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Abstract

Let K := Q(G) be the number field generated by the complex character values of a finite group G.
Let ZK be the ring of integers of K. In this paper we investigate the suborder Z[G] of ZK generated
by the character values of G. We prove that every prime divisor of the order of the finite abelian
group ZK/Z[G] divides |G|. Moreover, if G is nilpotent, we show that the exponent of ZK/Z[G] is
a proper divisor of |G| unless G = 1. We conjecture that this holds for arbitrary finite groups G.
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1 Introduction

It is well-known that the complex character values of a finite group G are algebraic integers. We like
to measure how “many” algebraic integers actually arise in this way. The field

K := Q(G) := Q(χ(g) : χ ∈ Irr(G), g ∈ G) ⊆ C

of character values of G is contained in Qexp(G) where exp(G) denotes the exponent of G and Qn is
the cyclotomic field generated by the complex n-th roots of unity. Let ZK be the ring of integers of K.
The character values of G also generate an order Z[G] contained in ZK (here Z[G] is neither the group
algebra nor the ring of generalized characters). The deviation of Z[G] from ZK can be measured by the
structure of the finite abelian group ZK/Z[G]. If G is a rational group for instance, then K = Q and
Z[G] = Z = ZK . If G is abelian, then K = Qexp(G) and ZK = Z[e2π

√
−1/ exp(G)]. In this case it is easy

to see that Z[G] = ZK as well. On the other hand, we construct a group G of order 240 such that

ZK/Z[G] ∼= C2
120 × C2

60 × C4
12 × C4

4 × C14
2

where Cn denotes a cyclic group of order n. Nevertheless, our main theorems show that the structure
of ZK/Z[G] is restricted by the order of G.

Theorem A. Let G be a finite group and K := Q(G). Then the prime divisors of |ZK/Z[G]| divide
|G|.

Theorem B. Let G 6= 1 be a nilpotent group and K := Q(G). Then the exponent of ZK/Z[G] is a
proper divisor of |G|. In particular, |G|ZK ⊆ Z[G].
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In the final section we exhibit many examples which indicate that Theorem B might be true without
the nilpotency hypothesis.

Conjecture C. Let G 6= 1 be a finite group and K := Q(G). Then the exponent of ZK/Z[G] is a
proper divisor of |G|.

2 Preliminaries

In addition to the notation introduced above, we define

Q(g) := Q(χ(g) : χ ∈ Irr(G)) (g ∈ G),

Z[g] := Z[χ(g) : χ ∈ Irr(G)],

Q(χ) := Q(χ(g) : g ∈ G) (χ ∈ Irr(G)),

Z[χ] := Z[χ(g) : g ∈ G].

For number fields K ⊆ L we denote the relative discriminant of L with respect to K by dL|K ∈ ZK .
If K = Q we write dL := dL|Q as usual. We make use of the following tools from algebraic number
theory.

Proposition 1. The discriminant of any subfield of Qn divides nϕ(n).

Proof. If n = pm is a power of a prime p, then by [9, Lemma I.10.1] the discriminant dn of Qn

is ±ppm−1(mp−m−1), a divisor of nϕ(n) = pmp
m−1(p−1). For arbitrary n we obtain dn | nn from [9,

Proposition I.2.11]. Now if K ⊆ Qn is any subfield, then by [9, Corollary III.2.10] even d|Qn:K|
K divides

dn.

Although we only need a weak version of the following result, it seems worth stating a strong form.

Proposition 2. Let K and L be Galois number fields. Then

gcd(dK , dL)ZKL ⊆
gcd(dK , dL)

dmK∩L
ZKL ⊆ ZKZL

where m := min{|KL : K|, |KL : L|}. In particular, ZKL = ZKZL if dK and dL are coprime.

Proof. Most textbooks only deal with the last claim. To prove the general case we follow [9, Proposi-
tion I.2.11]:

We consider the compositum KL as an extension over M := K ∩ L. Note that ZKL (ZK , ZL respec-
tively) is the integral closure of ZM in KL (K, L respectively). Let b1, . . . , bn be a ZM -basis of ZK
and let c1, . . . , cm be a ZM -basis of ZL. Then {bicj : i = 1, . . . , n, j = 1, . . . ,m} is an M -basis of KL
as is well-known. Let α ∈ ZKL be arbitrary and write

α =
∑
i,j

aijbicj

with aij ∈ M for all i, j. Since KL is a Galois extension over Q, it is also a Galois extension over K
and over L. Thus, we may write Gal(KL|K) = {σ1, . . . , σm} and Gal(KL|L) = {τ1, . . . , τn}. Then

Gal(KL|M) = {σiτj : i = 1, . . . ,m, j = 1, . . . , n}
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and restriction yields isomorphisms Gal(KL|K)→ Gal(L|M) and Gal(KL|L)→ Gal(K|M). Let

D = (τi(bj))
n
i,j=1 ∈ Zn×nK , a = (τ1(α), . . . , τn(α)) ∈ ZnM , b :=

( m∑
j=1

aijcj

)n
i=1
∈ Ln.

Then
det(D)2 = det(DtD) = det((TrK|M (bibj)i,j)) = dK|M

(here Dt denotes the transpose of D and TrK|M is the trace map of K with respect to M). Moreover,
Db = a. Denoting the adjoint matrix of D by D∗ ∈ Zn×nK we obtain det(D)b = D∗Db = D∗a. The
right hand side is an integral vector and so must be the left hand side. It follows that

dK|Maij = det(D)2aij ∈ ZM ⊆ ZK
for all i, j. Now by [9, Corollary III.2.10], we have

dK = d
|K:M |
M NM (dK|M )

where NM denotes the norm map of M with respect to Q. Since M is a Galois extension, the norm of
dK|M is the product of all Galois conjugates of dK|M in M . In particular, dK|M divides NM (dK|M ) =

dK/d
|K:M |
M in ZM . Hence, dK

d
|K:M|
M

aij ∈ ZM for all i, j. By a symmetric argument, dL

d
|L:M|
M

aij ∈ ZM and

therefore gcd(dK ,dL)
dmM

aij ∈ ZM . Hence, we derive

gcd(dK , dL)

dmM
α ∈ ZKZL

as desired.

It is well-known that ZQn = Z[ζ] for every primitive n-th root of unity ζ. We also need the following
refinements.

Proposition 3 (Leopoldt, see [12, Proposition 6.1]). Let K be a number field contained in Qn. Then
ZK is generated as abelian group by the traces ∑

σ∈Gal(K(ζ)|K)

σ(ζ)

of n-th roots of unity ζ.

Lemma 4. Every subfield of Q2n has the form K = Q(ξ) where ξ ∈ {ζ, ζ ± ζ} and ζ is a 2n-th root of
unity. The inclusion of subfields is given as follows

Q(ζ)

Q(ζ2)Q(ζ + ζ) Q(ζ − ζ)

Q(ζ4)Q(ζ2 + ζ
2
) Q(ζ2 − ζ2)

Q(
√
−1)Q(

√
2) Q(

√
−2)

Q
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If ξ = ζ±ζ, then the elements 1 and ζk+(±ζ)k with k = 1, . . . , 2n−2−1 generate ZK as abelian group.

Proof. If n ≤ 2, then K ∈ {Q,Q4} and the claim holds with ξ = ζ ∈ {1,
√
−1}. Hence, let n ≥ 3. By

induction on n, we may assume that K * Q2n−1 and ζ is a primitive 2n-th root of unity. The subfields
of Q2n correspond via Galois theory to the subgroups of the Galois group

G := Gal(Q2n |Q) ∼= (Z/2nZ)× ∼= C2 × C2n−2 .

The involutions of G are α : ζ 7→ ζ−1 = ζ, β : ζ 7→ ζ−1+2n−1
= −ζ and γ : ζ 7→ ζ1+2n−1

= −ζ. Since
K * Q2n−1 = Qγ

2n , we must have Gal(Q2n |K) ∈ {〈α〉, 〈β〉}, i. e. K = Q(ζ ± ζ).

As remarked above, 1, ζ, . . . , ζ2
n−1−1 is a Z-basis of ZQ2n

. Hence, every x ∈ ZK can be written in the
form

x =
2n−1−1∑
k=0

akζ
k

with a0, . . . , a2n−1−1 ∈ Z. Since x is invariant under α or β, we obtain ak = −(±1)ka2n−1−k for
k = 1, . . . , 2n−1 − 1. Hence,

x = a0 +
2n−2−1∑
k=1

ak(ζ
k + (±ζ)k)

and the second claim follows.

Proposition 5 ([8, Theorem 3.11]). Let G be a finite group and g ∈ G. Then the natural map

NG(〈g〉)/CG(g)→ Gal(Q|〈g〉||Q(g))

is an isomorphism.

3 General results

We start our investigation with the “column fields” Q(g). Since products of characters are characters,
we have Z[g] =

∑
χ∈Irr(G) Zχ(g).

Proposition 6. For every finite group G and g ∈ G we have

|NG(〈g〉)/〈g〉|ZQ(g) ⊆ Z[g].

Proof. Let n := |〈g〉| and K := Q(g) ⊆ Qn. By Proposition 3, ZK is generated by the traces

ξ :=
∑

σ∈Gal(K(ζ)|K)

σ(ζ)

of n-th roots of unity ζ. Let ψ be a character of 〈g〉 such that ψ(g) = ξ ∈ K. Then by Proposition 5 it
follows that

Z[g] 3 (ψG)(g) =
1

|〈g〉|
∑

x∈NG(〈g〉)

ψ(gx) = |NG(〈g〉)/〈g〉|ξ.

This implies |NG(〈g〉)/〈g〉|ZK ⊆ Z[g].

The following consequence implies Theorem A.
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Corollary 7. For every finite group G there exists e ∈ N such that

|G|eZQ(G) ⊆ Z[G].

Proof. Clearly, Q(G) =
∏
g∈GQ(g). By Proposition 1, the discriminants of the fields Q(g) for g ∈ G

divide |G||G|. Hence, Proposition 2 and Proposition 6 imply

|G|eZQ(G) ⊆ |G||G|
∏
g∈G

ZQ(g) ⊆
∏
g∈G

Z[g] ⊆ Z[G]

for some (large) e ∈ N.

For specific groups one can estimate the exponent e in Corollary 7 by using the full strength of
Propositions 1 and 2. For nilpotent groups G we will prove next that e can be taken to be 1.

4 Nilpotent groups

Lemma 8. Let G and H be finite groups of coprime order. Let K := Q(G) and L := Q(H). Then
Q(G×H) = KL, ZKL = ZKZL and Z[G×H] = Z[G]Z[H].

Proof. Since Irr(G×H) = Irr(G)× Irr(H), it is clear that Q(G×H) = KL and

Z[G×H] =
{ n∑
i=1

xiyi : n ∈ N, x1, . . . , xn ∈ Z[G], y1, . . . , yn ∈ Z[H]
}

= Z[G]Z[H].

Since K ⊆ Q|G| and L ⊆ Q|H|, the discriminants dK and dL are coprime according to Proposition 1.
By Proposition 2, we obtain ZKL = ZKZL

In the situation of Lemma 8 it is easy to determine ZKL/Z[G × H] from the elementary divisors of
ZK/Z[G] and ZL/Z[H]. For instance, if ZK/Z[G] has elementary divisors 1, 2, 4 (in particular, ZK has
rank 3) and ZL/Z[L] has elementary divisors 1, 3, then

ZKL/Z[G×H] ∼= C2 × C4 × C3 × C6 × C12
∼= C2 × C6 × C2

12.

The following is a special case of Theorem B.

Proposition 9. Let G be a nilpotent group of odd order and let p1, . . . , pn be the prime divisors of |G|.
Then

|G|ZQ(G) ⊆ qZ[G]

where q :=
∏n
i=1 min{p3i , |G|pi}.

Proof. We may write G = P1× . . .×Pn with Sylow subgroups P1, . . . , Pn. By Lemma 8, it follows that

|G|ZQ(G) = |P1|ZQ(P1) . . . |Pn|ZQ(Pn).

Thus, we may assume that G is a non-abelian p-group for some odd prime p. In particular, |G| ≥ p3.
The Galois group of Q|G| (and therefore of every subfield) is cyclic. By Proposition 5, Gal(Q|〈g〉||Q(g))
is a cyclic p-group for every g ∈ G. Hence, the fields Q(g) are all cyclotomic and therefore they are
totally ordered. In particular, there exists g ∈ G such that K := Q(G) = Q(g). By Proposition 6, it
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follows that NZK ⊆ Z[G] where N := |NG(〈g〉)/〈g〉|. If N ≤ |G|/p3, then we are done. So we may
assume that N ≥ |G|/p2. If Q(G) = Qp, then ZK = Z[λ] ⊆ Z[G] for any non-trivial linear character
λ ∈ Irr(G). Therefore, we may assume that |G| ≥ p4, |〈g〉| = p2 and NG(〈g〉) = CG(g) = G. By
Proposition 5, Q(g) = Q|〈g〉| = Q(ζ) for some root of unity ζ. Since the regular character of G is
faithful, there exists χ ∈ Irr(G) such that the restriction χ〈g〉 is faithful. Since g ∈ Z(χ), we have
χ(g) = χ(1)ζk for some integer k coprime to p. Then for every l ≥ 0 we also have χ(gp

l
) = χ(1)ζkp

l .
This implies χ(1)ZK ⊆ Z[G]. Since |G| ≥ p4 and χ(1)2 < |G|, we obtain |G|ZK ⊆ p3Z[G].

The analysis of 2-groups G is more delicate, since it may happen that Q(G) 6= Q(g) for all g ∈ G.

Lemma 10. Let G be a 2-group and g ∈ G such that Q(g) is not a cyclotomic field. Then for every
subfield K of Q(g) there exists χ ∈ Irr(G) such that K = Q(χ(g)).

Proof. We argue by induction on |G|. We may assume that |Q(g) : Q| > 2. In particular, G 6= 1. By
Lemma 4, the subfields of Q(g) are totally ordered. In particular, there exists χ ∈ Irr(G) such that
Q(χ(g)) = Q(g). Let Z be a central subgroup of G of order 2. Then χ2 is a character of G/Z and
|Q(χ(g)) : Q(χ(g)2)| ≤ 2. Since

Q(gZ) = Q(ψ(gZ) : ψ ∈ Irr(G/Z)) ⊆ Q(g),

we obtain |Q(g) : Q(gZ)| ≤ 2. Since |Q(g) : Q| > 2, also Q(gZ) is not a cyclotomic field. By induction,
every proper subfield of Q(g) has the form Q(ψ(g)) for some ψ ∈ Irr(G/Z).

The cyclic group G = 〈g〉 ∼= C8 shows the assumption on Q(g) in Lemma 10 is necessary.

Lemma 11. Let G be a 2-group and g ∈ G such that K := Q(g) is not a cyclotomic field. Then

MZK ⊆ 2Z[G]

where M := max{χ(1) : χ ∈ Irr(G)}.

Proof. By Lemma 4, there exists a primitive 2n-th root of unity ζ such that K = Q(ζ ± ζ). Moreover,
ZK is generated by the elements 1 and ξk := ζk + (±ζ)k with k = 1, . . . , 2n−2 − 1. For every such k
there exists χ ∈ Irr(G) such that Q(χ(g)) = Q(ξk) by Lemma 10. It suffices to show that χ(1)ξk is an
integral linear combination of the Galois conjugates of 2χ(g). To this end, we may assume that k = 1
and ξ := ξ1.

Let d := χ(1) and note that d > 1 since Q(χ(g)) = Q(ξ) = K is not a cyclotomic field. There exist
integers a0, . . . , a2n−1−1 such that

χ(g) =

2n−1−1∑
i=0

aiζ
i = a0 +

2n−2−1∑
i=1

aiξi.

Since χ(g) is a sum of d roots of unity, |a0| + . . . + |a2n−1−1| ≤ d (it may happen that other roots,
even of higher order than 2n, cancel each other out). The Galois group G of Q2n acts on K and on
{ψ(g) : ψ ∈ Irr(G)}. Let σ ∈ G such that σ(ζ) = ζ1+2n−1

= −ζ. Then

ω :=

s−1∑
i=0

biξ2i+1 = χ(g)− σ(χ(g)) ∈ Z[G]
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where s := 2n−3 and bi := 2a2i+1 for i = 0, . . . , s − 1. Let τ ∈ G such that τ(ζ) = ζ5. Note that
τ s(ξ) = σ(ξ) = −ξ. We may relabel the elements bi in a suitable order such that

ω =

s−1∑
i=0

biτ
i(ξ).

Next we consider

γ :=
s−1∑
i=0

biζ
4i ∈ ZQ2s .

It is known that the prime 2 is fully ramified in Q2s. More precisely, (2) = (ζ4 − 1)s and (ζ4 − 1) is a
prime ideal (see [9, Lemma I.10.1]). Let e be the 2-part of gcd(b0, . . . , bs−1). Then 1

eγ is an algebraic
integer, but 1

2eγ is not. Hence, (1eγ) = (ζ4 − 1)tp where t < s and p is an ideal of ZQ2s coprime to
(ζ4 − 1). This implies the existence of some δ ∈ ZQ2s such that γδ = 2em where m is an odd integer.
We write δ =

∑s−1
i=0 ciζ

4i with c0, . . . , cs−1 ∈ Z. Then

2em = γδ =
s−1∑
i,j=0

bicjζ
4(i+j).

Comparing coefficients yields

∑
i+j=t

bicj −
∑

i+j=s−t
bicj =

{
2em if t = 0,

0 if 1 ≤ t ≤ s− 1.

Finally we compute

s−1∑
j=0

cjτ
j(ω) =

s−1∑
i,j=0

bicjτ
i+j(ξ) =

s−1∑
t=0

( ∑
i+j=t

bicj −
∑

i+j=s−t
bicj

)
τ t(ξ) = 2emξ.

Hence, 2emξ ∈ Z[G]. By Proposition 6 we also have |G|ξ ∈ |G|ZQ(g) ⊆ Z[G]. Therefore,

2eξ = gcd(2em, |G|)ξ ∈ Z[G].

Note that

e ≤
s−1∑
i=0

|bi| =
2n−2−1∑
i=0

|a2i+1| ≤
2n−1−1∑
i=0

|ai| ≤ d. (4.1)

Suppose that dξ /∈ 2Z[G]. Then d ≤ 2e (keep in mind that d and e are 2-powers). If the first inequality
in (4.1) is strict, then 2e ≤

∑s−1
i=0 |bi| since the right hand side is divisible by e. Thus, in any case

one of the inequalities in (4.1) is an equality. If e =
∑s−1

i=0 |bi|, then e = |bi| and ω = biτ
i(ξ) for some

i ∈ {0, . . . , s − 1}. Then we obtain eξ ∈ Z[G]. If, on the other hand,
∑2n−2−1

i=0 |a2i+1| =
∑2n−1−1

i=0 |ai|,
then ω = 2χ(g) and eξ ∈ Z[G] by the computation above. Hence in any case we deduce that d = e.
But now χ(g) = a2i+1τ

i(ξ) and d = 2|a2i+1|. This implies dξ ∈ 2Z[G] as desired.

The next result is a restatement of Theorem B.

Theorem 12. For every nilpotent group G 6= 1 the exponent of ZQ(G)/Z[G] is a proper divisor of |G|.
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Proof. By Proposition 9 and its proof, we may assume that G is a 2-group. By Lemma 4, Q(G) = Q(ξ)
where ξ ∈ {ζ, ζ±ζ} and ζ is a primitive 2n-th root of unity. If there exists g ∈ G such that Q(G) = Q(g),
then we obtain |G|ZQ(G) ⊆ Z[G] from Proposition 6. Otherwise we have n ≥ 3, Q(G) = Q(ζ) and there
exists g ∈ G such that K := Q(g) = Q(ζ ± ζ). Moreover, there exist h ∈ G and ψ ∈ Irr(G) such that

ψ(h) =
2n−1−1∑
i=0

aiζ
i /∈ K

where a0, . . . , a2n−1−1 ∈ Z. Lemma 11 shows that MZK ⊆ 2Z[G] where M := max{χ(1) : χ ∈ Irr(G)}.
It suffices to prove |G|ζk ∈ 2Z[G] for every k ∈ Z.

Let σ be the Galois automorphism of Q(ζ) such that σ(ζ) = ±ζ. Since ψ(h) /∈ K, we have ψ(h) 6=
σ(ψ(h)). We consider

ω := ψ(h)− σ(ψ(h)) =
2n−1−1∑
i=1

biζ
i ∈ Z[G]

where bi := ai ± a2n−1−i if i is odd and bi := ai + a2n−1−i otherwise. Let e be the 2-part of
gcd(b0, . . . , b2n−1−1). As in the proof of Lemma 11 there exists an odd integer m such that 2emω−1 is
an algebraic integer. Hence for every k ∈ Z,

2em
ζk − σ(ζ)k

ω
∈ ZQ(ζ) ∩Q(ζ)σ = ZK .

We conclude that

2emMζk = emM(ζk + σ(ζ)k) + emM
ζk − σ(ζ)k

ω
ω ∈ Z[G].

By Corollary 7, there exists s ∈ N such that |G|sζk ∈ Z[G]. Hence,

2eMZQ(G) ⊆ gcd(2emM, |G|s)Z[ζ] ⊆ Z[G].

If bi 6= 0 for some i 6= 2n−2, then e ≤ |bi| ≤ |ai|+ |a2n−1−1| ≤ ψ(1). Otherwise, ω = 2a2n−2

√
−1. If, in

this case, there exists some ai 6= 0 with i 6= 2n−2, then e ≤ |b2n−2 | < 2|a2n−2 |+ |ai| ≤ 2ψ(1). Since e and
ψ(1) are 2-powers, we still have e ≤ ψ(1). Finally, let ψ(h) = a2n−2

√
−1 = ω/2. Then we may repeat

the calculation above with ψ(h) instead of ω in order to obtain eMZQ(G) ⊆ Z[G] where e ≤ 2ψ(1). In
summary,

2Mψ(1)ZQ(G) ⊆ Z[G]

in every case. Since |G| =
∑

χ∈Irr(G) χ(1)2, we have 2Mψ(1) ≤ 2M2 ≤ |G|. If 2Mψ(1) = |G|, then
ψ(1) = M and ψ is the only irreducible character of degree M . But then ψ is rational and we derive
the contradiction ψ(h) ∈ K. Therefore, 2Mψ(1) < |G| and the claim follows.

5 Examples

We show first that Proposition 9 is sharp in the following sense.

Proposition 13. For every prime p and every integer n ≥ 1 there exists a group P of order p2n+2

and exponent p2 such that K := Q(P ) = Qp2 and ZK/Z[P ] ∼= C
(p−1)2
pn .
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Proof. Let P be the central product of an extraspecial group E of order p2n+1 (it does not matter
which one) and a cyclic group C = 〈c〉 of order p2. The irreducible characters of P are those of E ×C
which agree on Z(E) = 〈z〉 and 〈cp〉. It is well-known that Irr(E) consists of p2n linear character and
p − 1 faithful characters χ1, . . . , χp−1 of degree pn (see [6, Example 7.6(b)] for instance). Since E/E′

is elementary abelian, the linear character values of E and also of P generate Qp. Let ζ be a primitive
p2-th root of unity. After relabeling, we may assume that χi(z) = pnζip and χi(g) = 0 for g ∈ E \Z(E)
and i = 1, . . . , p − 1. Hence, the non-linear character of P take the values 0 and pnζi for i ∈ Z. This
shows K = Qp2 and

Z[G] = Z[ζp, pnζi : gcd(i, p) = 1].

Since the elements 1, ζ, ζ2, . . . , ζp(p−1)−1 form a Z-basis of ZK , the claim follows easily.

Proposition 13 already shows that neither |〈g〉|ZQ(g) ⊆ Z[G] nor exp(G)ZQ(G) ⊆ Z[G] is true in general.
Also the dual statements, motivated by Lemma 11, χ(1)ZQ(χ) ⊆ Z[G] and

lcm{χ(1) : χ ∈ Irr(G)}ZQ(G) ⊆ Z[G]

do not always hold. Using GAP [5] and MAGMA [1] we computed the following example: The group

G = SmallGroup(48, 3) ∼= C2
4 o C3

gives K := Q(G) = Q12 and Z[G] = Z[2
√
−1, ζ] where ζ is a primitive third root of unity. Hence,

ZK/Z[G] ∼= C2
2 , but lcm{χ(1) : χ ∈ Irr(G)} = 3.

For a single entry ω = χ(g) of the character table of G the group ZQ(ω)/Z[ω] usually has nothing to
do with G. For instance, G = D26×C3 has a character value ω such that ZQ(ω)/Z[ω] is cyclic of order
52 · 157 · 547. It is not hard to show that every algebraic integer of an abelian number field occurs in
the character table of some finite group (see proof of [4, Theorem 6]).

For 2-groups the gap between G and ZK/Z[G] can get even bigger than in Proposition 13: The exponent
and the largest character degree of G = SmallGroup(29, 6480850) is 8, but

ZK/Z[G] ∼= C64 × C8 × C4.

Similarly, the group G = SmallGroup(29, 60860) yields |ZK/Z[G]| = 233.

For non-nilpotent groups, the arguments from the last section drastically fail as our next example
shows. Let

G = SmallGroup(240, 13) ∼= C15 oD16

where the dihedral group D16 acts with kernel D′16 (commutator subgroup) on C15. Then K = Q120

and 2ZQ(g) ⊆ Z[G] for all g ∈ G, but

ZK/Z[G] ∼= C2
120 × C2

60 × C4
12 × C4

4 × C14
2 .

Now we consider some simple groups which support Conjecture C.

Proposition 14.

(i) Let G = PSL(2, q) for some prime power q 6= 1. Then ZQ(G) = Z[G].

(ii) Let G = Sz(q) for q ≥ 8 an odd power of 2. Then ZQ(G)/Z[G] ∼= Ca2 where a = ϕ((q2 + 1)(q −
1))/32.
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Proof.

(i) Assume first that q ≥ 5 is odd. Then G has two irreducible characters taking only rational
values and three families χi, θj , ηk taking (potentially) irrational values (see [3, Theorem 38.1] for
instance). Let ζn be a primitive n-th root of unity and let ε := (−1)(q−1)/2. Set r := (q−1)/2 and
s := (q+1)/2. Then the values of the χi lie in K := Q(ζr+ζr) and they contain the integral basis
from Lemma 4. Similarly the values of the θj generate the ring of integers of L := Q(ζs + ζs).
Finally, the values of the ηk generate the ring of integers of M := Q(

√
εq). The discriminants of

K, L and M are pairwise coprime by Proposition 1. Hence, by Proposition 2 we have

Z[G] = ZKZLZM = ZKLM = ZQ(G).

For q a power of 2, the result follows for PSL(2, q) = SL(2, q) with a similar argument from [3,
Theorem 38.2].

(ii) The character table of the group G = Sz(q) was determined by Suzuki in [11, Theorem 13]. We use
the names of characters in that theorem. Set r := q−1, s := q+

√
2q+1 and t := q−

√
2q+1 and

note that these odd numbers are pairwise coprime. Observe that Q(G) = KLMN , the composita
of the fields K = Q(X1) = Q(ζr + ζ̄r), L = Q(Y1) = Q(ζs + ζqs + ζq

2

s + ζq
3

s ), M = Q(Z1) =

Q(ζt + ζqt + ζq
2

t + ζq
3

t ) and N = Q(W1) = Q(
√
−1), which have pairwise coprime discriminant by

Proposition 1. Now ZK = Z[ζr+ ζ̄r] = Z[X1] and ZL = Z[ζs+ζqs +ζq
2

s +ζq
3

s ] = Z[Y1] and similarly
for Z1. Further Z[W1] = Z[W2] = Z[2

√
−1], hence ZN/Z[W1] has elementary divisors 1 and 2.

Similar to the remark following Lemma 8, we can conclude that ZKLMN/Z[G] has elementary
divisors 1 and 2 each with multiplicity

[KLM : Q] =
ϕ(r)

2

ϕ(s)

4

ϕ(t)

4
=
ϕ((q2 + 1)(q − 1))

32
.

A minimal simple group (i. e. a simple group with all proper subgroups solvable) is isomorphic to some
PSL(2, q), to some Sz(22f+1) or to PSL(3, 3). For the last group one can check easily that ZQ(G) = Z[G].
Hence, for minimal simple groups G, the exponent of ZQ(G)/Z[G] is at most 2.

Finally we compute Z[G] for the alternating group G = An of (small) degree n. Let g ∈ G be non-
rational. Then there exists a partition λ = (λ1, . . . , λk) of n into pairwise distinct odd parts such
that

Z[g] = Z[(1 +
√
d)/2]

where d = (−1)(n−k)/2λ1 . . . λk ≡ 1 (mod 4) (see [7, Theorem 2.5.13] for instance). We may write√
d = e

√
d′ such that d′ is squarefree. Let K := Q(g) = Q(

√
d) = Q(

√
d′). Then

ZK = Z[(1 +
√
d′)/2]

and we obtain eZK ⊆ Z[g]. Note that e2 | d | n! = 2|G|. Since the discriminant of K is d′ ≡ 1 (mod 2),
it follows that |ZQ(G)/Z[G]| is odd by Proposition 2. It seems fairly difficult to determine the precise
structure of ZQ(G)/Z[G]. For n ≥ 25, a theorem by Robinson–Thompson [10] states that

Q(G) = Q(
√
p∗ : p odd prime , n− 2 6= p ≤ n)

where p∗ := (−1)
p−1
2 p. By Proposition 2, ZQ(G) is generated as abelian group by all products of the

elements (1 +
√
p∗)/2 with p as above. The following table lists the (non-trivial) elementary divisors

of ZQ(G)/Z[G] for n ≤ 31. In every case Conjecture C is fulfilled.
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n ZQ(An)/Z[An]

≤ 11 1
12, 13, 14 34

15 34 × 154 × 454

16 34 × 154

17 312 × 94 × 454 × 1354

18 38 × 158 × 458

19 38 × 158

20 336 × 912 × 4532 × 1039528 × 311854

21 336 × 1054 × 31512

22 352 × 1058 × 31552 × 9454

23 364 × 409532

24 1
25 332 × 1532 × 31532

26 338 × 1540 × 4540 × 31556 × 9458

27 3112 × 9112 × 2716

28 396 × 1580 × 4548

29 3224 × 15128

30 3128 × 105128

31 3256
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