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Abstract

Let B be a block of a finite group with respect to an algebraically closed field F of characteristic p > 0. In a
recent paper, Otokita gave an upper bound for the Loewy length LL(ZB) of the center ZB of B in terms
of a defect group D of B. We refine his methods in order to prove the optimal bound LL(ZB) ≤ LL(FD)
whenever D is abelian. We also improve Otokita’s bound for non-abelian defect groups. As an application
we classify the blocks B such that LL(ZB) ≥ |D|/2.
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1 Introduction

We consider a block (algebra) B of FG where G is a finite group and F is an algebraically closed field of
characteristic p > 0. In general, the structure of B is quite complicated and can only be described in restrictive
special cases (e. g. blocks of defect 0). For this reason, we are content here with the study of the center ZB of
B. This is a local F -algebra in the sense that the Jacobson radical JZB has codimension 1. It is well-known
that the dimension of ZB itself equals the number k(B) of irreducible complex characters in B. In particular,
this dimension is locally bounded by a theorem of Brauer and Feit [3]. Moreover, the number l(B) of irreducible
Brauer characters in B is given by the dimension of the Reynolds ideal RB := ZB ∩ SB where SB is the
socle of B. It follows that the dimension of the quotient ZB/RB is locally determined by Brauer’s theory of
subsections. Here a B-subsection is a pair (u, b) where u ∈ G is a p-element and b is a Brauer correspondent of
B in CG(u).

In order to give better descriptions of ZB we introduce the Loewy length LL(A) of a finite-dimensional F -algebra
A as the smallest positive integer l such that (JA)l = 0. A result by Okuyama [22] states that LL(ZB) ≤ |D|
where |D| is the order of a defect group D of B. In fact, there is an open conjecture by Brauer [2, Problem 20]
asserting that even dimZB ≤ |D|. In a previous paper [16] jointly with Shigeo Koshitani, we have shown
conversely that LL(B) is bounded from below in terms of |D|. There is no such bound for LL(ZB), but again
an open question by Brauer [2, Problem 21] asks if dimZB can be bounded from below in terms of |D|.

Recently, Okuyama’s estimate has been improved by Otokita [23]. More precisely, if exp(D) is the exponent of
D, he proved that

LL(ZB) ≤ |D| − |D|
exp(D)

+ 1. (1.1)

The present note is inspired by Otokita’s methods. Our first result gives a local bound on the Loewy length
of ZB/RB. Since (JZB)(RB) ⊆ (JB)(SB) = 0, we immediately obtain a bound for LL(ZB). In our main
theorem we apply this bound to blocks with abelian defect groups as follows.

Theorem 1. Let B be a block of FG with abelian defect group D. Then LL(ZB/RB) < LL(FD) and LL(ZB) ≤
LL(FD).
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If, in the situation of Theorem 1, D has type (pa1 , . . . , par ), then LL(FD) = pa1 + . . . + par − r + 1 as is
well-known. For p-solvable groups G, the stronger assertion LL(B) = LL(FD) holds (see [19, Theorem K]).
Similarly, if D is cyclic, one can show more precisely that

LL(ZB) = LL(ZB/RB) + 1 = dimZB/RB + 1 =
|D| − 1

l(B)
+ 1

(see [16, Corollary 2.6]). By Broué-Puig [5], Theorem 1 is best possible for nilpotent blocks. We conjecture
conversely that the inequality is strict for non-nilpotent blocks (cf. Corollary 5 and Proposition 7 below).

Arguing inductively, we also improve Otokita’s bound for blocks with non-abelian defect groups. More precisely,
we show in Theorem 12 that

LL(ZB) ≤ |D|
p

+
|D|
p2
− |D|

p3

(see also Proposition 15). Extending Otokita’s work again, we use our results to classify all blocks B with
LL(ZB) ≥ |D|/2 in Corollary 16.

It seems that in the non-abelian defect case the inequality LL(ZB) ≤ LL(FD) is still satisfied. This holds for
example if DEG (see [23, proof of Lemma 2.4]). We support this observation by computing the Loewy lengths
of the centers of some blocks with small defect. Finally, we take the opportunity to improve [23, Proposition 2.2]
(see Proposition 3). To do so we recall that the inertial quotient I(B) of B is the group NG(D, bD)/DCG(D)
where bD is a Brauer correspondent of B in CG(D). By the Schur-Zassenhaus Theorem, I(B) can be embedded
in the automorphism group Aut(D). Then

FDI(B) := {x ∈ FD : a−1xa = x for a ∈ I(B)}

is the algebra of fixed points. Moreover, for a subset U ⊆ G we define U+ :=
∑
u∈U u ∈ FG. Then RFG has an

F -basis consisting of the sums S+ where S runs through the p′-sections of G (see for example [17]). Note that
the trivial p′-section is given by the set Gp of p-elements of G.

2 Abelian defect groups

By the results mentioned in the introduction we may certainly restrict ourselves to blocks with positive defect.

Proposition 2. Let B be a block of FG with defect group D 6= 1. Let (u1, b1), . . . , (uk, bk) be a set of represen-
tatives for the conjugacy classes of non-trivial B-subsections. Then the map

ZB/RB →
k⊕
i=1

Zbi/Rbi,

z +RB 7→
k∑
i=1

Br〈ui〉(z)1bi +Rbi

is an embedding of F -algebras where Br〈ui〉 : ZFG → ZF CG(ui) denotes the Brauer homomorphism. In
particular,

LL(ZB/RB) ≤ max{LL(Zbi/Rbi) : i = 1, . . . , k}.

Proof. First we consider the whole group algebra FG instead of B. For this, let v1, . . . , vr be a set of rep-
resentatives for the conjugacy classes of non-trivial p-elements of G. Let z :=

∑
g∈G αgg ∈ ZFG. Then z

is constant on the conjugacy classes of G. It follows that z is constant on the p′-sections of G if and only
if Br〈vi〉(z) =

∑
g∈CG(vi)

αgg is constant on the p′-sections of CG(vi) for i = 1, . . . , r. Therefore, the map
ZFG/RFG→

⊕r
i=1 ZF CG(vi)/RF CG(vi), z+RFG 7→

∑r
i=1 Br〈vi〉(z) +RF CG(vi) is a well-defined embed-

ding of F -algebras. Now the first claim follows easily by projecting onto B, i. e. replacing z by z1B . The last
claim is an obvious consequence.
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Proof of Theorem 1. Let D ∼= Cpa1 × . . .× Cpar . It is well-known that

LL(FD) = LL(FCpa1 ⊗ . . .⊗ FCpar ) = pa1 + . . .+ par − r + 1.

Hence, it suffices to show that LL(ZB/RB) ≤ pa1 + . . .+ par − r.

We argue by induction on r. If r = 0, then we have D = 1, ZB = RB and LL(ZB/RB) = 0. Thus, we may
assume that r ≥ 1. Let I := I(B) be the inertial quotient of B. In order to apply Proposition 2, we consider
a B-subsection (u, b) with 1 6= u ∈ D. Then b has defect group D and inertial quotient CI(u). Since I is a
p′-group, we have D = Q × [D,CI(u)] with Q := CD(CI(u)) 6= 1. Let β be the Brauer correspondent of b
in CG(Q) ⊆ CG(u). By Watanabe [37, Theorem 2], the Brauer homomorphism BrD induces an isomorphism
between Zb and Zβ. Since the intersection of a p′-section of G with CG(D) is a union of p′-sections of CG(D),
it follows that BrD(Rb) ⊆ Rβ. On the other hand, dimF Rb = l(b) = l(β) = dimF Rβ by [38, Theorem 1]. Thus,
we obtain Zb/Rb ∼= Zβ/Rβ and it suffices to show that

LL(Zβ/Rβ) ≤ pa1 + . . .+ par − r.

Let β be the unique block of CG(Q)/Q dominated by β. By [18, Theorem 7] (see also [8, Theorem 1.2]), it
follows that the source algebra of β is isomorphic to a tensor product of FQ and the source algebra of β.
Since β is Morita equivalent to its source algebra, we may assume in the following that β = FQ ⊗ β. Let
Q ∼= Cpa1 × . . .× Cpas with 1 ≤ s ≤ r. Since the defect group D/Q of β has rank r − s < r, induction implies
that

LL(Zβ/Rβ) ≤ pas+1 + . . .+ par − r + s =: l.

In particular, (JZβ)l ⊆ Rβ. Since Q is an abelian p-group, we have RFQ = SFQ ∼= F . Consequently,
LL(FQ/RFQ) = pa1 + . . .+ pas − s =: l′, i. e. (JFQ)l

′ ⊆ RFQ. Moreover, SFQ⊗ Sβ ⊆ S(FQ⊗ β). Hence,

RFQ⊗Rβ ⊆ Z(FQ⊗ β) ∩ S(FQ⊗ β) = R(FQ⊗ β) = Rβ.

Since JZβ = J(FQ ⊗ Zβ) = JFQ ⊗ Zβ + FQ ⊗ JZβ, we see that (JZβ)l+l
′
is a sum of terms of the form

(JFQ)i ⊗ (JZβ)j with i+ j = l+ l′. If i > l′, then (JFQ)i = 0. Similarly, if j > l, then (JZβ)j = 0. It follows
that

(JZβ)l+l
′

= (JFQ)l
′
⊗ (JZβ)l ⊆ RFQ⊗Rβ ⊆ Rβ.

This proves the theorem, because l + l′ = pa1 + . . .+ par − r.

Our theorem shows that Otokita’s bound (1.1) is only optimal for nilpotent blocks with cyclic defect groups or
defect group C2 × C2 (see [23, Corollary 3.1]).

The next result strengthens [23, Proposition 2.2].

Proposition 3. Let B be a block of FG with defect group D. Moreover, let c := dimF Z(D)I(B) and z :=
LL(F Z(D)I(B)). Then LL(ZB/RB) ≤ k(B)− l(B) + z − c and in particular

LL(ZB) ≤ k(B)− l(B) + z − c+ 1.

Proof. Let K := Ker(BrD) ∩ ZB E ZB. Since ZB is local, we have K ⊆ JZB. Furthermore, RB + K/K
annihilates the radical JZB/K of ZB/K. It follows that RB + K/K is contained in the socle of ZB/K. By
Broué [4, Proposition (III)1.1], it is known that BrD induces an isomorphism between ZB/K and the symmetric
F -algebra F Z(D)I(B). The socle of the latter algebra has dimension 1. Hence,

dimRB +K/K ≤ 1.

On the other hand, G+
p ∈ RFG. Therefore, 1BG

+
p ∈ RB and

BrD(1BG
+
p ) = BrD(1B) BrD(G+

p ) = BrD(1B) CG(D)+
p .

Here, BrD(1B) is the block idempotent of bNG(D)
D where bD is a Brauer correspondent of B in CG(D). In

particular, 1bD BrD(1B) = 1bD and

0 6= 1bD CG(D)+
p = 1bD BrD(1B) CG(D)+

p = 1bD BrD(1BG
+
p ).
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From that we obtain 1BG
+
p /∈ K and dimRB +K/K = 1. This implies RB +K/K = S(ZB/K) and

LL(ZB/RB +K) = z − 1.

Now we consider the lower section of ZB. Here we have

dimRB +K/RB = dimRB +K − dimRB = 1 + dimK − l(B)

= 1 + dimZB − dimZB/K − l(B) = 1 + k(B)− c− l(B).

The claim follows easily.

The invariant c in Proposition 3 is just the number of orbits of I(B) on Z(D). Moreover, if D and I(B) are
given, the number z can be calculated by computer. It happens frequently that I(B) acts trivially on Z(D). In
this case, c = |Z(D)| and z is determined by the isomorphism type of Z(D) as explained earlier. In particular,
LL(ZB) ≤ k(B)− l(B) whenever Z(D) is non-cyclic. Now we give a general upper bound on z.

Lemma 4. Let P be a finite abelian p-group, and let I be a p′-subgroup of Aut(P ). Then

LL(FP I) ≤ LL(F CP (I)) +
LL(F [P, I])− 1

2
.

Proof. Since FP I = F CP (I) ⊗ F [P, I]I , we may assume that CP (I) = 1. It suffices to show that JFP I ⊆
(JFP )2. It is well-known that JFP is the augmentation ideal of FP and JFP I = JFP ∩ FP I . In partic-
ular, I acts naturally on JFP and on JFP/(JFP )2. We regard P/Φ(P ) as a vector space over Fp. By [10,
Remark VIII.2.11] there exists an isomorphism of Fp-spaces

Γ : JFP/(JFP )2 → F ⊗Fp
P/Φ(P )

sending 1 − x + (JFP )2 to 1 ⊗ xΦ(P ) for x ∈ P . After choosing a basis, it is easy to see that Γ(wγ) = Γ(w)γ

for w ∈ JFP/(JFP )2 and γ ∈ I. Let w ∈ JFP I ⊆ JFP . Then Γ(w + (JFP )2) is invariant under I. It follows
that Γ(w + (JFP )2) is a linear combination of elements of the form λ ⊗ x where λ ∈ F and x ∈ CP/Φ(P )(I).
However, by hypothesis, CP/Φ(P )(I) = CP (I)Φ(P )/Φ(P ) = Φ(P ) and therefore Γ(w+(JFP )2) = 0. This shows
w ∈ (JFP )2 as desired.

We describe a special case which extends Theorem 1. Here, the action of I(B) on D is called semiregular if all
orbits on D \ {1} have length |I(B)|.

Corollary 5. Let B be a block of FG with abelian defect group D such that I := I(B) acts semiregularly on
[D, I]. Then

LL(ZB) = LL(ZF [D o I]) = LL(FDI) ≤ LL(F CD(I)) +
LL(F [D, I])− 1

2
.

Proof. Let Q := CD(I) and let b be a Brauer correspondent of B in CG(Q). By [37, Theorem 2], ZB ∼= Zb.
Moreover, by [18, Theorem 7] we have ZB ∼= FQ ⊗ Zb where b is the block of CG(Q)/Q dominated by b.
As usual, b has defect group D/Q ∼= [D, I] and inertial quotient I(b) ∼= I(B). It follows that LL(ZB) =
LL(FQ) + LL(Zb)− 1. On the other hand, FDI ∼= FQ⊗ F [D, I]I and F [D o I] ∼= FQ⊗ F [[D, I] o I]. Hence,
we may assume that Q = 1 and [D, I] = D 6= 1.

Let (u1, b1), . . . , (uk, bk) be a set of representatives for the G-conjugacy classes of non-trivial B-subsections.
Since I acts semiregularly on D, every block bi has inertial quotient I(bi) ∼= CI(ui) = 1. Hence, bi is nilpotent
and l(bi) = 1. With the notation of Proposition 3, it follows that

k(B)− l(B) =

k∑
i=1

l(bi) =
|D| − 1

|I|
= c− 1

and LL(ZB) ≤ LL(FDI). By the proof of Proposition 3, we also have the opposite inequality LL(ZB) ≥
LL(FDI). It is easy to see that ZF [D o I] = FDI ⊕ Γ where Γ is the subspace spanned by the non-trivial
p′-class sums of D o I. By hypothesis, every non-trivial p′-conjugacy class is a p′-section of D o I. Hence, we
obtain Γ ⊆ RF [D o I]. The claim LL(FDI) = LL(ZF [D o I]) follows. The last claim is a consequence of
Lemma 4.
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Corollary 5 applies for instance whenever I has prime order. For example, if |I| = 2, we have equality

LL(ZB) = LL(F CD(I)) +
LL(F [D, I])− 1

2

by [16, Proposition 2.6]. However, in general for a block B with abelian defect group D it may happen that
LL(ZB) > LL(FDI). An example is given by the principal 3-block of G = (C3×C3)oSD16. Here LL(ZB) = 3
and dimFDI = 2.

In the situation of Corollary 5, I is a complement in the Frobenius group [D, I] o I. In particular, the Sylow
subgroups of I are cyclic or quaternion groups. It follows that I has trivial Schur multiplier. By a result of the
first author [20], the Brauer correspondent of B in NG(D) is Morita equivalent to F [Do I]. In this way we see
that Corollary 5 is in accordance with Broué’s Abelian Defect Group Conjecture. Moreover, Alperin’s Weight
Conjecture predicts l(B) = k(I) in this situation. By a result of the second author (see [33, Lemma 9] and [32,
Theorem 5]), we also have

dimZB ≤ |CD(I)|
(
|[D, I]| − 1

l(B)
+ l(B)

)
≤ |D|.

Further properties of this class of blocks have been obtained in Kessar-Linckelmann [14]. Nevertheless, it seems
difficult to express LL(FDI) explicitly in terms of D and I. Some special cases have been considered in [35,
Section 6.3].

Our next aim concerns the sharpness of Theorem 1. For this we need to discuss twisted group algebras of the
form Fα[D o I(B)].

Lemma 6. Let P be a finite abelian p-group, and let I be a non-trivial p′-subgroup of Aut(P ). Then

LL(ZFα[P o I]) < LL(FP )

for every α ∈ H2(I, F×).

Proof. For the sake of brevity we write PI instead of P o I. We may normalize α such that x · y in Fα[PI]
equals xy ∈ PI for all x ∈ P and y ∈ PI. By Passman [24, Theorem 1.6],

JZFα[PI] = JFα[PI] ∩ ZFα[PI] = (JFP · Fα[PI]) ∩ ZFα[PI].

It is known that ZFα[PI] has a basis consisting of the α-regular class sums (see for example [7, Remark 4 on p.
155]). Hence, letK be an α-regular conjugacy class of PI. IfK ⊆ P , then clearly |K|1−K+ ∈ ZFα[PI]∩JFP ⊆
JZFα[PI], since JFP is the augmentation ideal of FP . Now assume that K ⊆ PI \P and x ∈ K. Then the P -
orbit of x (under conjugation) is the coset x[x, P ]. Hence,K is a disjoint union of cosets x1[x1, P ], . . . , xm[xm, P ].
Since I acts faithfully on P , we have [xi, P ] 6= 1 and [xi, P ]+ ∈ JFP for i = 1, . . . ,m. It follows that K+ ∈
(JFP ·Fα[PI])∩ZFα[PI] = JZFα[PI]. In this way we obtain an F -basis of JZFα[PI]. Let l := LL(ZFα[PI]).
Then there exist conjugacy classes K1, . . . ,Ks ⊆ P and elements x1, . . . , xt ∈ PI \P such that s+ t = l− 1 and

(|K1|1−K+
1 ) . . . (|Ks|1−K+

s )x1[x1, P ]+ . . . xt[xt, P ]+ 6= 0

in Fα[PI]. Since xi[xi, P ] = [xi, P ]xi, we conclude that

0 6= (|K1|1−K+
1 ) . . . (|Ks|1−K+

s )[x1, P ]+ . . . [xt, P ]+ ∈ FP. (2.1)

At this point, α does not matter anymore and we may assume that α = 1 in the following. Since ZF [PI] =
F CP (I)⊗ ZF [[P, I] o I] and FP = F CP (I)⊗ F [P, I], we may assume that CP (I) = 1. By Lemma 4 we have

s ≤ LL(FP I)− 1 ≤ LL(FP )− 1

2
< LL(FP )− 1.

Thus, we may assume that t > 0. Since x1 acts non-trivially on [x1, P ], we obtain |[x1, P ]| ≥ 3 and [x1, P ]+ ∈
(JF [x1, P ])2 ⊆ (JFP )2. Also, |Ki|1−K+

i ∈ JFP for i = 1, . . . , s. Therefore, (2.1) shows that (JFP )l 6= 0 and
the claim follows.

Proposition 7. Let B be a block of FG with abelian defect group D. Suppose that the character-theoretic
version of Broué’s Conjecture holds for B. Then LL(ZB) = LL(FD) if and only if B is nilpotent.
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Proof. A nilpotent block B satisfies LL(ZB) = LL(FD) by Broué-Puig [5]. Thus, we may assume conversely
that LL(ZB) = LL(FD). Broué’s Conjecture implies ZB ∼= Zb where b is the Brauer correspondent of B in
NG(D). By Külshammer [20], Zb ∼= ZFα[D o I(B)] for some α ∈ H2(I(B), F×). Now Lemma 6 shows that
I(B) = 1. Hence, B must be nilpotent.

3 Non-abelian defect groups

We start with a result about nilpotent blocks which might be of independent interest.

Proposition 8. For a non-abelian p-group P we have JZFP ⊆ JF [P ′ Z(P )] · FP and

LL(ZFP ) ≤ LL(FP ′ Z(P )) < LL(FP ).

Proof. We have already used that JFP is the augmentation ideal of FP and JZFP = ZFP ∩ JFP . Hence,
JZFP is generated as an F -space by the elements 1 − z and K+ where z ∈ Z(P ) and K ⊆ P \ Z(P ) is a
conjugacy class. Each such K has the form K = xU with x ∈ P and U ⊆ P ′. Since |U | = |K| is a multiple of
p, we have U+ ∈ JFP ′. On the other hand, 1 − z ∈ JF Z(P ) for z ∈ Z(P ). Setting N := P ′ Z(P ) we obtain
JZFP ⊆ FP · JFN . Since P acts on FN preserving the augmentation, we also have FP · JFN = JFN · FP .
This shows LL(ZFP ) ≤ LL(FN).

For the second inequality, note that N ≤ Z(P )Φ(P ) < P . Hence, FN+ = (JFN)LL(FN)−1 ⊆ (JFP )LL(FN)−1

and (JFP )LL(FP )−1 = FP+ 6= FN+. Therefore, we must have LL(FN) < LL(FP ).

If P has class 2, we have P ′ ≤ Z(P ) and JF Z(P ) ⊆ JZFP . Hence, Proposition 8 implies LL(ZFP ) =
LL(F Z(P )) in this case.

In the following we improve (1.1) for non-abelian defect groups. We make use of Otokita’s inductive method:

LL(ZB) ≤ max
{

(|〈u〉| − 1)LL(Zb) : (u, b) B-subsection
}

+ 1 (3.1)

(see [23, proof of Theorem 1.3]). Here b denotes the block of CG(u)/〈u〉 dominated by b. By [30, Lemma 1.34],
we may assume that b has defect group CD(u)/〈u〉 where D is a defect group of B.

We start with a detailed analysis of the defect groups of large exponent.

Lemma 9. Let P be a p-group such that Z(P ) is cyclic and |P : Z(P )| = p2. Then one of the following holds:

(i) P ∼= 〈x, y | xp
d−1

= yp = 1, y−1xy = x1+pd−2〉 =: Mpd for some d ≥ 3.

(ii) P ∼= 〈x, y, z | xp
d−2

= yp = zp = [x, y] = [x, z] = 1, [y, z] = xp
d−3〉 =: Wpd for some d ≥ 3.

(iii) P ∼= Q8.

Proof. Let |P | = pd with d ≥ 3. If exp(P ) = pd−1, then the result is well-known. Thus, we may assume that
exp(P ) = pd−2. Let Z(P ) = 〈x〉 and D = 〈x, y, z〉. Since 〈x, y〉 ∼= 〈x, z〉 ∼= Cpd−2 × Cp, we may assume that
yp = zp = 1. Since P is non-abelian, we have 1 6= [y, z] ∈ P ′ ≤ Z(P ). In particular, P has nilpotency class
2. It follows that [y, z]p = [yp, z] = 1 and therefore [y, z] = xp

d−3

. Consequently, the isomorphism type of
P is uniquely determined. Conversely, one can construct such a group as a central product of Cpd−2 and an
extraspecial group of order p3.

Proposition 10. Let B be a block of FG with defect group D ∼= Mpd or D ∼= Q8. Then one of the following
holds:

(i)

LL(ZB) =
pd−2 − 1

l(B)
+ 1 ≤ pd−2 = LL(ZFD) ≤ LL(FD).

(ii) |D| = 8 and LL(ZB) ≤ 3.
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Proof. Suppose first that p = 2. If |D| = 8, then there are in total five possible fusion systems for B and none
of them is exotic (see [30, Theorem 8.1]). By [6], the fusion system of B determines the perfect isometry class of
B. Since perfect isometries preserve the isomorphism type of ZB, we may assume that B is the principal block
of FH where H ∈ {D8, Q8, S4,SL(2, 3),GL(3, 2)}. A computation with GAP [9] reveals that LL(ZB) ≤ 3 in all
cases. Note that we may work over the field with two elements, since the natural structure constants of ZFH
(and of ZB) lie in the prime field of F . (The fusion system corresponding to H = GL(3, 2) can be handled
alternatively with Proposition 3.) If D ∼= M2d with d ≥ 4, then B is nilpotent ([30, Theorem 8.1]) and the result
follows from the remark after Proposition 8.

Now assume that p > 2. By [36], B is perfectly isometric to its Brauer correspondent in NG(D). Hence, we
may assume that D E G. It is known that B has cyclic inertial quotient I(B) of order dividing p − 1 (see [30,
proof of Theorem 8.8]). Hence, by [20] we may assume that G = D o I(B). Then G has only one block and
ZB = ZFG. Moreover, l(B) = |I(B)|. After conjugation, we may assume that I(B) = 〈a〉 acts non-trivially on
〈x〉 and trivially on 〈y〉. Since |D′| = p, the conjugacy classes of D are either singletons in Z(D) or cosets of
D′. Some of these classes are fused in G. The classes in G \D are cosets of 〈x〉. As usual, ZFG is generated by
the class sums and JZFG is the augmentation ideal (intersected with ZFG). In particular, JZFG contains the
class sums of conjugacy classes whose length is divisible by p. Let U1, . . . , Uk be the non-trivial orbits of I(B)
on Z(D). Then JZFG also contains the sums l(B)1G − U+

i for i = 1, . . . , k. For u, v ∈ D we have

u(D′)+ · v(D′)+ = uv((D′)+)2 = 0,

u(D′)+ · v〈x〉+ = uv(D′)+〈x〉+ = 0,

u〈x〉+ · v〈x〉+ = uv(〈x〉+)2 = 0,

u(D′)+ · (l(B)1G − U+
i ) = l(B)u(D′)+ − l(B)u(D′)+ = 0,

u〈x〉+ · (l(B)1G − U+
i ) = l(B)u〈x〉+ − l(B)u〈x〉+ = 0.

It follows that (JZFG)2 = (JZF 〈x, a〉)2. Now the claim can be shown with [16, Corollary 2.8].

Lemma 11. Let B be a block of FG with defect group D ∼= Wpd . Then LL(ZB) ≤ pd−1 − p+ 1.

Proof. If |D| = 8, then the claim holds by Proposition 10. Hence, we may exclude this case in the following. We
consider B-subsections (u, b) with 1 6= u ∈ D. As usual, we may assume that b has defect group CD(u).

Suppose first that I(B) acts faithfully on Z(D). We apply Proposition 2. If u /∈ Z(D), then CD(u) ∼= Cpd−2×Cp.
Thus, Theorem 1 implies LL(Zb/Rb) ≤ pd−2 + p − 2. Now assume that u ∈ Z(D). The centric subgroups
in the fusion system of b are maximal subgroups of D. In particular, they are abelian of rank 2. Now by [30,
Proposition 6.11], it follows that b is a controlled block. Since I(b) ∼= CI(B)(u) = 1, b is nilpotent and Zb ∼= ZFD.
By Proposition 8 we obtain LL(Zb/Rb) ≤ LL(Zb) = LL(ZFD) ≤ LL(F Z(D)) = pd−2. Hence, Proposition 2
gives

LL(ZB) ≤ LL(ZB/RB) + 1 ≤ pd−2 + p− 1 ≤ pd−1 − p+ 1.

Now we deal with the case where I(B) is non-faithful on Z(D). We make use of (3.1). Let |〈u〉| = ps. The
dominated block b has defect group CD(u)/〈u〉. If u /∈ Z(D), then |CD(u)/〈u〉| = pd−s−1 ≥ p and

(ps − 1)LL(Zb) ≤ (ps − 1)pd−s−1 ≤ pd−1 − p.

Next suppose that u ∈ Z(D). Then D′ ⊆ 〈u〉 and b has defect group D/〈u〉 ∼= Cpd−s−2 × Cp × Cp. In case
〈u〉 < Z(D), we have s ≤ d− 3 and Theorem 1 implies

(ps − 1)LL(Zb) ≤ (ps − 1)(pd−s−2 + 2p− 2) ≤ pd−2 + 2pd−2 − 2pd−3 − 3p+ 2 ≤ pd−1 − p.

Finally, assume that 〈u〉 = Z(D). By [33, Lemma 3], we have

I(b) ∼= I(b) ∼= CI(B)(u) 6= 1.

We want to show that I(b) acts semiregularly on D/Z(D). Let D = 〈x, y, z〉 as in Lemma 9, and let γ ∈ I(b).
Then yγ ≡ yizj (mod Z(D)) and zγ ≡ ykzl (mod Z(D)) for some i, j, k, l ∈ Z. Since D has nilpotency class 2,
we have

[y, z] = [y, z]γ = [yγ , zγ ] = [yizj , ykzl] = [y, z]il−jk.
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It follows that il − jk ≡ 1 (mod p) and I(b) ≤ SL(2, p). As a p′-subgroup of SL(2, p), I(b) acts indeed semireg-
ularly on D/Z(D). Thus, Corollary 5 shows that

(ps − 1)LL(Zb) ≤ (pd−2 − 1)p = pd−1 − p

Therefore, the claim follows from (3.1).

We do not expect that Lemma 11 is sharp. In fact, Jennings’s Theorem [11] shows that LL(FWp3) = 4p − 3.
Even in this small case the perfect isometry classes are not known (see for example [27]).

We are now in a position to deal with all non-abelian defect groups.

Theorem 12. Let B be a block of FG with non-abelian defect group of order pd. Then

LL(ZB) ≤ pd−1 + pd−2 − pd−3.

Proof. We argue by induction on d. Let D be a defect group of B. Again we will use (3.1). Let (u, b) be a
B-subsection with u ∈ D of order ps 6= 1. As before, we may assume that the dominated block b has defect
group CD(u)/〈u〉. If CD(u)/〈u〉 is cyclic, then CD(u) is abelian and therefore CD(u) < D. Hence,

(ps − 1)LL(Zb) ≤ (ps − 1)pd−s−1 ≤ pd−1 − 1 ≤ pd−1 + pd−2 − pd−3 − 1.

Suppose next that CD(u)/〈u〉 is abelian of type (pa1 , . . . , par ) with r ≥ 2. If s = d − 2, then D fulfills the
assumption of Lemma 9. Hence, by Proposition 10 and Lemma 11 we conclude that

LL(ZB) ≤ pd−1 − p+ 1 ≤ pd−1 + pd−2 − pd−3.

Consequently, we can restrict ourselves to the case s ≤ d− 3. Theorem 1 shows that

LL(Zb) ≤ pa1 + . . .+ par − r + 1 ≤ pa1+...+ar−1 + par − 1 ≤ |CD(u)|
ps+1

+ p− 1.

Hence, one gets

(ps − 1)LL(Zb) ≤ (ps − 1)(pd−s−1 + p− 1) ≤ pd−1 + ps+1 − ps − 1 ≤ pd−1 + pd−2 − pd−3 − 1.

It remains to consider the case where CD(u)/〈u〉 is non-abelian. Here induction gives

(ps − 1)LL(Zb) ≤ (ps − 1)(pd−s−1 + pd−s−2 − pd−s−3) ≤ pd−1 + pd−2 − pd−3 − 1.

Now the claim follows with (3.1).

In the situation of Theorem 12 we also have

dimZFD ≤ |Z(D)|+ pd − |Z(D)|
p

≤ pd−1 + pd−2 − pd−3,

but it is not clear if LL(ZB) ≤ dimZFD.

Doing the analysis in the proof above more carefully, our bound can be slightly improved, but this does not
affect the order of magnitude. Note also that Theorem 12 improves Eq. (1.1) even in case p = 2, because then
exp(D) ≥ 4. Nevertheless, we develop a stronger bound for p = 2 in the following. We begin with the 2-blocks
of defect 4. The definition of the minimal non-abelian group MNA(2, 1) can be found in [30, Theorem 12.2].
The following proposition covers all non-abelian 2-groups of order 16.

Proposition 13. Let B be a block of FG with defect group D. Then

LL(ZB) ≤


3 if D ∼= C4 o C4,

4 if D ∈ {M16, D8 × C2, Q8 × C2, MNA(2, 1)},
5 if D ∈ {D16, Q16, SD16, W16}.

In all cases we have LL(ZB) ≤ LL(FD).
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Proof. The case D ∼= M16 has already been done in Proposition 10. For the metacyclic group D ∼= C4 o C4,
B is nilpotent (see [30, Theorem 8.1]) and the result follows from Proposition 8. For the dihedral, quaternion,
semidihedral and minimal non-abelian groups the perfect isometry class is uniquely determined by the fusion
system of B (see [6, 34]). Moreover, all these fusion systems are non-exotic (see [30, Theorem 10.17]). In
particular, LL(ZB) ≤ LL(ZFH) for some finite group H. More precisely, if B is non-nilpotent, we may
consider the following groups H:

• PGL(2, 7) and PSL(2, 17) if D ∼= D16,

• SL(2, 7) and SmallGroup(240, 89) ∼= 2.S5 if D ∼= Q16,

• M10 (Mathieu group), GL(2, 3) and PSL(3, 3) if D ∼= SD16,

• SmallGroup(48, 30) ∼= A4 o C4 if D ∼= MNA(2, 1).

For all these groups H the number LL(ZFH) can be determined with GAP [9].

Finally, for D ∈ {D8×C2, Q8×C2, W16} one can enumerate the possible generalized decomposition matrices of
B up to basic sets (see [29, Propositions 3, 4 and 5]). In each case the isomorphism type of ZB can be determined
with a result of Puig [26]. We omit the details. Observe that we improve Lemma 11 for D ∼= W16. Finally, the
claim LL(ZB) ≤ LL(FD) can be shown with Jennings’s Theorem [11] or one consults [12, Corollary 4.2.4 and
Table 4.2.6].

Next we elaborate on Lemma 9.

Lemma 14. Let B be a 2-block of FG with non-abelian defect group D such that there exists a z ∈ Z(D) with
D/〈z〉 ∼= C2n × C2 where n ≥ 2. Then LL(ZB) < |D|/2.

Proof. By hypothesis there exist two maximal subgroups M1 and M2 of D containing z such that M1/〈z〉 ∼=
M2/〈z〉 ∼= C2n . It follows that M1 and M2 are abelian. Since D = M1M2, we obtain Z(D) = M1 ∩M2 and
|D : Z(D)| = 4. This implies |D′| = 2 (see e. g. [1, Lemma 1.1]). Obviously, D′ ≤ 〈z〉. By Lemma 9 we may
assume that Z(D) is abelian of rank 2.

Suppose for the moment that B is nilpotent. Since Z(D) is not cyclic, D 6∼= M2m for all m. Now a result of
Koshitani-Motose [21, Theorems 4 and 5] shows that

LL(ZB) = LL(ZFD) ≤ LL(FD) <
|D|
2
.

For the remainder of the proof we may assume that B is not nilpotent. Suppose that Z(D) = Φ(D). Then
D is minimal non-abelian and it follows from [30, Theorem 12.4] that D ∼= MNA(r, 1) for some r ≥ 2. By
Proposition 13 we can assume that r ≥ 3. By the main result of [34], B is isotypic to the principal block of H :=
A4oC2r . In particular, LL(ZB) ≤ LL(FH). Note that H contains a normal subgroup N ∼= C2r−1×C2×C2 such
that H/N ∼= S3 (see [34, Lemma 2]). By Passman [25, Theorem 1.6], (JFH)2 ⊆ (JFN)(FH) = (FH)(JFN).
It follows that

LL(FH) ≤ 2LL(FN) = 2(2r−1 + 2) < 2r+1 =
|D|
2
.

Thus, we may assume |D : Φ(D)| = 8 in the following. Let F be the fusion system of B. Suppose that there
exists an F-essential subgroup Q ≤ D (see [30, Definition 6.1]). Then z ∈ Z(D) ≤ CD(Q) ≤ Q and Q is
abelian. Moreover, |D : Q| = 2. It is well-known that AutF (Q) acts faithfully on Q/Φ(Q) (see [30, p. 64]). Since
D/Q ≤ AutF (Q), we obtain D′ * Φ(Q). On the other hand, z2 ∈ Φ(Q). This shows that D′ = 〈z〉 and D/D′
has rank 2. However, this contradicts |D : Φ(D)| = 8.

Therefore, B is a controlled block and Aut(D) is not a 2-group. Let 1 6= α ∈ Aut(D) be of odd order. Then α
acts trivially on D′ and on Ω(Z(D))/D′, since Z(D) has rank 2. Hence, α acts trivially on Ω(Z(D)) and also on
Z(D). But then α acts non-trivially on D/〈z〉 ∼= C2n × C2 which is impossible. This contradiction shows that
there are no more blocks with the desired property.

Proposition 15. Let B be a 2-block of FG with non-abelian defect group of order 2d. Then LL(ZB) < 2d−1.
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Proof. We mimic the proof of Theorem 12. Let D be a defect group of B, and let (u, b) be a B-subsection such
that u has order 2s > 1. It suffices to show that (2s − 1)LL(Zb) ≤ 2d−1 − 2. If CD(u)/〈u〉 is cyclic, then CD(u)
is abelian and CD(u) < D. Then we obtain

(2s − 1)LL(Zb) ≤ (2s − 1)2d−s−1 = 2d−1 − 2d−s−1.

We may assume that s = d − 1. Then by Proposition 10, we may assume that D is dihedral, semidihedral or
quaternion. Moreover, by Proposition 13, we may assume that d ≥ 5. Then [30, Theorem 8.1] implies

LL(ZB) ≤ dimZB = k(B) ≤ 2d−2 + 5 < 2d−1.

Now suppose that CD(u)/〈u〉 is abelian of type (2a1 , . . . , 2ar ) with r ≥ 2. As in Theorem 12, we may assume
that s ≤ d− 3. If a1 = 1 and r = 2, then by Lemma 14, we may assume that CD(u) < D. Hence, we obtain

(2s − 1)LL(Zb) ≤ (2s − 1)(2d−s−2 + 1) ≤ 2d−2 + 2d−3 ≤ 2d−1 − 2

in this case. Now suppose that r ≥ 3 or ai > 1 for i = 1, 2. If r = 3 and a1 = a2 = a3 = 1, we have
(2s − 1)LL(Zb) ≤ 2d−1 − 4. In the remaining cases we have s ≤ d− 4 and

(2s − 1)LL(Zb) ≤ (2s − 1)(2d−s−2 + 3) ≤ 2d−2 + 3 · 2d−4 ≤ 2d−1 − 2.

Finally, suppose that CD(u)/〈u〉 is non-abelian. Then the claim follows by induction on d.

Corollary 16. Let B be a block of FG with defect group D. Then LL(ZB) ≥ |D|/2 if and only if one of the
following holds:

(i) D is cyclic and l(B) ≤ 2,

(ii) D ∼= C2n × C2 for some n ≥ 1,

(iii) D ∼= C2 × C2 × C2 and B is nilpotent,

(iv) D ∼= C3 × C3 and B is nilpotent.

Proof. Suppose that LL(ZB) ≥ |D|/2. Then by Theorem 12 and Proposition 15, D is abelian. If D is cyclic,
we have LL(ZB) = |D|−1

l(B) + 1. If additionally l(B) ≥ 3, then we get the contradiction |D| ≤ 4. Now suppose
that D is not cyclic. Then

|D|
2
≤ LL(ZB) ≤ |D|

p
+ p− 1

by Theorem 1 and we conclude that

p2 ≤ |D| ≤ 2p(p− 1)

p− 2
.

This yields p ≤ 3. Suppose first that p = 3. Then we have D ∼= C3 ×C3 and 5 = LL(ZB) ≤ k(B)− l(B) + 1 by
Proposition 3. It follows from [15] that I(B) /∈ {C4, C8, Q8, SD16} (note that k(B)− l(B) is determined locally).
The case I(B) ∼= C2 is excluded by Corollary 5. Hence, we may assume that I(B) ∈ {C2 × C2, D8}. By [31,
Theorem 3] and [28, Lemma 2], B is isotypic to its Brauer correspondent in NG(D). This gives the contradiction
LL(ZB) ≤ 3. Therefore, B must be nilpotent and LL(ZB) = 5.

Now let p = 2. Then D has rank at most 3. If the rank is 3, we obtain LL(ZB) ≤ 2d−2 + 2 and d = 3. In this
case, B is nilpotent or I(B) ∼= C7 o C3 by Corollary 5. By [13], B is isotypic to its Brauer correspondent in
NG(D). From that we can derive that B is nilpotent and LL(ZB) = 4. It remains to handle defect groups of
rank 2. Here, D ∼= C2n × C2 for some n ≥ 1. If n ≥ 2, then B is always nilpotent and LL(ZB) = 2n + 1. If
n = 1, then both possibilities l(B) ∈ {1, 3} give LL(ZB) ≥ 2.

Conversely, we have seen that all our examples actually satisfy LL(ZB) ≥ |D|/2.
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The following approach gives more accurate results for a given arbitrary defect group. For a finite p-group P
we define a recursive function L as follows:

L(P ) :=



pa1 + . . .+ par − r + 1 if P ∼= Cpa1 × . . .× Cpar ,

pd−2 if P ∼= Mpd with pd 6= 8,

pd−1 − p+ 1 if P ∼= Wpd with pd 6= 16,

3 if P ∈ {D8, Q8, C4 o C4},
4 if P ∈ {D8 × C2, Q8 × C2, MNA(2, 1)},
5 if P ∈ {D16, Q16, SD16, W16},
max

{
(|〈u〉| − 1)L(CP (u)/〈u〉) : 1 6= u ∈ P

}
+ 1 otherwise.

Then, by the results above, every block B of FG with defect group D satisfies LL(ZB) ≤ L(D). For example,
there are only three non-abelian defect groups of order 36 giving the worst case estimate LL(ZB) ≤ 287.

In general, it is difficult to give good lower bounds on LL(ZB) (cf. [16, Corollary 2.7]). Assume for instance
that Fpn is the field with pn elements and G = Fpn o F×pn for some n ≥ 1. Then G has only one block B and
k(B)− l(B) = 1. It follows that LL(ZB) = 2. In particular, the defect of B is generally not bounded in terms
of LL(ZB).
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