modules while the principal block has k(G/Z D) = 14 simples modules.
This gives the contradiction [(B) = k(G/D) — k(G/ZD) = 8. O

Now we can carry over the proof in [I89] to our situation.

Theorem 15.3. Let B be a block of a finite group G with defect group D such that k(B) = 3.
Suppose that the Alperin-McKay Conjecture holds for B. Then |D| = 3.
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15. Blocks with few characters

Proof. Let b be the Brauer correspondent of B in Ng(D). Then b dominates a unique block
b of Ng(D)/®(D) (see Corollary 7 in [255]), and b has defect group D := D/®(D) which is
abelian and normal in Ng(D)/®(D). Moreover, we have

k(b) = ko(b) < ko(b) = ko(B) < k(B) = 3.

If we assume that k(b) < 2, then we get |D| < 2. Thus, D is a cyclic 2-group which is

impossible. This shows that we must have k(b) = 3.

Since D is normal in Ng(D)/®(D), [Proposition 15.2/implies that |D| = 3. Thus, D is cyclic,
and yields the result. O

Next we turn to blocks with non-exotic fusion systems. This leads to a question about
finite groups which is answered by the following strong result. This is also related to the
classification of fusion systems on extraspecial groups mentioned on

Theorem 15.4. Let p be a prime, and let G be a finite group in which any two non-trivial
cyclic p-subgroups are conjugate. Then one of the following holds:

(i) The Sylow p-subgroups of G are elementary abelian.

(it) p = 3 and O (G/ O, (G)) is isomorphic to Ru, Jy or 2Fy(q)’ with ¢ = 25*! and
b>0.

(1ii) p =5 and G/ Oy (Q) is isomorphic to Th.
In cases and the Sylow p-subgroups of G are of type pfg.

The proof of [Theorem 15.4] relies heavily on a paper by Navarro and Tiep [222] (see
|Theorem 15.11| below) and also on the classification of the finite simple groups. We omit

the details.

Proposition 15.5. Let B be a p-block of a finite group G with k(B) —I(B) = 1. Suppose
that the fusion system of B is non-exotic (for instance if B is the principal block or if G is
p-solvable). Then the defect groups of B are elementary abelian.

Proof. Assume that a defect group D of B is non-abelian. Let F be the fusion system of B,
and let H be a finite group such that D € Syl,(H) and F = Fp(H). By [Theorem 1.37} one

can see that F has exactly two conjugacy classes. In particular, H satisfies the hypothesis

of [Theorem 15.4] It follows that p € {3,5} and D is of type p1++2.

Suppose first that p = 5. Then F is the fusion system of T'h on one of its Sylow 5-subgroups.
Moreover, |Outz(D)| = 96 by [266]. [Proposition 11.8 shows that B is Morita equivalent to
the principal 5-block By of Th. In particular, we have k(By) — I(By) = 1. Let (u,b,) be a
non-trivial Byp-subsection. Then b, is the principal 5-block of Cpp(u), and I(b,) = 1. Thus,
Crp(u) is 5-nilpotent by [142, Theorem VII.14.9]. However, the fusion system of b, is not
nilpotent, since the kernel of the canonical map Outz(D) — Autz(Z(D)) cannot be trivial.
Contradiction.

It remains to consider the case p = 3. Let (u, b,) denote a non-trivial B-subsection, and
denote by b, the unique 3-block of Cg(u)/(u) dominated by b,. Then 1 = I(b,) = I(by),

and b, has an elementary abelian defect group of order 9. By [Theorem 15.4{ and [266], we
may assume that F is the fusion system of 2F(2)’ or J; on one of its Sylow 3-subgroups.
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Thus, the inertial quotient of B is isomorphic to Dg or SD1¢ respectively, by the results
in [266] (cf. [217]). It follows easily that the inertial quotient of b, is isomorphic to Cy or

Qs respectively. However, if 1(b,) = C4, then the results of [167] lead to the contradiction
U(by) = 4.

Thus, we may assume that the inertial quotient of b, is isomorphic to Qg. Then the
arguments in [167] show that there are only two b,-subsections, and we obtain k(b,) = 2.
However, then the defect groups of b, have order 2, a contradiction. O

In a recent article [144], we have shown that the non-exoticness condition in [Proposition 15.5|
is superfluous. We will not go into the details here. The result applies for example to blocks
with multiplicity 1 introduced by Michler [210].

Corollary 15.6. Let B be a block with non-ezxotic fusion system and k(B) = 3. Then the
defect groups of B are elementary abelian.

We remind the reader that it is not known if there are any blocks with exotic fusion systems.
Nevertheless, it seems difficult to conclude |D| = 3 in the situation of Even
in the case D 2 C2 and I(B) = Cs it is not known if k(B) = 3 can occur. Using generalized
decomposition numbers one can see that |D| is a sum of three non-zero squares provided
k(B) = 3. Hence, |D| # 25. Moreover, if p= —1 (mod 8), then |D| = p?* for some k > 1.
By |[Proposition 1.48| the Cartan matrix of B has determinant |D].

For the principal block we can say more.

Proposition 15.7 (Belonogov [24]). A principal block of a finite group with exactly three
wrreducible characters has defect groups of order 3.

Another paper of Belonogov [25] contains information in the non-principal case.

In the following we consider slightly more general questions.

Proposition 15.8. Let B be a p-block of a finite group G with constrained fusion system

F (for example if G is p-solvable). Then all B-subsections are major if and only if B has
abelian defect groups.

Proof. Let D be a defect group of B. If D is abelian, then it is well-known that all B-
subsections are major. Now assume conversely that all B-subsections are major. Then every
element x € D is F-conjugate to an element y € Z(D) C Cp(Op(F)) C Op(F). It follows
that F is controlled and D = Z(D). O

For p = 2 we can drop the constrained condition on F by a recent result of Henke [123].

Proposition 15.9 (Henke). Let F be a fusion system on a finite 2-group P such that every
element in P is conjugate to an element in Z(P). Then P is abelian.

As a consequence we obtain an old result by Camina and Herzog [59].

Corollary 15.10 (Camina-Herzog). Let G be a finite group such that |G : Cg(x)| is odd
for every 2-element x € G. Then G has abelian Sylow 2-subgroups.
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15. Blocks with few characters

The original proof of [Corollary 15.10| uses Walter’s classification of the finite simple groups
with abelian Sylow 2-subgroups. In contrast, the proof of Henke’s result is fairly elementary.
The Camina-Herzog Theorem was generalized by Navarro and Tiep [222].

Theorem 15.11 (Navarro-Tiep). Let p ¢ {3,5} be a prime, and let G be a finite group
such that |G : Cg(z)| Z 0 (mod p) for every p-element x € G. Then G has abelian Sylow
p-subgroups.

After all these results we propose the following question.

Question B. Let F be an exotic fusion system on a finite p-group P such that any two
non-trivial elements of P are conjugate in F. Does it follow that P =2 7f2?

Observe that there are precisely three exotic fusion systems on 7_1|r+2 with the desired

property (see [266]). In the proof of [Theorem 11.9) we have already used the fact that these
fusion systems cannot occur for blocks. Note also that fusion systems on abelian groups are

controlled and thus non-exotic.

We give some evidence for [Question B| which has not been published.

Lemma 15.12. Let F be an exotic fusion system on a p-group P such that any two
non-trivial elements of P are conjugate in F. Then the following holds:

(i) exp(P) =p> 2.
(i) Outz(P) acts transitively on Z(P) \ {1}. In particular, Z(P) C P' = ®(P).

(iv) For every element x € P\ Z(P), the subgroup Cp(x) is contained in an F-essential
subgroup. In particular, every mazimal subgroup M < P such that Z(P) < Z(M) is
F-essential.

Proof.
(i) Obviously, exp(P) = p. Since groups of exponent 2 are abelian, we have p > 2.

(ii) By Burnside’s Theorem for fusion systems (a mild extension of Theorem A.8 in
[21]), any two non-trivial elements in Z(P) are conjugate under Outz(P). Since P
is non-abelian, we have 1 # P’ NZ(P). As a characteristic subgroup we must have
Z(P) = P'NZ(P) C P'. Finally, P/P’ also has exponent p, so we get P’ = ®(P).

(iii) Let N := Nz(P). By Yoshida’s Transfer Theorem for fusion systems (Theorem Y in
[76]) and Alperin’s Fusion Theorem we have

(lel:izeP feAur(P) = (/27 :2eQ <P feAutn(Q))
)

-1
@z 2 e Q< P, f€Autzs(Q)
1

= (zy~ " : x and y are F-conjugate) = P.

Now the claim follows from 8.4.2 in [17§].
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(iv) Choose a morphism ¢ : (z) — P such that ¢(z) € Z(P). Then the extension axiom
for fusion systems (see Proposition 1.2.5 in [21]) implies that ¢ can be extended to
1 : Cp(x) — P. If there is no F-essential subgroup @ < P such that Cp(z) < @, then
Alperin’s Fusion Theorem would show that 1 is in fact induced from Aut(P). But
this is impossible, since x ¢ Z(P). For the second claim choose z € Z(M) \ Z(P). O

Proposition 15.13. Let F be an exotic fusion system on a 3-group P such that any two
non-trivial elements of P are conjugate in F. Then |P| > 37.

Proof. We may assume that |P| > 3%. It is easy to compute the groups of order at most 3%
and exponent 3 in GAP. Using there are no candidates for |P| = 3*. Now let
|P| = 3°. The extraspecial group P = 3. is excluded by Theorem 5.3 in [290]. It follows
that P is uniquely determined and of the form C§ x C3. Moreover, P’ = ®(P) = Z(P) = C3.
Hence, all F-essential subgroups must be maximal by [Proposition 6.12} Moreover, P has
only one abelian maximal subgroup. By Alperin’s Fusion Theorem, there is at least one
F-essential subgroup @) = C3 x 3}r+2. Since Out (@) does not have a normal 3-subgroup, the
canonical map Outz(Q) — Aut(Q/Z(Q)) x Aut(Z(Q)/P(Q)) must be injective. However,
P/Q acts trivially on Q/Z(Q) = Q/P" and on Z(Q)/®(Q) = C5. Contradiction.

Finally, let |P| = 3%. Then GAP gives two possibilities for P, namely SmallGroup(3°,i)
where i € {122,469}. The possibility ¢ = 469 leads to the Sylow 3-subgroup of SL(3,9).
Here Theorem 4.5.1 of [67] shows that JF is non-exotic. Now let P 2 SmallGroup(3°,122).
Then Z(P) = P' = ®(P) = C§ and Out(P)/ O3(Out(P)) = GL(3,3). By [Lemma 15.1(ii)}
13 divides |Outz(P)|. Since Outxz(P) is a 3/-group, we have |Outz(P)| | 2° - 13. Hence,
Sylow’s Theorem gives Outx(P) < Ngp,3,3)(FP13) for some Pz € Syl;3(GL(3,3)). This
shows Outz(P) = Cys. However, it can be verified with GAP that then Outz(P) does not
act transitively on Z(P) \ {1}. O

It follows from results on the Burnside Problem that in the situation of |Proposition 15.13|
the group P has nilpotency class at most 3 and P” = 1.

Proposition 15.14. Let F be an exotic fusion system on a p-group P such that any two
non-trivial elements of P are conjugate in F. Then |P| # p*.

Proof. By [Proposition 15.13] we may assume that p > 5. The non-abelian groups of order

p* and exponent p are given in Lemma 3.2 in [174]: C, x pl+Jr2 and

Q :={a,b,c,d | [a,b] = [a,c] = [a,d] = [b,c] =1, [b,d] = a, [c,d] =D)

where p-powers of generators and not mentioned commutator relations between generators

are defined to be trivial. The group C) x p_l‘_Jr2 is excluded by |[Lemma 15.1‘ Hence,
assume P 2 Q. Then C3 = A := (a,b,c) < P. Moreover, Z(P) = (a). By [Lemma 15.1(iv)}
A is F-essential and every element x € A\ Z(P) is Autz(A)-conjugate to an element in
Z(P). Suppose for the moment that there is another abelian maximal subgroup A; # A.
Then C2 = AN Ay C Z(AA;) = Z(P). A contradiction. Thus, Outx(P) acts on A and
Autr(A) acts transitively on Z(P) \ {1}. This shows that Autz(A) even acts transitively
on A\ {1}; so it is a transitive linear group of degree p3. Moreover, the order of Autz(A)
is divisible by p exactly once. However, by there is no such transitive linear
group. 0
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