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Abstract. We develop new techniques to classify basic algebras of blocks of finite groups
over algebraically closed fields of prime characteristic. We apply these techniques to simplify
and extend previous classifications by Linckelmann, Murphy and Sambale. In particular, we
fully classify blocks with 16-dimensional basic algebra.

1. Introduction

Linckelmann [15] instigated the study of small dimensional symmetric basic algebras over
an algebraically closed field of prime characteristic, in the context of enumerating which
of them could be the basic algebra of a block of a finite group. In that paper, he gave a
complete classification up to dimension twelve, except for one case of an algebra of dimension
nine; see Section 2.9 of that paper. The paper of Linckelmann and Murphy [16] eliminated
that 9-dimensional algebra using some fairly sophisticated group representation theory. We
provide a proof of this elimination that is completely different from the one in that paper,
by examining the Auslander–Reiten quiver.

The second author [26] took Linckelmann’s methods further, up to dimension fourteen.
We provide alternative proofs for some of the difficult cases that occurred in that paper. By a
recent paper of Macgregor [17], it became clear that the classification of tame basic algebras
in dimension 14 might be incomplete. Hence, the list given in [26] might be incomplete as
well. We comment on the details in Section 6 below.

By way of preparation, we prove some theorems that dispose of a number of possible
Cartan matrices, which occur for block algebras. The most interesting of these is the following
theorem, whose proof can be found in Section 5.

Theorem 1.1. Suppose that A is a finite dimensional indecomposable symmetric algebra over
an algebraically closed field. Suppose that A has a simple module S whose Cartan invariant
cS,S is equal to 3 and all the other cS,T are either one or zero. Then A is not Morita equivalent
to a block of wild representation type of a finite group algebra in prime characteristic.

It has been observed in [26] that in dimension 15 there might be a 13-block of defect 1,
which is not known to exist. Leaving this open case aside, we show that there is only one
more block in this dimension.

Theorem 1.2. Let B be a block of a finite group with defect group D and basic algebra A
of dimension 15. Then one of the following holds:

(1) D ∼= C19 and A is Morita equivalent to the principal 19-block of GL(3, 7).

Date: May 17, 2023.
2010 Mathematics Subject Classification. Primary: 20C20. Secondary: 16G70, 20C05.
Key words and phrases. Block theory, Cartan matrix, basic algebra, Auslander–Reiten theory.

1



(2) D ∼= C13 and A is a Brauer tree algebra with Cartan matrix5 1 1
1 2 1
1 1 2

 .

Finally, we extend the classification of basic algebras to dimension 16 as follows.

Theorem 1.3. Let B be a block of a finite group with defect group D and basic algebra A
of dimension 16. Then one of the following holds:

(1) |D| = 16 and A is isomorphic to the group algebra of D.

(2) D ∼= C4
2 and A is Morita equivalent to a non-principal block of H ∼= D ⋊ 31+2

+ with
H/Z(H) ∼= A2

4.

(3) D ∼= C23 and A is Morita equivalent to the principal 23-block of PSL(2, 137).

(4) D ∼= C5 and A is Morita equivalent to the principal 5-block of S5 or Sz(8).

(5) D ∼= C13 and A is Morita equivalent to the principal 13-block of GL(4, 5).

(6) D ∼= D8 and A is Morita equivalent to the principal 2-block of GL(3, 2).

In total there are 20 Morita equivalence classes.

2. Preliminaries

Throughout, we work with a finite group G over an algebraically closed field k of charac-
teristic p dividing |G|. We fix a block B of kG with defect group D. Then the basic algebra A
of B is a finite dimensional symmetric algebra. Recall that A and B have isomorphic centres.
The dimension of this centre coincides with the number k(B) of irreducible characters in B.
The number of simple modules of B (and A) is denoted by l(B). The dimension of A itself
is the sum of the entries of the Cartan matrix C of B. The determinant of C is a power of
p, which severely restricts the possibilities. The largest elementary divisor of C is |D| and
it occurs with multiplicity one. If det(C) = p, we conclude that D is cyclic of order p. In
this case, A is a Brauer tree algebra and of finite representation type. This further limits the
possibilities for C. We extend Proposition 2 in [26] as follows (the proof is the same).

Proposition 2.1. Let B be a block with cyclic defect group D, l(B) = 4 and multiplicity

m := |D|−1
4

. Then the possible Brauer trees are given as follows:

(1)

C =


m+ 1 m m m
m m+ 1 m m
m m m+ 1 m
m m m m+ 1

 dimA = 16m+ 4 = 4|D|

This occurs for B = k[D ⋊ C4] provided 4 | p− 1.
(2)

C =


m+ 1 1 1 1

1 2 1 1
1 1 2 1
1 1 1 2

 dimA = m+ 19 =
|D|+ 75

4
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(3)

C =


m+ 1 m m .
m m+ 1 m .
m m m+ 1 1
. . 1 2

 dimA = 9m+ 7 =
9|D|+ 19

4

(4)

C =


m+ 1 m 1 .
m m+ 1 1 .
1 1 2 1
. . 1 2

 dimA = 4m+ 16 = |D|+ 15

(5)

C =


m+ 1 1 1 .

1 2 1 .
1 1 2 1
. . 1 2

 dimA = m+ 15 =
|D|+ 59

4

(6)

C =


m+ 1 1 . .

1 2 1 .
. 1 2 1
. . 1 2

 dimA = m+ 13 =
|D|+ 51

4
.

(7)

C =


m+ 1 m . .
m m+ 1 1 .
. 1 2 1
. . 1 2

 dimA = 4m+ 10 = |D|+ 9.

(8)

C =


2 1 . .
1 m+ 1 m .
. m m+ 1 1
. . 1 2

 dimA = 4m+ 10 = |D|+ 9.

Sometimes a Cartan matrix leads to a Brauer graph algebra, which is the same as a
symmetric special biserial algebra. They all have finite or tame representation type by Wald–
Waschbüsch [27].

Blocks of finite group algebras with tame (but not finite) representation type only occur in
characteristic two, and the defect groups in this case are dihedral, semidihedral or generalised
quaternion. These algebras were first investigated by Erdmann [10]. By a recent paper of
Macgregor [17], all Cartan matrices of tame blocks are known and we list them for the
convenience of the reader (this includes the degenerate case D ∼= C2

2 , although it is not listed
in [17]):
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Theorem 2.2. Let B be a non-nilpotent tame block with defect group D of order 2n and
Cartan matrix C. Then one of the following holds:

(1) D ∼= D2n and C is one of the following:(
2n 2n−1

2n−1 2n−2 + 1

)
,

(
4 2
2 2n−2 + 1

)
,

 2n 2n−1 2n−1

2n−1 2n−2 + 1 2n−2

2n−1 2n−2 2n−2 + 1

 ,

2 1 1
1 2n−2 + 1 2n−2

1 2n−2 2n−2 + 1

 ,

4 2 2
2 2n−2 + 1 1
2 1 2


(2) D ∼= Q2n and C is one of the following:

2

(
2n−1 2n−2

2n−2 2n−3 + 1

)
, 2

(
4 2
2 2n−3 + 1

)
, 2

2n−1 2n−2 2n−2

2n−2 2n−3 + 1 2n−3

2n−2 2n−3 2n−3 + 1

 ,

2

2 1 1
1 2n−3 + 1 2n−3

1 2n−3 2n−3 + 1

 , 2

4 2 2
2 2n−3 + 1 1
2 1 2


(3) D ∼= SD2n and C is one of the following:

2

(
2n−1 2n−2

2n−2 2n−3 + 1

)
, 2

(
4 2
2 2n−3 + 1

)
,

(
2n 2n−1

2n−1 2n−2 + 1

)
,

(
4 2
2 5

)
,4 2 2

2 2n−2 + 1 1
2 1 3

 ,

 2n 2n−1 2n−1

2n−1 2n−2 + 1 2n−2

2n−1 2n−2 2n−2 + 2

 ,

2n−2 + 1 2n−2 − 1 2n−2

2n−2 − 1 2n−2 + 1 2n−2

2n−2 2n−2 2n−2 + 2

 ,

8 4 4
4 6 2
4 2 3

 ,

3 1 2
1 3 2
2 2 6

 .

We stress that in the situation of Theorem 2.2, the Cartan matrix does not necessarily
determine the Morita equivalence class of the block, although no concrete example of this
phenomenon is known (see [17, first two cases in Theorem 2.2]). We apply the previous
theorem to list all Cartan matrices of 2-blocks with defect at most three.

Proposition 2.3. Let B be a non-nilpotent 2-block with defect group D and Cartan matrix
C. If |D| ⩽ 8, then one of the following holds:

(1) B is tame and C is one of the following matrices:(
8 4
4 3

)
,

(
4 2
2 3

)
,

2 1 1
1 2 1
1 1 2

 ,

4 2 2
2 2 1
2 1 2

 ,

8 4 4
4 3 2
4 2 3

 ,

2 1 1
1 3 2
1 2 3

 ,

4 2 2
2 3 1
2 1 3

 , 2

4 2 2
2 2 1
2 1 2

 , 2

2 1 1
1 2 1
1 1 2

 .
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(2) D ∼= C3
2 and C is one of the following matrices:

2

2 1 1
1 2 1
1 1 2

 , 2

4 2 2
2 2 1
2 1 2

 ,


8 6 2 2 2
6 8 2 2 2
2 2 4 . .
2 2 . 4 .
2 2 . . 4

 ,


8 4 4 4 4
4 4 3 3 1
4 3 4 2 2
4 3 2 4 2
4 1 2 2 4

 ,


8 4 4 4 3
4 4 2 2 2
4 2 4 2 2
4 2 2 4 2
3 2 2 2 2

 ,



4 2 2 2 2 2 2
2 4 2 2 2 2 2
2 2 4 2 2 2 2
2 2 2 4 2 2 2
2 2 2 2 4 2 2
2 2 2 2 2 4 2
2 2 2 2 2 2 4


,



8 4 4 4 2 2 2
4 4 2 2 . 2 1
4 2 4 2 1 . 2
4 2 2 4 2 1 .
2 . 1 2 2 . .
2 2 . 1 . 2 .
2 1 2 . . . 2


.

Proof. If D ∼= {1, C2, C4, C8, C4 × C2}, then B is nilpotent since Aut(D) is a 2-group. If
D ∼= {C2

2 , D8, Q8}, then B is tame and the claim follows from Theorem 2.2 (note that
l(B) = 2 is only possible for D ∼= D8). Finally, if D ∼= C3

2 , then the claim follows from
Eaton [6]. □

3. Auslander–Reiten theory

In this section, we collect some well-known results from Auslander–Reiten theory for blocks
of finite groups, that we shall use in this paper.

Theorem 3.1. The tree class of every component of the Auslander–Reiten quiver of B is
either the Dynkin diagram An, in which case B has cyclic defect, or a Euclidean diagram,
or one of three infinite trees, A∞, D∞ or A∞

∞.

Proof. This is Theorem A of Webb [28]. Because the field k is algebraically closed, the infinite
trees B∞ and C∞ do not occur. □

Theorem 3.2. If the tree class of a component of the Auslander–Reiten quiver of B is a
Euclidean diagram, then B has Klein four defect group, and the tree class is Ã1,2 or Ã5.

Proof. This is Theorem 1.1 of Bessenrodt [2]. Since k is algebraically closed, B̃3 does not
occur. □

Theorem 3.3. Every Auslander–Reiten component of a block B of wild representation type
has tree class A∞. If B has an Auslander–Reiten component of tree class D∞, then B is a
tame block with semidihedral defect groups.

Proof. This is Theorem 1 of Erdmann [11]. □

Theorem 3.4. If P is a projective indecomposable module in the block B, then the radical
modulo the socle, Rad(P )/Soc(P ) has at most two direct summands.

Proof. This follows from the fact that there is an almost split sequence of the form

0 → Rad(P ) → P ⊕ Rad(P )/Soc(P ) → P/Soc(P ) → 0.

If Rad(P )/Soc(P ) has more than two direct summands, then by Theorems 3.1 and 3.2,
the only way for this to be part of an Auslander–Reiten component is for the tree class
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to be D∞. By Theorem 3.3, this implies that B has semidihedral defect groups. Examining
Erdmann [8, 9], there are no examples with semidihedral defect groups where Rad(P )/Soc(P )
has more than two summands. □

Remark 3.5. Without assuming that the field k is algebraically closed, there are examples
where Rad(P )/Soc(P ) has three summands. But this only happens when the defect group is
a Klein four group, k does not have a primitive cube root of unity, and B is Morita equivalent
to the principal block of A4 or A5 (see Bessenrodt [2]).

4. Small symmetric local algebras

We shall need the following facts about small symmetric local algebras.

Proposition 4.1. If A be a symmetric local k-algebra with dimk A ⩽ 7, then

(1) A is commutative.
(2) If Rad(A)/Soc(A) is indecomposable, then one of the following is true.

(a) A ∼= k[x]/(xn) for some n ⩽ 7,
(b) A ∼= k[x, y]/(x3, y2), of dimension 6,
(c) k has characteristic two and A ∼= k[x, y]/(x3, y2 + x2y) of dimension 6, or
(d) k has characteristic three and A ∼= k[x, y]/(x3 + x2y, y2) of dimension 6.

Proof.

(1) Let Z be the centre of A. Külshammer [14] proved that if dimk Z ⩽ 4, then A is commu-
tative. This was extended by Chlebowitz and Külshammer [5], where it is proved that
if dimk Z = 5, then A has dimension 5 or 8. It cannot happen that dimk Z = 6 and
dimk A = 7, so this proves that A is commutative.

(2) Let X denote Rad(A)/Soc(A). Poonen [20] lists the commutative local algebras of di-
mension up to six. Among these, the ones that are Gorenstein with X indecomposable
are those listed above (note that the algebras listed in cases (c) and (d) are isomorphic
to k[x, y]/(x3, y2) in other characteristics). It remains to deal with dimension seven. If
the radical layers of A have dimensions [1, 1, 1, 1, 1, 1, 1] we are in case (a). If they have
dimensions [1, 2, 1, 1, 1, 1], then Soc(X) has dimension two while Rad3(X) has dimension
one. An element of Soc(X) that is not in Rad3(X) spans a 1-dimensional summand of
X, so X decomposes. Similarly, in the case [1, 3, 1, 1, 1], an element of Soc(X) that is
not in Rad2(X) spans a 1-dimensional summand. In the cases [1, 4, 1, 1] and [1, 3, 2, 1],
an element of Soc(X) that is not in Rad(X) spans a 1-dimensional summand. In the
case [1, 5, 1], X is semisimple, and decomposes as a direct sum of five 1-dimensional
summands. In the remaining case [1, 2, 2, 1, 1], A/Soc(A) is a 6-dimensional algebra with
radical layers [1, 2, 2, 1] and socle layers [1, 1, 2, 2]. Again examining Poonen’s list [20], the
possibilities for A/Soc(A) are k[x, y]/(x2, xy2, y4) and k[x, y]/(x2 + y3, xy2, y4). In both
these cases, the quotient Rad(A)/(Soc(A), xA) of X is uniserial of length three spanned
by the powers of y, but X has no uniserial submodule of length three. This contradicts
the fact that X is supposed to be self-dual, since A is Gorenstein. □

5. Cartan invariants

In this section, we prove some theorems about Cartan invariants of blocks of group alge-
bras.

6



Proof of Theorem 1.1. Suppose that A is as in the theorem, and that A has wild repre-
sentation type. We examine the structure of the projective cover PS of S. It follows from
Theorem 3.4 that Rad(PS)/Soc(PS) has at most two direct summands. Since S occurs with
multiplicity three in PS, there has to be a nilpotent endomorphism of PS whose image lies in
the radical but not in the socle. Since each other composition factor occurs with multiplicity
one, they must all be in the kernel of such an endomorphism. It follows that Ext1A(S, S)
is 1-dimensional, and so Rad(PS)/Soc(PS) has a direct summand isomorphic to S. Write
Rad(PS)/Soc(PS) = S ⊕ X. If X = 0, then A has finite representation type, so we have
X ̸= 0. Thus the component of the Auslander–Reiten quiver containing S has the following
shape.

· · ·

Ω−1X

$$

ΩX
&&

Ω2S

99

%%

S

::

##

Ω−2S

· · · ΩS

::

//

$$

PS // Ω−1S

99

%%

· · ·

Ω2X

99

X

;;

Ω−2X

· · ·
The automorphism Ω sends S to ΩS and therefore acts as an automorphism of the stable
part of this Auslander–Reiten component. It is a glide reflection with a horizontal axis, and
its square is the translation. It is easy to check that A∞ does not have an automorphism
fitting this description, so this component does not have type A∞. It now follows from
Theorem 3.3 that A is not Morita equivalent to a block of a finite group algebra in prime
characteristic. □

Theorem 5.1. No block of wild representation type of a finite group has Cartan matrix(
a 1
1 b

)
with 2 ⩽ a, b ⩽ 7.

Proof. Let the simple modules be S and T . Then S and T have to extend each other, and
so the structures of their projective covers are

S

Ŝ T

S

T

S T̂ ,

T

where Ŝ and T̂ are modules with a−2, respectively b−2 composition factors, all isomorphic
to S, respectively T . By Theorem 3.4, Ŝ and T̂ are either zero or indecomposable. The
algebras EndA(PS) and EndA(PT ) are symmetric local algebras of dimension at most seven.
So by Proposition 4.1, they are commutative, and either uniserial or 6-dimensional. If both
are uniserial, then A is a Brauer tree algebra, and therefore either of finite representation
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type or tame biserial. On the other hand, if either a or b is equal to six, then the determinant
is either prime or 35. In the former case the block has cyclic defect, while in the latter case
the determinant is not a prime power, so there is no block of this form. □

Theorem 5.2. There is no block of a finite group with Cartan matrixa 1 1
1 b .
1 . c


with a ⩾ 3, b ⩾ 2, and c ⩾ 2.

Proof. The structure of the projectives has to be

S

T U Ŝ

S

T

S T̂

T

U

S Û

U

where Ŝ has a− 2 composition factors, all isomorphic to S, T̂ has b− 2 composition factors,
all isomorphic to T , and Û has c− 2 composition factors, all isomorphic to U . Note that T̂
and Û are allowed to be zero. But since a ⩾ 3, Ŝ is not zero, and Rad(PS)/Soc(PS) is forced
to have at least three direct summands, contradicting Theorem 3.4. □

The following theorem was heavily used in [26].

Theorem 5.3. Let Q be the decomposition matrix of B. Then C = QtQ is the Cartan matrix
of B. Let M := |D|QC−1Qt. Then M is an integer matrix. The number k0(B) of irreducible
height zero characters of B coincides with the number of diagonal entries of M , which are
coprime to p. In particular, D is abelian if and only if all diagonal entries of M are coprime
p.

Proof. The equation C = QtQ is well-known. The second claim follows from Lemma 4.1 of
[25]. The last claim is a consequence of the recent solution of Brauer’s height zero conjec-
ture [18]. □

6. Small dimensional basic algebras

Dimensions one to seven caused no problems in Linckelmann’s analysis [15].

Dimension eight. For the Cartan matrix(
3 1
1 3

)
of determinant 8, Linckelmann resorts to knowledge of blocks with defect groups of order 8.
This case can be eliminated more directly using Theorem 1.1.

8



Dimension nine. In dimension 9, the Cartan matrix that causes difficulty is(
5 1
1 2

)
.

of determinant 9. This case was not resolved in Linckelmann’s paper, but Theorem 5.1 of
Linckelmann and Murphy [16] shows that this is only possible for a block with cyclic defect.
There, it was proved using some fairly deep results from block theory. We eliminate it directly
as a special case of Theorem 5.1.

Dimension ten. This did not cause any trouble in Linckelmann’s analysis.

Dimension eleven. The Cartan matrix3 1 1
1 2 .
1 . 2


was eliminated by Linckelmann using Okuyama’s analysis of blocks of Loewy length three.
We can instead apply Theorem 1.1 to eliminate this case.

Dimension twelve. Again, this did not cause any trouble in Linckelmann’s analysis.

Dimension thirteen. In dimension 13, there are two Cartan matrices we wish to comment
on. The first case we consider is (

7 1
1 4

)
.

The determinant is 27, so we are in characteristic three. Theorem 5.1 shows that this cannot
happen for a block of wild representation type. But if this is the Cartan matrix of a Brauer
tree algebra, then there are two exceptional vertices, so the algebra is tame biserial. This
cannot happen in odd characteristic, so this is ruled out.

The second case we consider is the Cartan matrix5 1 1
1 2 .
1 . 2

 ,

of determinant 16. By Theorem 5.2, no block of a finite group can have this Cartan matrix.

Dimension fourteen. In Proposition 3 of [26], the first author stated that the Cartan
matrix

(
5 2
2 4

)
belongs to two tame blocks of PGL(2, 7) or 3.M10. However, Case (∗) in The-

orem 2.3 of Macgregor [17] states that there might be other Morita equivalences of tame
blocks with this Cartan matrix. Hence, this case remains open.

Another Cartan matrix of interest to us is5 1 1
1 3 .
1 . 2

 .

This has determinant 25, so we are in characteristic five. Again this violates Theorem 5.2,
so no block of a finite group can have this Cartan matrix.
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Dimension fifteen. We begin by formulating an easy lemma that we shall use here, and
again in the case of dimension sixteen.

Lemma 6.1. The dimension d of the basic algebra of a block B is at least 4l(B) − 2, so
l(B) ⩽ (d+ 2)/4.

Proof. Since the Cartan matrix C is positive definite and indecomposable, its trace is at least
2l(B). On the other hand, there must be at least 2l(B)− 2 positive entries off the diagonal,
so the sum of the entries of C is at least 4l(B)− 2. □

Proof of Theorem 1.2. Since 15 is not a prime power, we have l(B) > 1. So using Lemma 6.1,
we have 2 ⩽ l(B) ⩽ 4. By [26, Proposition 2 and its proof] and Proposition 2.1, we find the
two stated blocks of defect 1. We may now assume that det(C) is not a prime. For l(B) = 2
there is only one potential Cartan matrix left:

C =

(
6 3
3 3

)
.

But C has elementary divisors 3, 3 and therefore cannot arise from a block. Thus, let l(B) = 3.
Since there are at least four positive entries off the diagonal, the trace of C is bounded by
12. An individual entry on the diagonal can therefore be at most 8. The entries off the
diagonal are bounded by 2 since otherwise one gets a non-positive minor. This makes it easy
to enumerate all feasible Cartan matrices. Afterwards we remove those which differ only by
permuting the simple modules. This leaves only the matrices4 . 2

. 3 1
2 1 2

 ,

6 . 1
. 3 1
1 1 2


with determinant 8 and 27 respectively. This first case is excluded by Proposition 2.3. In the
second case, Theorem 1.1 implies that D is cyclic. But then l(B) ⩽ p− 1 = 2.

Finally, if l(B) = 4, then C is one of the following matrices:
2 . 1 .
. 2 1 .
1 1 2 1
. . 1 3

 ,


2 . 1 .
. 2 1 1
1 1 2 .
. 1 . 3

 .

In the first case, |D| = 8 and this cannot happen again by Proposition 2.3. In the second
case |D| = 9 and D must be cyclic by Theorem 1.1. But then l(B) ⩽ 2, a contradiction. □

Dimension sixteen. This is postponed to Section 7 below.

Dimension seventeen. A case of interest in dimension 17 is the Cartan matrix6 . 1
. 5 1
1 1 2

 .

The determinant is 49, so we are in characteristic seven. Applying Proposition 4.1, we see that
the heart of each projective indecomposable has two summands and these are all uniserial, of
length one, three, or four. The algebra is therefore tame biserial, and since the characteristic
is not two, this therefore cannot be a block algebra.
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There are also some Cartan matrices with four simples, that need to be considered in
dimension 17, e. g. 

2 . 1 .
. 2 1 1
1 1 2 1
. 1 1 3

 .

They can all be ruled out easily with Theorem 1.1.
On the other hand, the principal 2-block of PGL(2, 47) has defect group D32 and Cartan

matrix (
9 2
2 4

)
.

Using Theorem 5.3 and [17], one can show that this is the only Morita equivalence class for
this Cartan matrix. The principal 5-block of PSL(2, 13) has defect group C25 and Cartan
matrix (

13 1
1 2

)
,

but here there might be other blocks with non-cyclic defect group and the same Cartan
matrix. Similarly, the Cartan matrix (

9 3
3 2

)
occurs (at least) for a non-principal block of 2.S6 with defect group C2

3 . This is the first
non-local wild block that we have encountered.

7. Basic algebras of dimension 16

The proof of Theorem 1.3 requires the following lemma about a specific 2-block of defect
four.

Lemma 7.1. Let B be a block with defect group D ∼= D8 × C2 and l(B) = 2. Then B is
perfectly isometric to the principal block of S4 × C2.

Proof. The blocks with defect group D8 × C2 were investigated in Section 9.1 of [22]. Let

D = ⟨x, y | x4 = y2 = 1, yxy−1 = x−1⟩ × ⟨z | z2 = 1⟩ ∼= D8 × C2.

Let F be the fusion system of B on D. Since l(B) = 2, we are in case (ab) or (ba) of
Lemma 9.3 and Theorem 9.7 in [22]. Replacing y by xy if necessary, we may assume case
(ab), i. e. E := ⟨x2, xy, z⟩ is the only F -essential subgroup and AutF(E) ∼= S3. Replacing z
by x2z if necessary, we may assume that Z(F) = ⟨z⟩ is the centre of F and foc(B) = ⟨x2, xy⟩
is the focal subgroup of B. Moreover, Theorem 9.7 in [22] shows that

k(B) = k0(B) + k1(B) = 8 + 2 = 10

where ki(B) denotes the number of irreducible characters of height i in B.
Now observe that the principal block B0 of S4 × C2 has the same defect group and the

same fusion system as B. By Theorem 6.1 of [25], it suffices to show that B and B0 have the
same generalised decomposition matrix up to signs and basic sets. By Lemma 9.5 in [22],

R := {1, x, x2, y, z, xz, x2z, yz}
11



is a set of representatives for the F -conjugacy classes of D. We fix B-subsections (u, bu)
for u ∈ R such that bu has defect group CD(u). We now make use of the Broué–Puig [4]
∗-construction. By a theorem of Robinson [21], there exist χ1, χ2, χ3 ∈ Irr(B) such that

Irr0(B) = {λ ∗ χi : λ ∈ Irr(D/foc(B)), i = 1, 2},
Irr1(B) = {λ ∗ χ3 : λ ∈ Irr(Z(F))}

where Irri(B) is the set of irreducible characters of height i of B. By Lemma 10 in [24], the
generalised decomposition numbers fulfil duλ∗χ,φ = λ(u)duχ,φ for u ∈ R and φ ∈ IBr(bu). Hence,
it suffices to determine duχi,φ

for i = 1, 2, 3. Since D is a rational group, these numbers are
integers. For i = 1, 2 we have duχi,φ

̸= 0 by Proposition 1.36 of [22]. Let u ∈ R \ Z(F). Then
bu is nilpotent and l(bu) = 1. By the orthogonality relations of generalised decomposition
numbers (see Theorem 1.14 in [22]), we have duχi,φ

= ±1 for i = 1, 2. We may choose basic
sets such that duχ1,φ

= 1 for all u ∈ R \ Z(F). If u ∈ {x, y, xz, yz}, then bu has defect 3 and
duχ3,φ

= 0. We may choose χ2 such that dxχ2,φ
= 1 = dxzχ2,φ

. The orthogonality between x, y
and xz, yz shows that dyχ2,φ

= −1 = dyzχ2,φ
.

It remains to consider u ∈ {x2, z, x2z}. Replacing χ3 by −χ3 if necessary, we may assume

that dx
2

χ3,φ
= 2. Recall that bz dominates a unique block bz of CG(z)/⟨z⟩ with defect group

D/⟨z⟩ ∼= D8. The Cartan matrix of bz is Cz :=
(
3 1
1 3

)
up to basic sets by Proposition 2.3.

Hence, the Cartan matrix of bz is 2Cz up to basic sets. We may choose a basic set and
α = ±1 such that dzχ1,.

= (1, 0), dzχ2,0
= (0, α) and dzχ3,.

= (1, 1) (interchanging χ3 and λ ∗ χ3

if necessary). The orthogonality between z and x2z implies dx
2z
χ3,φ

= −2 and dx
2z
χ2,φ

= α. In

order to determine α and β := dx
2

χ2,φ
we use the contribution matrices

(mu
χ,ψ)χ,ψ∈Irr(B) := 16QuC

−1
u Qt

u ∈ Z10×10,

where Qu = (duχ,φ) and Cu = Qt
uQu is the Cartan matrix of bu. We compute

mu
χ1,χ2

=


2 if u ∈ {x, xz},
−2 if u ∈ {y, yz},
α if u = x2z,

β if u = x2.

By restricting a generalised character of S4 × C2, we obtain an F -invariant generalised
character λ of D such that λ(1) = λ(z) = 0, λ(x) = λ(xz) = λ(x2) = λ(x2z) = 4 and
λ(y) = λ(yz) = 2. Then

0 =
∑
u∈R

λ(u)mu
χ1,χ2

= 4(2 + 2 + α + β) + 2(−2− 2)

12



by [1, p. 684]. It follows that α = β = −1. This completely determines the generalised
decomposition matrices for non-trivial subsections as follows:

x y xz yz x2 x2z z
χ1 1 1 1 1 1 1 1 .

−1 −1 −1 −1 1 1 1 .
1 1 −1 −1 1 −1 −1 .

−1 −1 1 1 1 −1 −1 .
χ2 1 −1 1 −1 −1 −1 . −1

−1 1 −1 1 −1 −1 . −1
1 −1 −1 1 −1 1 . 1

−1 1 1 −1 −1 1 . 1
χ3 . . . . 2 −2 1 1

. . . . 2 2 −1 −1

Now the claim follows from Theorem 6.1 of [25]. □

Proof of Theorem 1.3. As before, let C be the Cartan matrix of B.

Case 1: l(B) = 1.
Here, |D| = 16. If B is nilpotent, then A ∼= kD by Puig’s theorem (see Theorem 1.30 in
[22]). By partial solutions on the modular isomorphism problem, these algebras are pairwise
non-isomorphic (see Lemma 14.2.7 in [19]). If B is non-nilpotent, then D must be elementary
abelian and the inertial index of B is 9 (see Theorem 13.2 and the proof of Theorem 13.6
in [22]). By Eaton’s classification [7], A is Morita equivalent to a non-principal block of H
as given in the statement. In total we obtain 15 isomorphism types of basic algebras with
l(B) = 1.

Case 2: l(B) = 2.
By Theorem 2.2, B cannot be a tame block. Using Proposition 2 of [26], it is easy to see
that C is one of the following matrices

C

(
12 1
1 2

) (
11 1
1 3

) (
10 2
2 2

) (
6 2
2 6

) (
5 3
3 5

)
|D| 23 32 8 16 16

The first case occurs for the principal 23-block of PSL(2, 137). Here A is uniquely determined
as a Brauer tree algebra. In the second case, B must have finite representation type by
Theorem 1.1. Then D ∼= C32 and B would be nilpotent since Aut(D) is a 2-group. In the
third case, D ∼= D8 since otherwise l(B) ̸= 2. But then B would be tame. Now consider the
fifth case. The possible decomposition matrices of B are


2 1
. 1
. 1
. 1
1 1

 ,


1 2
1 .
1 .
1 .
1 1

 ,



1 .
1 .
. 1
. 1
1 1
1 1
1 1


.
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By Theorem 5.3 we obtain k0(B) = 4 in all cases. Since B satisfies the Alperin–McKay
conjecture (see Theorem 13.6 of [22]), we have k0(BD) = 4 where BD is the Brauer corre-
spondent of B in NG(D). Recall that BD dominates a block BD of NG(D)/D′ with abelian
defect group D/D′. Hence,

k(BD) = k0(BD) ⩽ k0(BD) = 4

and |D/D′| = 4 by Theorem 1.31 in [22]. But then D has maximal nilpotency class and B
would be tame.

It remains to deal with the Cartan matrix C =
(
6 2
2 6

)
, where |D| = 16. Since B is not

tame, we have k0(B) > 4 as seen above. The possible decomposition matrices of B are:



2 1
1 .
1 .
. 1
. 1
. 1
. 1
. 1


,



1 .
1 .
1 .
1 .
. 1
. 1
. 1
. 1
1 1
1 1


.

In the first case k0(B) = k(B) and D is abelian by Theorem 5.3. However, there is no such
block with l(B) = 2. Therefore, the second matrix must be the decomposition matrix of B.
In particular, k(B) = k0(B) + k1(B) = 8 + 2 = 10. Using the results in [22, Chapters 8,
9], one can exclude metacyclic defect groups and Q8 × C2 or Q8 ∗ C4 for D. The remaining
cases are D ∼= D8×C2 or the minimal non-abelian group SmallGroup(16, 3). By Lemma 7.1
and Theorem 9 in [23], B is perfectly isometric to principal block of H1 := S4 × C2 or
H2 := SmallGroup(48, 30) ∼= A4 ⋊ C4. In particular, Z(A) ∼= Z(B) ∼= Z(kHi) for i = 1 or 2
(see Theorem 4.4 in [25]). One can show with MAGMA [3] that

(7.2) Z(kH1) ∼= Z(kH2) ∼= k[w, x, y, z]/(w2x,w2y, w2 + z2, x2, xy, xz, y2, yz, z3)

with basis 1, w, x, y, z, w2 = z2, wx, wy, wz, w3 = wz2. The centre Z(A) is the subset
of End(PS) × End(PT ) consisting of the elements that annihilate the homomorphisms from
PS to PT and from PT to PS. Now End(PS) × End(PT ) has dimension 12. The idempotents
εS and εT are not in Z(A) but their sum is. Since Z(A) has dimension 10, it follows that
the radical J(Z(A)) has codimension one in J(End(PS)) × J(End(PT )). By (7.2), J(Z(A)
is indecomposable, the projections Z(A) → End(PS) and Z(A) → End(PT ) are surjective
and Z(A) → End(PS)× End(PT ) is injective. This implies that End(PS) and End(PT ) are 6-
dimensional commutative Gorenstein rings. Using (7.2), we claim that the only 6-dimensional
Gorenstein quotient of Z(A) is Z(A)/(x, y) ∼= k[w, z]/(w2+z2, z3). For if x or y has non-zero
image in a Gorenstein quotient, then the socle has to be divisible by x or y. This forces the
Loewy length to be three. Since the socle of a Gorenstein ring is 1-dimensional, this means
that the second Loewy layer has to be 4-dimensional. It is easy to see that there is no such
Gorenstein quotient.
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Case 3: l(B) = 3.
By Proposition 2 in [26], there are no such blocks of defect 1. By Theorem 2.2 and Theo-
rem 2.1 in Macgregor [17], there is just one Morita equivalence class of tame blocks. Here
D ∼= D8 and A is Morita equivalent to the principal block of PSL(2, 7) ∼= GL(3, 2). Now
suppose that B is not tame. As explained in the proof of Theorem 1.2, it is easy to make a
list of potential Cartan matrices:

C

5 1 .
1 3 2
. 2 2

 3 2 1
2 3 1
1 1 2

 5 1 2
1 3 .
2 . 2

 6 1 1
1 2 1
1 1 2

 7 . 1
. 3 1
1 1 2


|D| 4 8 8 16 32

The first three candidates are excluded by Proposition 2.3. In the fifth case, B has finite
representation type by Theorem 1.1. But then B would be nilpotent since p = 2. Now
consider case four, where |D| = 16. The possible decomposition matrices are:


2 . .
1 1 1
. 1 .
. . 1
1 . .

 ,



1 1 .
1 . 1
. 1 1
1 . .
1 . .
1 . .
1 . .


,



1 1 1
. 1 .
. . 1
1 . .
1 . .
1 . .
1 . .
1 . .


The first two cases yield k0(B) = 4. But then B must be a tame block by the arguments
above for l(B) = 2. In the final case, k0(B) = k(B) = 8 and D is abelian. Here D cannot be
of type C4 × C2

2 , because this would yield an elementary divisor 2 of C. Consequently, D is
elementary abelian. However, this is excluded by Eaton [7].

Case 4: l(B) = 4.
By Proposition 2.1, there exist three (potential) blocks of defect 1: two 5-blocks with multi-
plicity m = 1 and a 13-block with multiplicity 3. The 5-blocks occur in S5 and Sz(8) by [13].
The 13-block is Morita equivalent to the principal block of GL(4, 5) by [12]. In the general
case we enumerate the possibilities for C. There are at least six positive off-diagonal entries
of C and therefore the trace is bounded by 10. The diagonal entries are bounded by 4 while
the off-diagonal entries can be at most 3. This only leaves the case

C =


2 1 . 1
1 2 1 .
. 1 3 .
1 . . 3


where |D| = 16. Here B is not tame since l(B) = 4. Hence, this block is excluded again by
Theorem 1.1 since p = 2.

Case 5: l(B) ⩾ 5.
This cannot happen, by Lemma 6.1. □
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