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Abstract

We prove that two 2-blocks of (possibly different) finite groups with a common minimal nonabelian defect
group and the same fusion system are isotypic (and therefore perfectly isometric) in the sense of Broué. This
continues former work by [Cabanes-Picaronny, 1992], [Sambale, 2011] and [Eaton-Külshammer-Sambale,
2012].
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1 Introduction

Since its appearance in 1990, Broué’s Abelian Defect Conjecture gained much attention among representation
theorists. On the level of characters it predicts the existence of a perfect isometry between a block with abelian
defect group and its Brauer correspondent. These blocks have a common defect group and the same fusion
system. Although Broué’s Conjecture is false for nonabelian defect groups (see [4]), one can still ask if perfect
isometries or even isotypies exist. We affirmatively answer this question for p = 2 and minimal nonabelian
defect groups (see Theorem 9 below). These are the nonabelian defect groups such that any proper subgroup
is abelian. Doing so, we verify the character-theoretic version of Rouquier’s Conjecture [17, A.2] in this special
case (see Corollary 10 below). At the same time we provide a new infinite family of defect groups supporting a
blockwise Z∗-Theorem.

By Rédei’s classification of minimal nonabelian p-groups, one has to consider three distinct families of defect
groups. For two of these families the result already appeared in the literature (see [3, 19, 5]). Hence, it suffices to
handle the remaining family which we will do in the next section. The proof of the main result is an application
of Horimoto-Watanabe [10, Theorem 2]. The last section of the present paper also contains a related result for
the nonabelian defect group of order 27 and exponent 9.

Our notation is fairly standard. We consider blocks B of finite groups with respect to a p-modular system
(K,O, F ) where O is a complete discrete valuation ring with quotient field K of characteristic 0 and field of
fractions F of characteristic p. As usual, we assume that K is “large” enough and F is algebraically closed.
The number of irreducible ordinary characters (resp. Brauer characters) of B is denoted by k(B) (resp. l(B)).
Moreover, ki(B) is the number of those irreducible characters of B which have height i ≥ 0. For other results
on block invariants and fusion systems we often refer to [20]. Moreover, for the definition and construction of
perfect isometries we follow [1, 3]. A cyclic group of order n ∈ N is denoted by Cn.
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2 A class of minimal nonabelian defect groups

Let B be a non-nilpotent 2-block of a finite group G with defect group

D = 〈x, y | x2
r

= y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉 ∼= C2
2 o C2r (1)

where r ≥ 2, [x, y] := xyx−1y−1 and [x, x, y] := [x, [x, y]].

We have already investigated some properties of B in [19], and later gave simplified proofs in [20, Chapter 12].
For the convenience of the reader we restate some of these results.

Lemma 1 ([20, Lemma 12.3]). Let z := [x, y]. Then the following holds:

(i) Φ(D) = Z(D) = 〈x2, z〉 ∼= C2r−1 × C2.

(ii) D′ = 〈z〉 ∼= C2.

(iii) |Irr(D)| = 5 · 2r−1.

Recall that a (saturated) fusion system F on a p-group P determines the following subgroups:

Z(F) := {x ∈ P : x is fixed by every morphism in F},
foc(F) := 〈f(x)x−1 : x ∈ Q ≤ P, f ∈ AutF (Q)〉,
hyp(F) := 〈f(x)x−1 : x ∈ Q ≤ P, f ∈ Op(AutF (Q))〉.

Lemma 2. The fusion system F of B is the constrained fusion system of the finite group A4 o C2r where C2r

acts as a transposition in Aut(A4) ∼= S4. In particular, B has inertial index 1 and Q := 〈x2, y, z〉 ∼= C2r−1 ×C2
2

is the only F-essential subgroup of D. Moreover, AutF (Q) ∼= S3. Without loss of generality, Z(F) = 〈x2〉 and
hyp(B) = foc(B) = foc(F) = 〈y, z〉.

Proof. We have seen in [20, Proposition 12.7] that F is constrained and coincides with the fusion system of
A4 o C2r . The construction of the semidirect product A4 o C2r is slightly different in [20], but it is easy
to see that both constructions give isomorphic groups. The remaining claims follow from the proof of [20,
Proposition 12.7].

By a result of Watanabe [25, Theorem 3 and Lemma 3], the hyperfocal subgroup of a 2-block is trivial or
non-cyclic. Hence, our situation with a Klein-four (hyper)focal subgroup represents the first non-trivial example
in some sense. Recall that a B-subsection is a pair (u, bu) such that u ∈ D and bu is a Brauer correspondent of
B in CG(u).

Lemma 3. The set R := Z(D) ∪ {xiyj : i, j ∈ Z, i odd} is a set of representatives for the F-conjugacy classes
of D with |R| = 2r+1. For u ∈ R let (u, bu) be a B-subsection. Then bu has defect group CD(u). Moreover,
l(bu) = 1 whenever u ∈ R \ 〈x2〉.

Proof. By Lemma 2, it is easy to see that R is in fact a set of representatives for the F-conjugacy classes of D.
Observe that 〈u〉 is fully F-normalized for all u ∈ R. Hence, by [20, Lemma 1.34], bu has defect group CD(u)
and fusion system CF (〈u〉). It is easy to see that CF (〈u〉) is trivial unless u ∈ Z(F) = 〈x2〉. This shows l(bu) = 1
for u ∈ R \ 〈x2〉.

Theorem 4 ([20, Theorem 12.4]). We have k(B) = 5 · 2r−1, k0(B) = 2r+1, k1(B) = 2r−1 and l(B) = 2.

Proof. By Lemma 2, we have |D : foc(B)| = 2r. In particular, 2r | k0(B) by [16, Theorem 1]. Moreover, [11,
Theorem 1.1] implies 2r+1 ≤ k0(B). By Lemma 3 we have l(bx) = 1. Thus, we obtain k0(B) = 2r+1 by a result
of Robinson (see [20, Theorem 4.12]). In order to determine l(B), we use induction on r. Let u := x2. Then
bu dominates a block bu of CG(u)/〈u〉 with defect group D := D/〈u〉 ∼= D8 and fusion system F := F/〈u〉.
By [13, Theorem 6.3], 〈x2, y, z〉/〈u〉 ∼= C2

2 is the only F-essential subgroup of D. Therefore, a result of Brauer
(see [20, Theorem 8.1]) shows that l(bu) = l(bu) = 2. By Lemma 3 and [20, Theorem 1.35] it follows that
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k(B) > k0(B). Since |Z(D) : Z(D) ∩ foc(B)| = 2r−1, we have 2r−1 | ki(B) for i ≥ 1 by [16, Theorem 2]. Thus,
by [15, Theorem 3.4] we obtain

2r+2 ≤ k0(B) + 4(k(B)− k0(B)) ≤
∞∑
i=0

ki(B)22i ≤ |D| = 2r+2.

This gives k1(B) = 2r−1 and k(B) = k0(B) + k1(B) = 5 · 2r−1. In case r = 2, [20, Theorem 1.35] implies

l(B) = k(B)−
∑

16=u∈R

l(bu) = 10− 8 = 2.

Now let r ≥ 3 and 1 6= 〈u〉 < 〈x2〉. Then bu as above has the same type of defect group as B except that r is
smaller. Hence, induction gives l(bu) = l(bu) = 2. Now the claim l(B) = 2 follows again by [20, Theorem 1.35].

In the following results we denote the set of irreducible characters of B of height i by Irri(B).

Proposition 5 ([20, Proposition 12.9]). The set Irr0(B) contains four 2-rational characters and two families
of 2-conjugate characters of size 2i for every i = 1, . . . , r−1. The characters of height 1 split into two 2-rational
characters and one family of 2-conjugate characters of size 2i for every i = 2, . . . , r − 2.

Proposition 6. There are 2-rational characters χi ∈ Irr(B) for i = 1, 2, 3 such that

Irr0(B) = {χi ∗ λ : i = 1, 2, λ ∈ Irr(D/foc(B))},
Irr1(B) = {χ3 ∗ λ : λ ∈ Irr(Z(D)foc(B)/foc(B))}.

In particular, the characters of height 1 have the same degree and |{χ(1) : χ ∈ Irr0(B)}| ≤ 2.

Proof. We have already seen in the proof of Theorem 4 that the action of D/foc(B) on Irr0(B) via the ∗-
construction has two orbits, and the action of Z(D)foc(B)/foc(B) on Irr1(B) is regular. By Proposition 5
we can choose 2-rational representatives for these orbits. Notice that we identify the sets Irr(D/foc(B)) and
Irr(Z(D)foc(B)/foc(B)) with subsets of Irr(D) in an obvious manner.

In the situation of Proposition 6 it is conjectured that χ1(1) 6= χ2(1) (see [14]).

Proposition 7 ([20, Proposition 12.8]). The Cartan matrix of B is given by

2r−1
(

3 1
1 3

)
up to basic sets.

Observe that Proposition 7 also gives the Cartan matrix for the defect group D8 and the corresponding fusion
system (this would be the case r = 1).

Now we are in a position to obtain the generalized decomposition matrix of B. This completes partial results
in [19, Section 3.3].

Proposition 8. Let R and χi be as in Lemma 3 and Proposition 6 respectively. Then there are basic sets for
bu (u ∈ R) and signs ε, σ ∈ {±1} such that the generalized decomposition numbers of B have the following form

u x2i x2iz x2i+1 x2i+1y
duχ1ϕ (1, 0) 1 1 1
duχ2ϕ (0, ε) ε ε −ε
duχ3ϕ (σ, σ) −2σ 0 0

.
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Proof. Since the Galois group of Q(e2πi/2
r

) over Q acts on the columns of the generalized decomposition
matrix (cf. Proposition 5), we only need to determine the numbers duχiϕ for u ∈ {x, xy, x2j , x2jz} (i = 1, 2, 3,
j = 1, . . . , r). First let u = x. Then the orthogonality relations show that

2r|dxχ1ϕ|
2 + 2r|dxχ2ϕ|

2 + 2r−1|dxχ3ϕ|
2 = 2r+1.

Since χ1 and χ2 have height 0, we have dxχ1ϕ 6= 0 6= dxχ2ϕ (see [20, Proposition 1.36]). It follows that dxχiϕ = ±1
for i = 1, 2 and dxχ3ϕ = 0, because χi is 2-rational. By replacing ϕ with −ϕ if necessary (i. e. changing the basic
set for bx), we may assume that dxχ1ϕ = 1. We set dxχ2ϕ =: ε0. Similarly, we obtain dxyχ1ϕ = 1, dxyχ2ϕ = ±1 and
dxyχ3ϕ = 0. Now since the columns dx and dxy of the generalized decomposition matrix are orthogonal, we obtain
dxyχ2ϕ = −ε0.

Now let u := x2
j

for some j ∈ {1, . . . , r}. Let IBr(bu) = {ϕ1, ϕ2} (see proof of Theorem 4). Then by Proposition 7
we get

2r|duχ1ϕ1
|2 + 2r|duχ2ϕ1

|2 + 2r−1|duχ3ϕ1
|2 = 3 · 2r−1,

2r|duχ1ϕ2
|2 + 2r|duχ2ϕ2

|2 + 2r−1|duχ3ϕ2
|2 = 3 · 2r−1,

2rduχ1ϕ1
duχ1ϕ2

+ 2rduχ2ϕ1
duχ2ϕ2

+ 2r−1duχ3ϕ1
duχ3ϕ2

= 2r−1.

Obviously, duχ1ϕ1
duχ2ϕ1

= 0 and we may assume that (duχ1ϕ1
, duχ1ϕ2

) = (1, 0) and (duχ2ϕ1
, duχ2ϕ2

) = (0, εj) for a
sign εj ∈ {±1}. Moreover, duχ3ϕ1

= duχ3ϕ2
=: σj ∈ {±1}. Now let u := x2

j

z. Then we have

2r|duχ1ϕ|
2 + 2r|duχ2ϕ|

2 + 2r−1|duχ3ϕ|
2 = 2r+2.

It is known that 2 | duχ3ϕ 6= 0, since bu is major (see [20, Proposition 1.36]). This gives duχ1ϕ = 1, duχ2ϕ = ±1 and

duχ3ϕ = ±2. By the orthogonality to dx
2j

we obtain that duχ3ϕ = −2σj and duχ2ϕ = εj .

It remains to show that the signs εj and σj do not depend on j. For this we consider characters λ, ψ ∈ Irr(D)
whose values are given as follows

x2
j

x2
j

z x xy
λ 1 1 1 −1
ψ 2 −2 0 0

.

Observe that ψ is the inflation of the irreducible character of D/〈x2〉 ∼= D8 of degree 2. It is easy to see
that (λ + ψ)(x2ky) = −1 = 1 − 2 = (λ + ψ)(x2kz) for every k ∈ Z. It follows that λ + ψ is F-stable, i. e.
(λ + ψ)(u) = (λ + ψ)(v) whenever u and v are F-conjugate. By Broué-Puig [1], χ1 ∗ (λ + ψ) is a generalized
character of B. In particular, the scalar product (χ1 ∗ (λ+ψ), χ3)G is an integer. This number can be computed
by using the so-called contribution numbers mu

χ1χ3
:= duχ1

C−1u duχ3

T
where Cu is the Cartan matrix of bu and

duχi
is the row of the generalized decomposition matrix corresponding to (u, bu) and χi. In case u = x2

j

we have

C−1u = 2−r−2
(

3 −1
−1 3

)
by Proposition 7. This gives mu

χ1χ3
= 2−r−1σj . Similarly, mu

χ1χ3
= −2−r−1σj for u = x2

j

z. Thus, we obtain

(χ1 ∗ (λ+ ψ), χ3)G =
∑
u∈R

(λ+ ψ)(u)mu
χ1χ3

=
∑

u∈Z(D)

(λ+ ψ)(u)mu
χ1χ3

= (3 + 1)
(

2−r−1σr + 2−r−1
r−1∑
j=1

σj2
r−j−1

)
= 2−r+1σr +

r−1∑
j=1

σj2
−j .

If σ1 = σj for some j 6= 1, then it follows immediately that σ1 = . . . = σr (otherwise the scalar product above is
not an integer). Now suppose that −σ1 = σ2 = . . . = σr. In this case we replace χ3 by the 2-rational character
χ3 ∗ τ where τ ∈ Irr(Z(D)foc(B)/foc(B)) such that τ(x2) = −1. This changes σ1, but does not affect σj for
j > 1.

A similar argument with the scalar product (χ2 ∗ (λ + ψ), χ3)G implies that ε1 = . . . = εr. In case ε0 = −ε1,
we replace χ2 by χ2 ∗ τ where τ ∈ Irr(D/foc(B)) such that τ(x) = −1. Observe again that this changes ε0, but
keeps εj for j > 0. This completes the proof.
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3 The main result

Theorem 9. Let B and B̃ be 2-blocks of (possibly different) finite groups with a common minimal nonabelian
defect group and the same fusion system. Then B and B̃ are isotypic (and therefore perfectly isometric).

Proof. We may assume that B is not nilpotent by Broué-Puig [2]. LetD be a defect group of B and B̃. If |D| = 8,
then the claim follows from [3]. Now suppose that D is given as in (1). We will attach a tilde to everything
associated with B̃. By Proposition 8 and [10, Theorem 2] there is a perfect isometry I : CF(G,B)→ CF(G̃, B̃)
where CF(G,B) denotes the space of class functions with basis Irr(B) over K. It remains to show that I is also
an isotypy. In order to do so, we follow [3, Section V.2]. For each u ∈ D let CF(CG(u)2′ , bu) be the space of
class functions on CG(u) which vanish on the p-singular classes and are spanned by IBr(bu). The decomposition
map duG : CF(G,B)→ CF(CG(u)2′ , bu) is defined by

duG(χ)(s) := χ(ebuus) =
∑

ϕ∈IBr(bu)

duχϕϕ(s)

for χ ∈ Irr(B) and s ∈ CG(u)2′ where ebu is the block idempotent of bu over O. Then I determines isometries

Iu : CF(CG(u)2′ , bu)→ CF(CG̃(u)2′ , b̃u)

by the equation du
G̃
◦ I = Iu ◦ duG. Note that I1 is the restriction of I. We need to show that Iu can be

extended to a perfect isometry Îu : CF(CG(u), bu) → CF(CG̃(u), b̃u). Suppose first that bu is nilpotent. Then
by Proposition 8, duG(χ1) = εϕ and du

G̃
(I(χ1)) = ε̃ϕ̃ where IBr(bu) = {ϕ} and IBr(b̃u) = {ϕ̃} for some signs

ε, ε̃ ∈ {±1}. It follows that Iu(ϕ) = εε̃ϕ̃. Let ψ ∈ Irr0(bu) and ψ̃ ∈ Irr0(b̃u) be 2-rational characters. Then it is
well-known that ϕ = d1CG(u)(ψ) and Irr(bu) = {ψ ∗ λ : λ ∈ Irr(D)} (see [2]). Therefore, we may define Îu by

Îu(ψ ∗ λ) := εε̃ψ̃ ∗ λ for λ ∈ Irr(D). Then Îu is a perfect isometry and

Îu(ϕ) = Îu(d1CG(u)(ψ)) = d1CG̃(u)(Î
u(ψ)) = εε̃d1CG̃(u)(ψ̃) = εε̃ϕ̃ = Iu(ϕ).

Hence, Îu extends Iu. Moreover, Îu does not depend on the generator of 〈u〉, since the signs ε and ε̃ were defined
by means of 2-rational characters.

Assume next that bu is non-nilpotent. Then u ∈ 〈x2〉 and bu has defect group D. By Proposition 8, we can
choose basic sets ϕ1, ϕ2 (resp. ϕ̃1, ϕ̃2) for bu (resp. b̃u) such that ϕi = duG(χi) and ϕ̃i = du

G̃
(I(χi)) for i = 1, 2.

Then Iu(ϕi) = ϕ̃i for i = 1, 2. Since the Cartan matrix of bu with respect to the basic set ϕ1, ϕ2 is already
fixed (and given by Proposition 7), we find 2-rational characters ψi ∈ Irr0(bu) such that d1CG(u)(ψi) = εiϕi with

εi ∈ {±1} for i = 1, 2 (see proof of Proposition 8). Similarly, one has ψ̃i ∈ Irr0(b̃u) such that d1CG̃(u)(ψ̃i) = ε̃iϕ̃i.

Then, by what we have already shown, there exists a perfect isometry Îu : CF(CG(u), bu) → CF(CG̃(u), b̃u)

sending ψi to εiε̃iψ̃i for i = 1, 2. We have

Îu(ϕi) = εiÎu(d1CG(u)(ψi)) = εid
1
CG̃(u)(Î

u(ψi)) = ε̃id
1
CG̃(u)(ψ̃i) = ϕ̃i = Iu(ϕi)

for i = 1, 2. This shows that Îu extends Iu. Moreover, it is easy to see that Îu does not depend on the generator
of 〈u〉.

Altogether we have proved the theorem if D is given as in (1). By [20, Theorem 12.4] it remains to handle the
case

D ∼= 〈x, y | x2
r

= y2
r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉

where r ≥ 2. Here B and B̃ are Morita equivalent and therefore perfectly isometric. However, a Morita equiv-
alence does not automatically provide an isotypy. Nevertheless, in this special case the Morita equivalence
is a composition of various “natural” equivalences (namely Fong reductions, Külshammer-Puig reduction and
Külshammer’s reduction for blocks with normal defect groups, see [5, proof of Theorem 1]). In particular, the
generalized decomposition matrices of B and B̃ coincide up to signs (see [24]). Now we can use the same methods
as above in order to construct an isotypy. In fact, for every B-subsection (u, bu) one has that bu is nilpotent or
u = [x, y] and bu Morita equivalent to B (see proof of [19, Proposition 4.3]). We omit the details.
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Corollary 10. Let B be a 2-block of a finite group G with minimal nonabelian defect group D 6∼= D8. Then B
is isotypic to a Brauer correspondent in NG(hyp(B)).

Proof. Let bD be a Brauer correspondent of B in DCG(D). Since DCG(D) ⊆ NG(hyp(B)), the Brauer cor-
respondent b := b

NG(hyp(B))
D of B has defect group D. By Theorem 9, it suffices to show that B and b have

the same fusion system. Observe that NG(D, bD) ⊆ NG(hyp(B)). In particular, B and b have the same inertial
quotient. If there is only the trivial fusion system on D, then we are done (this applies if D is metacyclic of order
at least 16). In case D ∼= Q8, B is a controlled block (see e. g. [3]). Since B and b have the same inertial quotient,
it follows that these blocks also have the same fusion system. It remains to consider the two other families of
defect groups (see [20, Theorem 12.4]). For one of these families the fusion system is again controlled (see [20,
Proposition 12.7]). Finally, if D is given as in (1), then the fusion system is constrained and the automorphisms
of the essential subgroup (if it exists) also act on hyp(B). Hence, B is nilpotent if and only if b is nilpotent.
Again the claim follows from Theorem 9.

We remark that Corollary 10 would be false in case D ∼= D8. The principal 2-block of GL(3, 2) gives a coun-
terexample. If B is a block of a finite group G with defect group as given in (1), then B is also isotypic to a
Brauer correspondent in CG(u) where u ∈ Z(F). This resembles Glauberman’s Z∗-Theorem.

In the situation of Theorem 9 (or Corollary 10) it is desirable to extend the isotypies to Morita equivalences (as
we did in [5]). This is not always possible if |D| = 8, since for example the principal 2-blocks of the symmetric
groups S4 and S5 are not Morita equivalent. Nevertheless, the possible Morita equivalence classes in case |D| = 8
are known by Erdmann’s classification of tame algebra [6] (at least over F , cf. [9]). In view of [5] one may still
ask if two non-nilpotent 2-blocks with isomorphic defect groups as in Section 2 are Morita equivalent. We will
see that the answer is again negative.

Consider the groups G1 := A4oC2r and G2 := A5oC2r constructed similarly as in Lemma 2. Then G1/Z(G1) ∼=
S4 and G2/Z(G2) ∼= S5. Let Bi be the principal 2-block of Gi, and let Bi be the principal 2-block of Gi/Z(Gi)
for i = 1, 2. Then the Cartan matrix of Bi is just the Cartan matrix of Bi multiplied by |Z(Gi)| = 2r−1. It is
known that the Cartan matrices of B1 and B2 do not coincide (regardless of the labeling of the simple modules).
Therefore, B1 and B2 are not Morita equivalent.

Nevertheless, the structure of a finite group G with a minimal nonabelian Sylow 2-subgroup P as given in (1) is
fairly restricted. More precisely, Glauberman’s Z∗-Theorem implies x2 ∈ Z∗(G), and the structure of G/Z∗(G)
follows from the Gorenstein-Walter Theorem [7]. In particular, G has at most one nonabelian composition factor
by Feit-Thompson.

We use the opportunity to present a related result for p = 3 which extends [20, Theorem 8.15].

Theorem 11. Let B and B̃ be non-nilpotent blocks of (possibly different) finite groups both with defect group
C9 o C3. Then B and B̃ are isotypic.

Proof. As in the proof of Theorem 9, we will make use of [10, Theorem 2]. Let

D := 〈x, y | x9 = y3 = 1, yxy−1 = x4〉

be a defect group of B, and let F be the fusion system of B. By Stancu [21], B is controlled with inertial
index 2, and we may assume that x and x−1 are F-conjugate (see proof of [20, Theorem 8.8]). Then R :=
{1, x, x3, y, y2, xy, xy2} is a set of representatives for the F-conjugacy classes of D (see proof of [20, Theorem
8.15]). It suffices to show that the generalized decomposition numbers of B are essentially unique (up to basic
sets and signs and permutations of rows). Since the Galois group of Q(e2πi/9) over Q acts on the columns of the
generalized decomposition matrix, we only need to determine the numbers duχϕ for u ∈ {x, x3, y, xy}. By [20,
Theorem 8.15] there are four 3-rational characters χi ∈ Irr(B) (i = 1, . . . , 4) such that χ1, χ2, χ3 have height 0
and χ4 has height 1. Since foc(B) = 〈x〉, we see that

Irr(B) = {χi ∗ λ : i = 1, 2, 3, λ ∈ Irr(D/foc(B))} ∪ {χ4}.

Let u := x3. Then IBr(bu) = {ϕ} and duχiϕ are non-zero (rational) integers. Moreover, duχ4ϕ ≡ 0 (mod 3).
After permuting χ1, χ2 and χ3 and changing the basic set for bu if necessary, we may assume that duχ1ϕ = 2,
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duχ2ϕ =: ε1 ∈ {±1}, duχ3ϕ =: ε2 ∈ {±1} and duχ4ϕ = 3ε3 ∈ {±3}. Now let u := x. Then duχiϕ = ±1 for i = 1, 2, 3
and duχ4ϕ = 0. We may choose a basic set for bu such that duχ1ϕ = 1. Then by the orthogonality relations,
duχ2ϕ = −ε1 and duχ3ϕ = −ε2. Next let u := y. Then bu dominates a block of CG(u)/〈u〉 with cyclic defect group
CD(u)/〈u〉 ∼= C3 and inertial index 2. This yields IBr(bu) = {ϕ1, ϕ2} and the Cartan matrix of bu is given by

3

(
2 1
1 2

)
(not only up to basic sets, but this is not important here). We can choose a basic set such that (duχ1ϕ1

, duχ1ϕ2
) =

(1, 1), (duχ2ϕ1
, duχ2ϕ2

) = (σ1, 0), (duχ3ϕ1
, duχ3ϕ2

) = (0, σ2) and (duχ4ϕ1
, duχ4ϕ2

) = (0, 0) for some signs σ1, σ2 ∈ {±1}.
Finally for u := xy we obtain duχ1ϕ = 1, duχiϕ = −σi−1 for i = 2, 3 and duχ4ϕ = 0 after changing the basic set if
necessary. The following table summarizes the results

u x3 x y xy
duχ1ϕ 2 1 (1, 1) 1
duχ2ϕ ε1 −ε1 (σ1, 0) −σ1
duχ3ϕ ε2 −ε2 (0, σ2) −σ2
duχ4ϕ 3ε3 0 (0, 0) 0

.

It suffices to show that εi = σi for i = 1, 2 (observe that we do not need the ordinary decomposition numbers
in order to apply [10, Theorem 2]). For this, let λ ∈ Irr(D/〈x3〉) such that λ(x) = e2πi/3 and λ(y) = 1. Then
the generalized character ψ := λ+ λ− 2 · 1D of D is constant on 〈x〉 \ 〈x3〉 and thus F-stable. By [1], χ1 ∗ ψ is
a generalized character of B and (χ1 ∗ ψ, χ2)G ∈ Z. As in the proof of Theorem 9, we compute

(χ1 ∗ ψ, χ2)G =
∑
u∈R

ψ(u)mu
χ1χ2

= ψ(x)mx
χ1χ2

+ ψ(xy)mxy
χ1χ2

+ ψ(xy2)mxy2

χ1χ2
=

1

3
ε1 +

2

3
σ1.

This shows ε1 = σ1. Similarly, one gets ε2 = σ2 by computing (χ1 ∗ ψ, χ3)G. Hence, [10, Theorem 2] gives
a perfect isometry I : CF(G,B) → CF(G̃, B̃). In order to show that I is also an isotypy, we make use of the
notation introduced in the proof of Theorem 9. Let u ∈ D such that bu is nilpotent. Then by the table above, we
have IBr(bu) = {±duG(χ2)}. Thus, one can extend Iu just as in Theorem 9. Now suppose that bu is non-nilpotent
and thus u = y (up to inversion). We choose a basic set ϕ1, ϕ2 for bu as above such that duG(χi) = ϕi−1 for
i = 2, 3. Now we have to determine the ordinary decomposition numbers of bu with respect to ϕ1, ϕ2. The
defect group of bu is CD(y) = 〈x3, y〉 ∼= C3 ×C3 and foc(bu) = 〈x3〉. By Kiyota [12], k(bu) = 9. Therefore, there
are 3-rational characters ψi ∈ Irr(bu) such that

Irr(bu) = {ψi ∗ λ : i = 1, 2, 3, λ ∈ Irr(〈x3, y〉/〈x3〉)}.

By the Cartan matrix of bu given above (with respect to ϕ1, ϕ2), it follows immediately that d1CG(u)(ψi) = εiϕi

with εi ∈ {±1} for i = 1, 2 after a suitable permutation of ψ1, ψ2, ψ3. Similarly, d1CG̃(u)(ψ̃i) = ε̃iϕ̃i. By a result

of Usami [22], there is a perfect isometry CF(CG(u), bu) → CF(CG̃(u), b̃u). However, we need the additional
information that ψi is mapped to ±ψ̃i. In order to show this, we use [10, Theorem 2] again. Observe that
duCG(u)(ψi) = ζid

1
CG(u)(ψi) = ζiεiϕi for a cube root of unity ζi. But since duψiϕi

is rational, we have ζi = 1. Now
an elementary application of the orthogonality relations shows that the generalized decomposition matrix of bu
(in CG(u)) is determined by

v 1 y x3 x3y
dvψ1ϕ

(ε1, 0) (ε1, 0) ε1 ε1
dvψ2ϕ

(0, ε2) (0, ε2) ε2 ε2
dvψ3ϕ

(ε3, ε3) (ε3, ε3) −ε3 −ε3

.

It follows that there is a perfect isometry Îu : CF(CG(u), bu) → CF(CG̃(u), b̃u) such that Îu(ψi) = εiε̃iψ̃i for
i = 1, 2. Therefore Îu extends Iu. As in the proof of Theorem 9, it is also clear that Îu is independent of the
choice of the generator of 〈u〉. This finishes the proof.
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The proof method of Theorem 11 also works for other defect groups. In fact, Watanabe [23] showed inde-
pendently (using more complicated methods) that two p-blocks (p > 2) with a common metacyclic, minimal
nonabelian defect group and the same fusion system are perfectly isometric. Again, this gives evidence for
the character-theoretic version of Rouquier’s Conjecture (see [25, Theorem 2]). As another remark, Holloway-
Koshitani-Kunugi [8, Example 4.3] constructed a perfect isometry between the principal 3-block of G :=
Aut(SL(2, 8)) ∼= 2G2(3) and its Brauer correspondent. Since G has a Sylow 3-subgroup isomorphic to C9 o C3,
this is a special case of Theorem 11. Note that in the introduction of Ruengrot [18] it is erroneously stated that
these blocks are not perfectly isometric.
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