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Abstract

We determine the structure of 2-blocks with minimal nonabelian defect groups, by making use of the clas-
sification of finite simple groups.
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In [29], the third author of this paper investigated 2-blocks B of finite groups whose defect groups D are minimal
nonabelian; this means that D is nonabelian but all proper subgroups of D are abelian. In most cases, it was
possible to determine the numerical invariants k(B), l(B) and ki(B), for i ≥ 0. Here, as usual, k(B) denotes
the number of irreducible ordinary characters in B, l(B) denotes the number of irreducible Brauer characters
in B, and ki(B) denotes the number of irreducible ordinary characters of height i in B, for i ≥ 0.

However, for one family of 2-blocks only partial results were obtained in [29]. Here we deal with this remaining
family of 2-blocks, by making use of the classification of the finite simple groups. Our main result is as follows:

Theorem 1. Let B be a non-nilpotent 2-block of a finite group G with defect group

D = 〈x, y : x2
r

= y2
r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉 (1)

where [x, y] := xyx−1y−1, [x, x, y] := [x, [x, y]] and |D| = 22r+1 ≥ 32. Then B is Morita equivalent to O[DoE]
where E is a subgroup of Aut(D) of order 3. In particular, we have

l(B) = 3, k(B) =
5 · 22r−2 + 16

3
, k0(B) =

22r + 8

3
, k1(B) =

22r−2 + 8

3
.

Here (K,O,F) denotes a splitting 2-modular system for G. Let again D be a 2-group as in (1). If B is a nilpotent
2-block of a finite group G with defect group D, then, by the main result of [28], B is Morita equivalent to OD.
So we have the following consequence of Theorem 1.

Corollary 2. Let D be a 2-group as in (1). Then Donovan’s Conjecture (cf. [24]) holds for 2-blocks of finite
groups with defect group D.

Combining Theorem 1 with results in [29], we obtain the following.

Corollary 3. Let B be a 2-block of a finite group with minimal nonabelian defect groups. Then B satisfies
Dade’s Ordinary Conjecture (cf. [13]), Alperin’s Weight Conjecture (cf. [2]), the Alperin-McKay Conjecture
(cf. [1]), Brauer’s k(B)-Conjecture (cf. [6]), Olsson’s k0(B)-Conjecture (cf. [27]), Eaton’s Conjecture (cf. [14]),
Brauer’s Height-Zero Conjecture (cf. [6]), and the Eaton-Moretó Conjecture (cf. [15]).

We gather together some useful facts about blocks with defect groups as in (1), all of which may be found in or
easily deduced from results in [29].

Lemma 4. Let B be a block of a finite group G with defect group D as in (1). Let (D, bD) be a maximal
B-subpair. Then
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(i) NG(D, bD) controls fusion of subpairs contained in (D, bD),

(ii) either B is nilpotent or |NG(D, bD) : DCG(D)| = 3, and in the latter case z := [x, y] is the only nontrivial
fixed point of Z(D) under the action of NG(D, bD),

(iii) if B is not nilpotent, then O2(Z(G)) ≤ 〈z〉,

(iv) if Q ≤ Z(D) and Q 6≤ D′, then there is a B-subpair (Q, bQ) with bQ nilpotent,

(v) if D ∈ Syl2(G), then G is solvable.

In our proof of Theorem 1, the following result will be very useful.

Lemma 5. Let G, B, D be as in Theorem 1. Moreover, let b be a 2-block of a normal subgroup H of G which
is covered by B. If a defect group d of b satisfies |d| < |D|, then b is nilpotent.

Proof. It is well-known that d is conjugate to D ∩ H (cf. Theorem E in [22]). Replacing D by a conjugate,
if necessary, we may assume that d = D ∩ H. If d < D then also dΦ(D) < D. By Lemma 4, B has inertial
index t(B) = 3. Since |D : Φ(D)| = 4, this implies that NG(D) permutes the three maximal subgroups of
D transitively. Since dΦ(D) is normal in NG(D), we must have |D : dΦ(D)| ≥ 4. But then d ⊆ Φ(D), and
[NH(D), D] ⊆ D∩H = d ⊆ Φ(D). Thus, NH(D) acts trivially on D/Φ(D). Hence, NH(D)/CH(D) is a 2-group.
Let β be the unique 2-block of DH covering b. Then D is a defect group of β, by Theorem E in [22]. Let βD be
a 2-block of DCDH(D) such that (βD)DH = β. Then NH(D,βD)/CH(D) and NDH(D,βD)/CDH(D) are also
2-groups, i. e. β has inertial index t(β) = 1. Since β is a controlled block, by Lemma 4 this implies that β is a
nilpotent block. But now Proposition 6.5 in [25] shows that b is also nilpotent.

Corollary 6. Let G, B, D be as in Theorem 1. If H CG has index a power of 2, then D ≤ H.

Proof. There is a block b of H covered by B with defect group D ∩ H. If D 6≤ H, then by Lemma 5, b is
nilpotent. But then by [25, 6.5], B is nilpotent, a contradiction.

We will apply Lemma 5 in connection with the results in [25]. We are almost in a position to start our proof of
Theorem 1. First we prove a general result which is presumably well-known, but whose proof we sketch for the
convenience of the reader.

Lemma 7. Let G = G1 ∗G2 be a central product of finite groups G1 and G2 and let B be a block of G. Let Bi

be the (unique) block of Gi CG covered by B. Then B is nilpotent if and only if both B1 and B2 are.

Proof. We may write G = E/Z, where E = G1×G2 and Z ≤ Z(E). Let BE be the unique block of E dominating
B, so Op′(Z) is in the kernel of BE and BE has defect group DE such that DEZ/Z is a defect group for B. By [4,
2.6] BE is nilpotent if and only if B is. Note that BE is a product of blocks of G1 and G2 which are nilpotent if
and only if B1 and B2 are. Hence it suffices to consider the case G = G1×G2. However, the result follows easily
in this case since the normalizer and centralizer of a subgroup Q of G1 × G2 are NG1

(π1(Q)) × NG2
(π2(Q))

and CG1(π1(Q))×CG2(π2(Q)), where πi(Q) is the image of the projection onto Gi (we leave the details to the
reader).

Proof (of Theorem 1). We assume that Theorem 1 fails, and choose a counterexample G, B, D such that
|G : Z(G)| is as small as possible. Moreover, among all such counterexamples, we choose one where |G| is
minimal. Then, by the first Fong reduction, the block B is quasiprimitive, i. e. for every normal subgroup N
of G, there is a unique block of N covered by B; in particular, this block of N is G-stable. Moreover, by the
second Fong reduction O2′(G) is cyclic and central.

We claim that Q := O2(G) ⊆ D′. Since Q E G we certainly have Q ⊆ D. If Q = D then B has a normal
defect group, and B is Morita equivalent to O[D o E], by the main result of [23]. Thus, we may assume that
1 < Q < D; in particular, Q is abelian. Let BQ be a block of QCG(Q) = CG(Q) such that (BQ)G = B. Since
CG(Q) E G, the block BQ has defect group CD(Q), and either CD(Q) = D or |D : CD(Q)| = 2. Since B has
inertial index t(B) = 3, NG(D) permutes the maximal subgroups of D transitively. Since CD(Q) E NG(D), we
must have CD(Q) = D, i e. Q ⊆ Z(D).
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Thus, BQ is a 2-block of CG(Q) with defect group D. If Q * D′ then BQ is nilpotent, by Lemma 4. Then, by
the main result of [25], B is Morita equivalent to a block of NG(D) with defect group D, and we are done by
the main result of [23].

This shows that we have indeed O2(G) ⊆ D′; in particular, |O2(G)| ≤ 2 and thus O2(G) ⊆ Z(G). Hence, also
F(G) = Z(G).

Let b be a block of E(G) covered by B. If b is nilpotent, then, by the main result of [25], B is Morita equivalent to
a 2-block B̃ of a finite group G̃ having a nilpotent normal subgroup Ñ such that G̃/Ñ ∼= G/E(G), and the defect
groups of B̃ are isomorphic to D. Thus by minimality, we must have E(G) = 1. Then F∗(G) = F(G) = Z(G),
and G = CG(Z(G)) = CG(F∗(G)) = Z(F∗(G)) = Z(G), a contradiction.

Thus, b is not nilpotent. By Lemma 5, b has defect group D. Let L1, . . . , Ln be the components of G and, for
i = 1, . . . , n, let bi be a block of Li covered by b. If b1, . . . , bn were nilpotent, then b would also be nilpotent by
Lemma 7, a contradiction. Thus, we may assume that b1 is a non-nilpotent 2-block (of the quasisimple group
L1). By Lemma 5, D is a defect group of b1. But now the following proposition gives a contradiction.

Proposition 8. Let D be a 2-group as in (1), and let G be a quasisimple group. Then G does not have a 2-block
B with defect group D.

Note that the proposition holds for classical groups by [3], where blocks whose defect groups have derived
subgroup of prime order are classified. However, since our situation is less general we are able to give new and
more direct arguments here.

Proof. We assume the contrary. Then we may also assume that B is faithful. Note that by [5], B cannot be
nilpotent since D is nonabelian. By Lemma 4, D is not a Sylow 2-subgroup of G, in particular, 64 = 26 divides
|G|.

Suppose first that G := G/Z(G) ∼= An for some n ≥ 5. If |Z(G)| > 2, then n ∈ {6, 7} and |Z(G)| | 6, by [19].
But then |G| is not divisible by 64, a contradiction. Thus, we must have |Z(G)| ≤ 2. Then Z(G) ⊆ D, and B
dominates a unique 2-block B of G with defect group D := D/Z(G) 6= 1. Let B be a 2-block of Sn covering B.
Then B has a defect group D such that D ⊆ D and |D : D| = 2, by results in [21]. Let w denote the weight of
B. Then, by a result in [21], D is conjugate to a Sylow 2-subgroup of S2w. We may assume that D is a Sylow
2-subgroup of S2w. Then D = D ∩ An = D ∩ S2w ∩ An = D ∩ A2w is a Sylow 2-subgroup of A2w, and D is a
Sylow 2-subgroup of A2w or 2.A2w. Thus, A2w is solvable by Lemma 4, so that w ≤ 2 and |D| ≤ 4, |D| ≤ 8.
Since |D| ≥ 32, this is a contradiction.

Suppose next that G is a sporadic simple group. Then, using Table 1 in [5], we get a contradiction immediately
unless G = Ly and |D| = 27. In this remaining case, we get a contradiction since, by [26], D is a Sylow
2-subgroup of 2.A8, and A8 is non-solvable.

Now suppose that G is a group of Lie type in characteristic 2. Then, by a result of Humphreys [20], the 2-blocks
of G have either defect zero or full defect. Thus, again Lemma 4 leads to a contradiction.

It remains to deal with the groups of Lie type in odd characteristic. We use three strategies to deal with the
various subcases.

Suppose first that G ∼= PSLn(q) or PSUn(q) where 1 < n ∈ N and q is odd. Except in the cases PSL2(9) and
PSU4(3), there is E ∼= SLn(q) or SUn(q) such that G is a homomorphic image of E with kernel W say. We may
rule out the cases G/Z(G) ∼= PSL2(9) or PSU4(3) using [18]. Let H ∼= GLn(q) or GUn(q) with ECH. There is a
block BE of E with defect group DE such that DEW/W ∼= D. Let BH be a block of H covering BE with defect
group DH such that DH ∩E = DE . Now BH is labeled by a semisimple element s ∈ H of odd order such that
DH ∈ Syl2(CH(s)) (see, for example, [7, 3.6]). It follows that D ∈ Syl2(CE(s)/W ) and so CE(s)/W is solvable
by Lemma 4. Now W and H/E are solvable, so CH(s) is also solvable. By [17, 1A] CH(s) is a direct product of
groups of the form GLni

(qmi) and GUni
(qmi). Write CH(s) ∼=

(∏t1
i=1 GLni

(qmi)
)
×
(∏t2

i=t1+1 GUni
(qmi)

)
where

t1, t2 ∈ N, n1, . . . , nt2 ∈ N, and m1, . . . ,mt2 ∈ N, with ni ≥ 3 for i > t1. Solvability implies that t2 = t1 and
that for i = 1, . . . , t1 we have either ni = 1 or ni = 2, where in the latter case mi = 1 and q = 3. Since D, DE ,
and DH are nonabelian, we cannot have ni = 1 for all i = 1, . . . , t1. Thus, we must have q = 3 and, without
loss of generality, n1 = 2, m1 = 1. Then DH is a direct product of factors which are either cyclic or isomorphic
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to SD16. Moreover, we have |DH : DE | ≤ 2 and |W | ≤ 2. Since |D : Φ(D)| = 4, we also have |DE : Φ(DE)| ≤ 8
and |DH : Φ(DH)| ≤ 16.

Suppose first that |DH : Φ(DH)| = 16. Then |DE : Φ(DE)| = 8, |DH : DE | = 2, and |W | = 2. SinceW * Φ(DE),
DE
∼= D ×W . If DH

∼= SD16 × SD16, then |DH | = 28 and |D| = 26 which is impossible.

Thus, we must haveDH
∼= SD16×Ck×Cl where k and l are powers of 2. Observe that Φ(DE) ⊆ Φ(DH) and |DH :

Φ(DH)| = 16 = |DH : Φ(DE)|. So we must have Φ(DE) = Φ(DH). Since Φ(DE) ∼= Φ(D) ∼= C2r−1 ×C2r−1 ×C2

and Φ(DH) ∼= C4×Ck/2×Cl/2, this implies that 4 = 2r−1, i. e. r = 3 and Φ(D) ∼= Φ(DE) ∼= C4×C4×C2. So we
may assume that k = 8, l = 4. Thus, DE

∼= D×C2 and DH
∼= SD16 ×C8 ×C4. Hence, D′E = D′ × 1, |D′E | = 2

and D′E ⊆ D′H ∩Z(DH) ∼= Z(SD16)× 1× 1, so that D′E = Z(SD16)× 1× 1. Moreover, DE/D
′
E
∼= C8×C8×C2

is a subgroup of DH/D
′
E
∼= D8 × C8 × C4. Hence f2(C8 × C8 × C2) ∼= C2 × C2 is isomorphic to a subgroup of

f2(D8 × C8 × C4) ∼= C2 which is impossible.

Next we consider the case |DH : Φ(DH)| = 8. In this case we have DH
∼= SD16 × Ck where k is a power of

2. Then Φ(DE) ⊆ Φ(DH) ∼= C4 × Ck/2 and Φ(D) ∼= Φ(DEW/W ) = Φ(DE)W/W . However, this contradicts
Φ(D) ∼= C2r−1 × C2r−1 × C2.

The case |DH : Φ(DH)| ≤ 4 is certainly impossible.

A similar argument applies to the other classical groups, at least when they are defined over fields with q > 3
elements, and we give this now. Suppose that G is a classical quasisimple group of type Bn(q), Cn(q), Dn(q) or
2Dn(q), where q > 3 is a power of an odd prime. Note that in these cases there is no exceptional cover.

Let E be the Schur cover of G/Z(G), so that G is a homomorphic image of E with kernel W say. Note that
Z(E), and so W , is a 2-group. There is a block BE of E with defect group DE such that D ∼= DE/W . Details
of the following may be found in [10] and [8]. We may realize E as EF , where E is a simple, simply-connected
group of Lie type defined over the algebraic closure of a finite field, F : E→ E is a Frobenius map and EF is the
group of fixed points under F . Write E∗ for the group dual to E, with corresponding Frobenius map F ∗. Note
that if H is an F -stable connected reductive subgroup of E, then H has dual H∗ satisfying |HF | = |(H∗)F∗ |.

By [16, 1.5] there is a semisimple element s ∈ E∗ of odd order such that DE is a Sylow 2-subgroup of LF ,
where L ≤ E is dual to C0

E∗(s), the connected component of CE∗(s) containing the identity element. Now
W ≤ Z(E) ≤ DE ≤ LF . Hence DE/W ∈ Syl2(LF /W ). By Lemma 4, LF /W , and so LF , is solvable. Now by [9]
CE∗(s) factorizes as MT, where T is a torus and M is semisimple, C(E∗)F∗ (s) = CE∗(s)

F∗ = MF∗TF∗ and the
components of MF∗ are classical groups defined over fields of order a power of q. Hence C(E∗)F∗ (s) is either
abelian or non-solvable. It follows that LF is either abelian or non-solvable, in either case a contradiction.

Let G be a quasisimple finite group of Lie type with |G| minimized such that there is a block B of G with defect
group D as in (1). We have shown that G cannot be defined over a field of characteristic two, of type An(q) or
2An(q) or of classical type for q > 3.

We group the remaining cases into two.

Case 1. Suppose that G is a quasisimple finite group of Lie type with center of odd order, and further that q = 3
if G is classical. We analyze CG(z), where we recall that D′ = 〈z〉. There is a non-nilpotent block bz of CG(z)
with defect group D. As z is semisimple, CG(z) may be described in detail. By [19, 4.2.2] CG(z) has a normal
subgroup C0 such that CG(z)/C0 is an elementary abelian 2-group and C0 = LT , where L = L1∗· · ·∗LmCC0 is
a central product of quasisimple groups of Lie type and T is an abelian group acting on each Li by inner-diagonal
automorphisms.

If G is a classical group or any exceptional group of Lie type except E6(q), 2E6(q) or E7(q), then by [19, 4.5.1]
and [19, 4.5.2], T is a 2-group. In particular CG(z)/L is a 2-group, so by Corollary 6, D ≤ L. Let bL be a block
of L covered by bz with defect group D. If bL is nilpotent, then by [25, 6.5] bz is also nilpotent since CG(z)/L
is a 2-group, a contradiction. Hence bL is not nilpotent. By Lemma 5, for each i we have that bL either covers
a nilpotent block of Li, or D ≤ Li. It follows that either D ≤ Li for some i or bL covers a nilpotent block of
each Li. In the latter case by Lemma 7, bL would be nilpotent, a contradiction. Hence D ≤ Li for some i and
there is a non-nilpotent block of Li with defect group D. But |Li| < |G| and Li is quasisimple, contradicting
minimality.

If G is of type E6(q) or 2E6(q), then in the notation of [19, 4.5.1] G has (up to isomorphism of centralizers) two
conjugacy classes of involutions, with representatives t1 and t2. Suppose first of all that z is of type t1. In this case
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CG(z) has a normal subgroup X of index a power of 2 such that X is a central product of L = L1 and a cyclic
group A. Arguing as above, bz either covers a nilpotent block of X, and so is itself nilpotent (a contradiction) or
D ≤ X. So bz covers a non-nilpotent block bX of X with defect group D. Applying the argument again, either
bX covers nilpotent blocks of L and A, in which case bX would be nilpotent by Lemma 7 (a contradiction), or
D ≤ L. We have |L| < |G| and L is quasisimple, so by minimality we obtain a contradiction. Consider now the
case that z has type t2. Then CG(z) has a normal subgroup of index 2 which is a central product of quasisimple
groups, and we can argue as above to again get a contradiction.

If G is of type E7(q), then in the notation of [19, 4.5.1] G has (up to isomorphism of centralizers) five conjugacy
classes of involutions, with representatives t1, t4, t′4, t7 and t′7. In the first three of these cases T is a 2-group
and we may argue exactly as above. In case t7 and t′7, we have |CG(z) : C0| = 2 and by a now familiar argument
D ≤ C0 and bz covers a non-nilpotent block of C0 with defect group D. There is X C C0 of index 3 such that
X = LA, where L = L1 and A is cyclic of order q ± 1. Now by Lemma 4, O2(Z(A)) = 〈z〉, so |A|2 = 2 and
D ≤ L. By minimality this situation cannot arise since L is quasisimple, and we are done in this case.

Case 2. Suppose that G is a quasisimple group of Lie type with center of even order, and further that q = 3 if
G is classical. Note that G cannot be of type An(q) or 2An(q). Here we must use a different strategy since we
may have CG(z) = G. Let u ∈ Z(D) be an involution with u 6= z. By Lemma 4 there is a nilpotent block bu of
CG(u) with bGu = B. As before we refer to [19, 4.5.2] for the structure of CG(u), and CG(u) ∼= LT , where L is a
central product of either one or two quasisimple groups and T is an abelian group acting on L by inner-diagonal
automorphisms. We take a moment to discuss types Dn(3) for n ≥ 4 even and 2Dn(3). In these two cases the
universal version of the group has center of order 4, and the information given in [19, 4.5.2] applies only to
the full universal version. In order to extract the required information when |Z(G)| = 2 it is necessary to use
[19, 4.5.1], taking advantage of the fact that if Y is a finite group, X ≤ Z(Y ) with |X| = 2 and y ∈ Y is an
involution, then |CY/X(yX) : CY (y)/X| divides 2. Note also that [19, 4.5.2] gives the fixed point group of an
automorphism of order 2 acting on G, and that not every such automorphism is realized by an involution in G
(this information is contained in the column headed |t̂|). We will make no further reference to this fact.

Now Z(CG(u)) and T are both 2-groups, and in each case there is a direct product E of quasisimple groups of
Lie type and abelian 2-groups, with W ≤ Z(E) such that L ∼= E/W and W is a 2-group, and there is a direct
product H of finite groups of Lie type such that E ≤ H has index a power of 2 and H/W has a subgroup
isomorphic to CG(u) of index a power of 2. Since W and H/E are 2-groups, by [25, 6.5] there are nilpotent
blocks BE of E and BH of H with defect groups DE and DH such that DE ≤ DH and DE/W has a subgroup
isomorphic to D. By Lemma 7, BE is a product of nilpotent blocks of finite groups of Lie type, and so by [5],
DE is abelian. But then D is abelian, a contradiction.

Proposition 9. Let B be as in Theorem 1. Then D is the vertex of the simple B-modules.

Proof. First we consider the situation in the group DoE. Here the three irreducible Brauer characters are linear
and can be extended to irreducible ordinary characters. By Theorem 1 there is a Morita equivalence between
O[D o E] and B. Under this equivalence the three ordinary linear characters map to irreducible characters of
height 0 in B. These characters are again extensions of three distinct Brauer characters, since the decomposition
matrix is also preserved under Morita equivalence. Now the claim follows from Theorem 19.26 in [12].
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