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Abstract

A well-known result of Scopes states that there are only finitely many Morita equivalence classes
of p-blocks of symmetric groups with a given weight (or defect). In this note we investigate a lower
bound on the number of those Morita equivalence classes.
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1 Introduction

Every p-block B of a symmetric group Sn is uniquely determined by its weight w ≥ 0 and its core µ
(a partition of n − pw, see next Section 3 for details). Scopes [12] showed that there are only finitely
many Morita equivalence classes of p-blocks of symmetric groups over the field Fp with a given weight
(this confirms a special case of Donovan’s conjecture). Puig [9] extended her result to blocks defined
over Z. More precisely, the number of these so-called Scopes classes is 1

p

(
wp
p−1

)
provided w > 0. If p > 2

and w > 1, then there exist pairs of distinct Scopes classes whose cores are conjugate to one another.
Since the corresponding blocks of such pairs are Morita equivalent (even isomorphic), the number of
Morita equivalence classes M(p, w) of p-blocks with weight w satisfies

M(p, w) ≤ 1

2p

(
wp

p− 1

)
+

1

2

(
bwp/2c
bp/2c

)
(1.1)

for w > 0 (see [10, Corollary 3.10]). In this paper we are interested in the sharpness of this bound.
Obviously, there is only one class of blocks with weight (defect) 0 or 1 respectively. The blocks of
weight 2 have been investigated by many authors. For instance, Richards [10] obtained a formula for
the decomposition matrix of those blocks. Since the decomposition matrix is a Morita invariant over
Z (up to permutations of rows and columns), it is possible to count Morita equivalence classes at
least when p is small. We have used the computer algebra system GAP [4] to confirm the following
conjecture for p ≤ 11.

Conjecture 1.

M(p, 2) =
1

2p

(
2p

p− 1

)
+

1

2

(
p

bp/2c

)
.
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For blocks of weight w = 3 and p ≥ 5, Fayers [3] has shown that all decomposition numbers are 0 or 1.
Using the Jantzen–Schaper formula [11] it is therefore possible to compute the decomposition matrices
recursively. In this way we obtain M(5, 3) = 147 and M(7, 3) = 3936 using GAP. Note that (1.1) is
sharp in these cases as well.

Much less is known about the blocks of weight w > 3. Nevertheless, for small primes the following
complementary result seems to hold.

Conjecture 2.

M(p, w) =


2 if p = 2, w = 3,

w if p = 2, w > 3,⌊
3w2+2w

4

⌋
if p = 3, w > 0.

Using an algorithm which is explained in the next sections, we have checked Conjecture 2 for p = 2,
w ∈ {0, . . . , 28} ∪ {32} and p = 3, w ≤ 15. The case (p, w) = (2, 3) is in fact an exception. Here, the
Scopes classes are represented by the cores (), (1) and (2, 1). One can show with Magma [1] that the
cores (1) and (2, 1) correspond to Morita equivalent blocks at least over F2.

Unfortunately, our method does not extend directly to p > 3. Nevertheless, we obtain the following
intervals with GAP: 496 ≤M(5, 4) ≤ 507 and 1278 ≤M(5, 5) ≤ 1298.

Finally, we remark that our observations should also apply to Hecke algebras.

2 A Morita invariant

Since the decomposition matrix of a block is usually not available (like in the situation of Conjecture 2),
it is important to know other Morita invariants. The following approach applies to any finite group G
and any prime p. We denote the set of p-regular elements of G by G0 and the set of irreducible Brauer
characters by IBr(G). For χ, ψ ∈ Irr(G)∪ IBr(G) we are interested in the following p-scalar product

[χ, ψ]0 :=
1

|G|
∑
g∈G0

χ(g)ψ(g−1) ∈ C.

The following lemma states that these numbers are preserved under Morita equivalence.

Lemma 3. Let B1 and B2 be Morita equivalent blocks of (possibly different) finite groups with respect
to a complete discrete valuation ring. Let

Mi :=
(
[χ, ψ]0

)
χ,ψ∈Irr(Bi)

for i = 1, 2. Then there exists a permutation matrix T such that

TM1 = M2T.

Proof. Let Qi = (dχψ) be the decomposition matrix of Bi for i ∈ {1, 2}. Then Ci := Qt
iQi is the

Cartan matrix of Bi where Qt
i denotes the transpose of Qi. By [5, Theorem 2.13] we have C−1

i =(
[ϕ, θ]0

)
ϕ,θ∈IBr(Bi)

. It follows that

Mi =
( 1

|G|
∑
g∈G0

i

∑
ϕ,θ∈IBr(Bi)

dχϕdψθϕ(g)θ(g−1)
)
χ,ψ∈Irr(Bi)

=
( ∑
ϕ,θ∈IBr(Bi)

dχϕdψθ[ϕ, θ]
0
)
χ,ψ∈Irr(Bi)

= QiC
−1
i Qt

i.
(2.1)
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Since B1 and B2 are Morita equivalent, there exist permutation matrices S, T such that TQ1S = Q2.
Since T is orthogonal, we conclude that

M2T = Q2(Qt
2Q2)−1Qt

2T = TQ1S(StQt
1T

tTQ1S)−1StQt
1T

tT = TQ1C
−1
1 Qt

1 = TM1.

The matrix M := M1 in Lemma 3 encodes several important numerical invariants of B := B1.
Obviously, the size of M is k(B) × k(B) where k(B) := |Irr(B)|. By (2.1), the rank of M equals
l(B) := |IBr(B)|. Recall that the height h(χ) ≥ 0 of χ ∈ Irr(B) is defined by χ(1)p = pa−d+h(χ) where
|G|p = pa and d is the defect of B. If h(χ) = 0, then the p-adic valuation of [χ, ψ]0 equals h(ψ)− d for
every ψ ∈ Irr(B) (see [5, Theorem 3.24]). Moreover, if h(χ) > 0, then the p-adic valuation of [χ, χ]0

is larger than −d (see [5, Lemma 3.22(a)]). In this way, M encodes all character heights. Finally, one
can show that M determines the elementary divisors of the Cartan matrix of B. However, the next
theorem implies that all these invariants do not suffice to distinguish blocks of symmetric groups.

Theorem 4 (Chuang–Rouquier [2, Theorem 7.2]). Blocks B1 and B2 of symmetric groups with the
same weight are splendidly derived equivalent. In particular there exists a signed permutation matrix
T such that TM1 = M2T in the situation of Lemma 3.

We will see in the following that for blocks of symmetric groups the matrix M can be computed from
the character table of a local subgroup which only depends on the weight of the block (see Theorem 5).
At the same time we determine the signs of T in Theorem 4 without using the characters explicitly.
To do so, we need to introduce a lot of notation.

3 Notation

We fix the following notation (details can be found in [7]). A partition of n ∈ N0 is a non-increasing
sequence of positive integers λ = (λ1, . . . , λl) such that |λ| :=

∑l
i=1 λi = n. The number l(λ) := l is

called the length of λ. We allow the empty partition () of 0. The set of partitions of n is denoted by
P(n).

It is well-known that the conjugacy classes of the symmetric group Sn of degree n consist of the
elements with a common cycle structure. Hence, we can choose a set of representatives {sλ : λ ∈ P(n)}
of those conjugacy classes. Similarly, the irreducible characters of Sn are parametrized by P(n) and
we will write

Irr(Sn) =
{
χλ : λ ∈ P(n)

}
.

Let p be a prime. Successively removing all hooks of length p from (the Young diagram of) λ ∈ P(n)
yields the p-core λ(p) of λ. The number of removed hooks is called the weight w of λ. Observe that
n = |λ(p)|+pw. Moreover, the p-sign of λ is defined by δp(λ) = (−1)

∑
li where the li are the leg lengths

of the removed hooks. By Nakayama’s conjecture, characters χλ, χµ ∈ Irr(Sn) lie in the same p-block
if and only if λ(p) = µ(p). Therefore, we may speak of the core and the weight of a block B of Sn.

Next we define the p-quotient of λ ∈ P(n). Let l = l(λ) and choose s ≥ 0 such that l+ s ≡ 0 (mod p).
Define

β := (λ1 − 1 + l + s, λ2 − 2 + l + s, . . . , λl + s, s− 1, s− 2, . . . , 0)

(this is a β-set for λ). For i = 0, . . . , p− 1 let βi := {x ∈ N0 : px+ i ∈ β}. Writing the elements of βi
in decreasing order βi = {b1, . . . , bk} gives a partition P (βi) := (b1 − k + 1, b2 − k + 2, . . . , bk) where
we omit parts which are zero. Finally, the p-tuple of partitions

λ :=
(
P (β0), . . . , P (βp−1)

)
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is called the p-quotient of λ. It turns out that
∑p−1

i=0 |P (βi)| equals the weight of λ. In general, the set
of p-tuples λ = (λ0, . . . ,λp−1) of partitions such that

∑
|λi| = w is denoted by Pp(w). The elements

of Pp(w) will always be denoted by bold Greek letters.

Now we relate the characters of the block B above to the characters of the wreath product Gw := Cp oSw
where Cp is a (fixed) group of order p. Let Irr(Cp) = {ψ0 = 1, . . . , ψp−1} and λ ∈ Pp(w). For
i = 0, . . . , p − 1, the linear character ψ⊗|λi| := ψi ⊗ . . . ⊗ ψi ∈ Irr(C

|λi|
p ) has a unique extension to

Cp o S|λi| (still denoted by ψ⊗|λi|) which acts trivially on S|λi|. Then we can define ψλi := ψ⊗|λi|χλi ∈
Irr(Cp o S|λi|) where χλi is the inflation from S|λi|. Finally let

ψλ := (ψλ0 ⊗ . . .⊗ ψλp−1)Gw .

The degree of this character is

ψλ(1) =

(
w

|λ0|, . . . , |λp−1|

)
χλ0(1) . . . χλp−1(1). (3.1)

By the hook formula and [6, Lemma 2.1], the map Irr(B)→ Irr(Gw), χλ 7→ ψλ is a height preserving
bijection, i. e. pw(w!)pχλ(1)p = (n!)pψλ(1)p for every χλ ∈ Irr(B).

In order to obtain information on the decomposition matrix of B we need to label the conjugacy
classes of Gw. Here we identify Cp with Z/pZ to simplify notation. For (x1 . . . xw, σ) ∈ Gw (with
x1, . . . , xw ∈ Z/pZ, σ ∈ Sw) we define λ ∈ Pp(w) as follows: For every cycle (a1, . . . , as) in σ let
s ∈ λxa1+...+xas . It turns out that two elements of Gw are conjugate if and only if they yield the same
λ. Let

{gλ : λ ∈ Pp(w)}

be a set of representatives for the conjugacy classes of Gw. The class sizes can be computed with the
formula

|CGw(gλ)| =
p−1∏
i=0

pl(λi)|CS|λi|
(sλi)|.

4 Osima’s result

Theorem 5 (Osima [8, Theorem 8]). With the notation above let Q be the decomposition matrix of B
and let D := diag(δp(λ) : χλ ∈ Irr(B)). Moreover, let

Γ :=
{
λ ∈ Pp(w) : λ0 = ()

}
and X :=

(
ψλ(gµ)

)
λ∈Pp(w),µ∈Γ

.

Then there exists S ∈ GL(l(B),C) (depending on B) such that

Q = DXS (4.1)

where the row of χλ corresponds to the row of ψλ.

We remark that (4.1) does not depend on the labeling of IBr(B), since any permutation of Brauer
characters can be realized by S. As in the proof of Lemma 3, we have

M :=
(
[χλ, χµ]0

)
χλ,χµ∈Irr(B)

= DX(XtX)−1XtD = DX(XtX)−1XtD

where X denotes the complex conjugate of X. The second orthogonality relation for Gw implies that

XtX = diag
(
|CGw(gµ)| : µ ∈ Γ

)
. (4.2)
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In this way, M can be computed from the character table of Gw and some elementary combinatorics
for D. Doing so, we are able to distinguish the Scopes classes for p = 3 and w ≤ 15. For p = 5 and
w ∈ {4, 5}, some of the Scopes classes yield the same M (see last section). Hence, we obtain only a
lower bound on M(5, w) in these cases. For p = 2 we refine our method in the next section in order to
deal with larger weights.

5 The case p = 2 in Conjecture 2

For p = 2 we notice first that X is integral and (4.2) simplifies to

XtX = diag
(
2l(µ)|CSw(sµ)| : µ ∈ P(w)

)
.

We now define a “small” submatrix M0 of M which suffices to distinguish the 2-blocks with weight
w ∈ {1, . . . , 28} ∪ {32}. We do not know if this approach works in general for p = 2. Let Irr0(B) :=
{χλ ∈ Irr(B) : h(χλ) = 0}. Since M encodes character heights, it is clear that the permutation
matrix T in Lemma 3 permutes Irr0(B) (the characters of height 0 correspond to the diagonal entries
of M with the lowest p-adic valuation, see remark after Lemma 3). We may therefore replace M
by
(
[χλ, χµ]0

)
χλ,χµ∈Irr0(B)

. Let w =
∑

i≥0 ai2
i be the 2-adic expansion of the weight of B. By [7,

Corollary 11.8] we have
|Irr0(B)| = 2

∑
i≥1 iai−1 .

The cores of 2-blocks are represented by the “staircase” partitions: (k, k − 1, . . . , 1) for k ≥ 0. The
Scopes classes are represented by those cores with 0 ≤ k ≤ w − 1. In particular, there are just w
Scopes classes (unless w = 0) and these cores are self-conjugate. Hence, for χλ ∈ Irr(B) we have
χλ′ = sgn ·χλ ∈ Irr(B) where sgn is the sign character and λ′ ∈ P(n) is conjugate to λ. Since all 2-
regular elements lie in the alternating group, it follows that [χλ′ , χµ]0 = [χλ, χµ]0. One can show further
that λ′ = ((λ1)′, (λ0)′). Since χλ ∈ Irr0(B) implies that ψλ(1) is odd, we conclude that |λ0| 6= |λ1|
by (3.1) (unless w = 0). In particular, χλ 6= χλ′ and it is enough to consider only half of the height 0
characters. Let

∆ :=
{
χλ ∈ Irr0(B) : |λ0| > |λ1|

}
and M0 :=

(
[χλ, χµ]0

)
χλ,χµ∈∆

. (5.1)

Now for Morita equivalent 2-blocks B1 and B2 with matrices M0
1 and M0

2 as above there exists a
permutation matrix T 0 such that T 0M0

1 = M0
2T

0 (since M is invariant under the transpositions
(λ, λ′)). If w ≤ 28 and B1 and B2 belong to different Scopes classes, we can show by computer that
T 0 cannot exist. The computation for w = 29 could not be completed due to memory restrictions.

Next, we further restrict ourselves to the case where w is a 2-power. Then χλ ∈ ∆ satisfies λ1 = ()
and λ0 is a hook partition by (3.1) and the hook formula. Hence,

∆ =
{
χλ ∈ Irr(B) : λ0 = (r, 1w−r), r = 1, . . . , w

}
and |∆| = w. The matrix X in Theorem 5 becomes(

ψλ(gµ)
)
χλ∈∆,µ∈Γ

=
(
χλ0(sµ1)

)
,

i. e. X consists of rows of the character table of Sw.

Now we determine the signs δp(λ) for χλ ∈ ∆. Let λ0 = (r, 1w−r), and let λ(2) = (k, k − 1, . . . , 1) be
the core of B. If k is odd, then we add the partition

(2r, 2min{k,w−r}, 12 max{0,w−r−k})
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to λ(2) (componentwise) to obtain λ. In particular, δp(λ) = (−1)max{0,w−r−k}. If, on the other hand, k
is even, then we add

(2(w − r + 1), 2min{k,r−1}, 12 max{0,r−1−k})

to λ(2) and conjugate afterwards to get λ. In this case we obtain δp(λ) = (−1)w−r+1+min{k,r−1}. These
observations made it possible to check Conjecture 2 for w = 32. The next case w = 64 is again out of
reach.

In the final paragraph of this section we investigate further properties of M which might be of interest
for a potential theoretical proof. We consider the diagonal of M which is also the diagonal of

X diag(2−l(µ)|CSw(sµ)|−1)Xt.

It is easy to see that [χλ, χλ]0 = [χµ, χµ]0 if λ0 = (µ0)′. This means that the diagonal entries of
M come in pairs. On the other hand, our calculations indicate that [χλ, χλ]0 > [χµ, χµ]0 whenever
λ0 > µ0 > (w/2, 1w/2) where > denotes the lexicographical order. If this turns out to be true, then
the permutation matrix T in Lemma 3 must be a product of disjoint transpositions. In this case it
suffices to find characters χλ, χµ ∈ Irr(B1) and χσ, χτ ∈ Irr(B2) such that λ0 = σ0 = (µ0)′ = (τ0)′

and δp(λ)δp(µ) 6= δp(σ)δp(τ). We do not know if this can be done in general.

6 Implementation

To check Conjecture 1 for small primes, we have implemented the following steps in GAP by making
use of the hecke package:

• determine the cores of all Scopes classes for given p and w up to conjugation of partition

• use the Jantzen–Schaper formula to compute the decomposition matrices of Scopes classes (this
is somewhat faster than Richard’s formula)

• compute the multisets of row sums and column sums for a given decomposition matrix

• partition the set of decompositions matrices according to their row sums and column sums
(decomposition matrices in different parts of this partition cannot correspond to Morita equivalent
blocks)

• use the GAP command TransformingPermutations to distinguish decomposition matrices with
the same row sums and column sums

The application of this code is only limited by the time it takes to run through all Scopes classes, but
it can run in parallel. The computation of M(11, 2) = 29,624 took about one day on an Intel Xeon
E5520 processor. We could not check Conjecture 1 for p = 13, since there are already 372,308 classes
to consider (hence ≈ 1011 comparisons) and the decomposition matrix has size 104× 90 in each case.
Similarly, computing M(11, 3) is hopeless, since this number is expected to be 4,209,504.

On the other hand, our GAP programs for Conjecture 2 are mainly limited by the available physical
memory. Our procedure here is given as follows:

• compute the columns of the character table of Gw corresponding to the elements gµ with µ ∈ Γ
using a code provided by Thomas Breuer (this uses much less memory than to compute the full
character table via CharacterTableWreathSymmetric)

• determine the cores of the Scopes classes as above

• compute the p-signs δp(λ) for χλ ∈ Irr(B) with respect to the Scopes class just using the definition
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• compute M0 for each Scopes class

• compare the matrices M0 using TransformingPermutations

• for p = 2 we only consider χ ∈ ∆

All computations for Conjecture 2 take about five days on an Intel Xeon E5520 processor with 128GB
memory.

Finally, for the exceptional case (p, w) = (2, 3) in Conjecture 2 we have computed the basic algebras
of the blocks over F2 in Magma and checked that these are isomorphic. All codes can be found on the
author’s homepage.

7 Concluding remarks

In the following paragraph we indicate an alternative approach to the conjectures stated in the intro-
duction. Let T be the signed permutation matrix from Theorem 4 with TM1 = M2T . Suppose that B1

and B2 are Morita equivalent. Then we may assume thatM := M1 = M2 by Lemma 3. SinceM is real
and symmetric, M and T are simultaneously diagonalizable. Since M2 = M (see (2.1)), all eigenvalues
of M are 0 and 1. However, the situation gets more interesting if we restrict to characters of a fixed
height. As in Section 5, let p = 2 and w be a 2-power. Then the matrix M0 in (5.1) seems to have very
interesting eigenvalues. For instance, the eigenvalues of 212M0 for w = 8 are

211, 210, 29, 27 · 3, 25 · 32, 24 · 3 · 5, 23 · 52, 52 · 7.

If we can show that the eigenvalues of M0 are pairwise distinct, then M and T can be diagonalized
by the same real basis transformation. In this case T has real eigenvalues and we conclude that T is a
product of disjoint transpositions (modulo signs).

For p = 3 in Conjecture 2 it is not always enough to consider only height 0 characters. Even worse for
p ≥ 5, Lemma 3 cannot tell all Scopes classes apart. For example the 5-blocks of weight 2 with cores
(8, 42, 14) and (9, 52, 23) have decomposition matrices

1 . . . . . . . . . . . . .
. 1 . . . . . . . . . . . .
1 1 1 . . . . . . . . . . .
. . 1 1 . . . . . . . . . .
. . . 1 1 . . . . . . . . .
. 1 1 . . 1 . . . . . . . .
1 . 1 . . . 1 . . . . . . .
. . 1 1 . 1 1 1 . . . . . .
. . . 1 1 . . 1 1 . . . . .
. . . . . . 1 1 . 1 . . . .
. . . . . 1 . 1 1 1 1 . . .
. . . . . 1 . . . . 1 1 . .
. . . . . . . . 1 1 1 1 1 .
. . . . . . . . . 1 . . 1 1
. . . . . . . . . . . 1 . .
. . . . . . . . . . . . . 1
. . . . . . . . . . . 1 1 1
. . . . . . . . 1 . . . 1 .
. . . . 1 . . . 1 . . . . .
. . . . 1 . . . . . . . . .



,



1 . . . . . . . . . . . . .
. 1 . . . . . . . . . . . .
1 1 1 . . . . . . . . . . .
. . . 1 . . . . . . . . . .
. . . 1 1 . . . . . . . . .
. 1 1 . . 1 . . . . . . . .
1 . 1 . . . 1 . . . . . . .
. . . 1 . . . 1 . . . . . .
. . . 1 1 . . 1 1 . . . . .
. . . . . . . . . 1 . . . .
. . . . . . . . . 1 1 . . .
. . . . . . . . . . 1 1 . .
. . . . . . . . . 1 1 1 1 .
. . . . . . . . . 1 . . 1 1
. . . . . 1 . . 1 . . 1 . .
. . . . . . 1 . 1 . . . . 1
. . . . . . . 1 1 . . 1 1 1
. . . . . . . 1 . . . . 1 .
. . 1 . 1 1 1 . 1 . . . . .
. . 1 . 1 . . . . . . . . .


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respectively. Since the first matrix has five rows with only one non-zero entry and the second matrix
has only four such rows, it is clear that the blocks cannot be Morita equivalent. However, both matrices
yield the same matrix M .
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