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Abstract

We prove that the number of irreducible real characters in a nilpotent block of a finite group is
locally determined. We further conjecture that the Frobenius–Schur indicators of those characters
can be computed for p = 2 in terms of the extended defect group. We derive this from a more
general conjecture on the Frobenius–Schur indicator of projective indecomposable characters of 2-
blocks with one simple module. This extends results of Murray on 2-blocks with cyclic and dihedral
defect groups.
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1 Introduction

An important task in representation theory is to determine global invariants of a finite group G by
means of local subgroups. Dade’s conjecture, for instance, predicts the number of irreducible characters
χ ∈ Irr(G) such that the p-part χ(1)p is a given power of a prime p (see [23, Conjecture 9.25]). Since
Gow’s work [7], there has been an increasing interest in counting real (i. e. real-valued) characters and
more generally characters with a given field of values.

The quaternion group Q8 testifies that a real irreducible character χ is not always afforded by a
representation over the real numbers. The precise behavior is encoded by the Frobenius–Schur indicator
(F-S indicator, for short)

ϵ(χ) :=
1

|G|
∑
g∈G

χ(g2) =


0 if χ ̸= χ,

1 if χ is realized by a real representation,
−1 if χ is real, but not realized by a real representation.

(1)

A new interpretation of the F-S indicator in terms of superalgebras has been given recently in [13].
The case of the dihedral group D8 shows that ϵ(χ) is not determined by the character table of G. The
computation of F-S indicators can be a surprisingly difficult task, which has not been fully completed
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for the simple groups of Lie type, for instance (see [25]). Problem 14 on Brauer’s famous list [2] asks
for a group-theoretical interpretation of the number of χ ∈ Irr(G) with ϵ(χ) = 1.

To obtain deeper insights, we fix a prime p and assume that χ lies in a p-block B of G with defect
group D. By complex conjugation we obtain another block B of G. If B ̸= B, then clearly ϵ(χ) = 0
for all χ ∈ Irr(B). Hence, we assume that B is real, i. e. B = B. John Murray [18, 19] has computed
the F-S indicators when D is a cyclic 2-group or a dihedral 2-group (including the Klein four-group).
His results depend on the fusion system of B, on Erdmann’s classification of tame blocks and on the
structure of the so-called extended defect group E of B (see Definition 7 below). For p > 2 and D
cyclic, he obtained in [20] partial information on the F-S indicators in terms of the Brauer tree of B.

The starting point of my investigation is the well-known fact that 2-blocks with cyclic defect groups
are nilpotent. Assume that B is nilpotent and real. If B is the principal block, then G = Op′(G)D and
Irr(B) = Irr(G/Op′(G)) = Irr(D). In this case the F-S indicators of B are determined by D alone.
Thus, suppose that B is non-principal. By Broué–Puig [4], there exists a height-preserving bijection
Irr(D) → Irr(B), λ 7→ λ ∗χ0 where χ0 ∈ Irr(B) is a fixed character of height 0 (see also [16, Definition
8.10.2]). However, this bijection does not in general preserve F-S indicators. For instance, the dihedral
group D24 has a nilpotent 2-block with defect group C4 and a nilpotent 3-block with defect group C3,
although every character of D24 is real. Our main theorem asserts that the number of real characters
in a nilpotent block is nevertheless locally determined. To state it, we introduce the extended inertial
group

NG(D, bD)
∗ :=

{
g ∈ NG(D) : bgD ∈ {bD, bD}

}
where bD is a Brauer correspondent of B in DCG(D).

Theorem A. Let B be a real, nilpotent p-block of a finite group G with defect group D. Let bD be
a Brauer correspondent of B in DCG(D). Then the number of real characters in Irr(B) of height h
coincides with the number of characters λ ∈ Irr(D) of degree ph such that λt = λ where

NG(D, bD)
∗/DCG(D) = ⟨tDCG(D)⟩.

If p > 2, then all real characters in Irr(B) have the same F-S indicator.

In contrast to arbitrary blocks, Theorem A implies that nilpotent real blocks have at least one real
character (cf. [20, p. 92] and [8, Theorem 5.3]). If bD = bD, then B and D have the same number
of real characters, because NG(D, bD) = DCG(D). This recovers a result of Murray [18, Lemma 2.2].
As another consequence, we will derive in Proposition 5 a real version of Eaton’s conjecture [5] for
nilpotent blocks as put forward by Héthelyi–Horváth–Szabó [12].

The F-S indicators of real characters in nilpotent blocks seem to lie somewhat deeper. We still conjecture
that they are locally determined by a defect pair (see Definition 7) for p = 2 as follows.

Conjecture B. Let B be a real, nilpotent, non-principal 2-block of a finite group G with defect pair
(D,E). Then there exists a height preserving bijection Γ : Irr(D) → Irr(B) such that

ϵ(Γ(λ)) =
1

|D|
∑

e∈E\D

λ(e2) (2)

for all λ ∈ Irr(D).
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The right hand side of (2) was introduced and studied by Gow [8, Lemma 2.1] more generally for any
groups D ≤ E with |E : D| = 2. This invariant was later coined the Gow indicator by Murray [20, Eq.
(2)]. For 2-blocks of defect 0, Conjecture B confirms the known fact that real characters of 2-defect
0 have F-S indicator 1 (see [8, Theorem 5.1]). There is no such result for odd primes p. As a matter
of fact, every real character has p-defect 0 whenever p does not divide |G|. In Theorem 10 we prove
Conjecture B for abelian defect groups D. Then it also holds for all quasisimple groups G by work of
An–Eaton [1]. Murray’s results mentioned above, imply Conjecture B also for dihedral D.

For p > 2, the common F-S indicator in the situation of Theorem A is not locally determined. For
instance, G = Q8 ⋊ C9 = SmallGroup(72, 3) has a non-principal real 3-block with D ∼= C9 and
common F-S indicator −1, while its Brauer correspondent in NG(D) ∼= C18 has common F-S indicator
1. Nevertheless, for cyclic defect groups D we find another way to compute this F-S indicator in
Theorem 3 below.

Our second conjecture applies more generally to blocks with only one simple module.

Conjecture C. Let B be a real, non-principal 2-block with defect pair (D,E) and a unique projective
indecomposable character Φ. Then

ϵ(Φ) = |{x ∈ E \D : x2 = 1}|.

Here ϵ(Φ) is defined by extending (1) linearly. If ϵ(Φ) = 0, then E does not split over D and Conjec-
ture C holds (see Proposition 8 below). Conjecture C implies a stronger, but more technical statement
on 2-blocks with a Brauer correspondent with one simple module (see Theorem 13 below). This allows
us to prove the following.

Theorem D. Conjecture C implies Conjecture B.

We remark that our proof of Theorem D does not work block-by-block. For solvable groups we offer a
purely group-theoretical version of Conjecture C at the end of Section 4.

Theorem E. Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.

We have checked Conjectures B and C with GAP [6] in many examples using the libraries of small
groups, perfect groups and primitive groups.

2 Theorem A and its consequences

Our notation follows closely Navarro’s book [22]. In particular, G0 denotes the set of p-regular elements
of a finite group G. Let B be a p-block of G with defect group D. Recall that a B-subsection is a pair
(u, b) where u ∈ D and b is a Brauer correspondent of B in CG(u). For χ ∈ Irr(B) and φ ∈ IBr(b) we
denote the corresponding generalized decomposition number by duχφ. If u = 1, we obtain the (ordinary)
decomposition number dχφ = d1χφ. We put l(b) = |IBr(b)| as usual.

Following [22, p. 114], we define a class function χ(u,b) by

χ(u,b)(us) :=
∑

φ∈IBr(b)

duχφφ(s)
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for s ∈ CG(u)
0 and χ(u,b)(x) = 0 whenever x is outside the p-section of u. If R is a set of representatives

for theG-conjugacy classes of B-subsections, then χ =
∑

(u,b)∈R χ
(u,b) by Brauer’s second main theorem

(see [22, Problem 5.3]). Now suppose that B is nilpotent and λ ∈ Irr(D). By [16, Proposition 8.11.4],
each Brauer correspondent b of B is nilpotent and in particular l(b) = 1. Broué–Puig [4] have shown
that, if χ has height 0, then

λ ∗ χ :=
∑

(u,b)∈R

λ(u)χ(u,b) ∈ Irr(B)

and (λ ∗ χ)(1) = λ(1)χ(1). Note also that duλ∗χ,φ = λ(u)duχφ.

Proof of Theorem A. Let R be a set of representatives for the G-conjugacy classes of B-subsections
(u, bu) ≤ (D, bB) (see [22, p. 219]). Since B is nilpotent, we have IBr(bu) = {φu} for all (u, bu) ∈ R.
Since the Brauer correspondence is compatible with complex conjugation, (u, bu)t ≤ (D, bD)

t = (D, bD)
where NG(D, bD)

∗/DCG(D) = ⟨tDCG(D)⟩. Thus, (u, bu)t is D-conjugate to some (u′, bu′) ∈ R.

If p > 2, there exists a unique p-rational character χ0 ∈ Irr(B) of height 0, which must be real by
uniqueness (see [4, Remark after Theorem 1.2]). If p = 2, there is a 2-rational real character χ0 ∈ Irr(B)
of height 0 by [8, Theorem 5.1]. Then duχ0,φu

= duχ0,φu
∈ Z and

χ
(u,bu)
0 = χ

(u,bu)
0 = χ

(u,bu)t

0 = χ
(u′,bu′ )
0 .

Now let λ ∈ Irr(D). Then

λ ∗ χ0 =
∑

(u,bu)∈R

λ(u)χ
(u,bu)
0 =

∑
(u,bu)∈R

λ(u)χ
(u′,bu′ )
0 .

Since the class functions χ(u,b)
0 have disjoint support, they are linearly independent. Therefore, λ ∗ χ0

is real if and only if λ(ut) = λ(u′) = λ(u) for all (u, bu) ∈ R. Since every conjugacy class of D is
represented by some u with (u, bu) ∈ R, we conclude that λ ∗ χ0 is real if and only λt = λ. Moreover,
if λ(1) = ph, then λ ∗ χ0 has height h. This proves the first claim.

To prove the second claim, let p > 2 and IBr(B) = {φ}. Then the decomposition numbers dλ∗χ0,φ =
λ(1) are powers of p; in particular they are odd. A theorem of Thompson and Willems (see [26,
Theorem 2.8]) states that all real characters χ with dχ,φ odd have the same F-S indicator. So in our
situation all real characters in Irr(B) have the same F-S indicator.

Since the automorphism group of a p-group is “almost always” a p-group (see [11]), the following
consequence is of interest.

Corollary 1. Let B be a real, nilpotent p-block with defect group D such that p and |Aut(D)| are odd.
Then B has a unique real character.

Proof. The hypothesis on Aut(D) implies that NG(D, bD)
∗ = DCG(D). Hence by Theorem A, the

number of real characters in Irr(B) is the number of real characters in D. Since p > 2, the trivial
character is the only real character of D.

The next lemma is a consequence of Brauer’s second main theorem and the fact that |{g ∈ G : g2 =
x}| = |{g ∈ CG(x) : g

2 = x}| is locally determined for g, x ∈ G.
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Lemma 2 (Brauer). For every p-block B of G and every B-subsection (u, b) with φ ∈ IBr(b) we have∑
χ∈Irr(B)

ϵ(χ)duχφ =
∑

ψ∈Irr(b)

ϵ(ψ)duψφ =
∑

ψ∈Irr(b)

ϵ(ψ)
ψ(u)

ψ(1)
dψφ.

If l(b) = 1, then ∑
χ∈Irr(B)

ϵ(χ)duχφ =
1

φ(1)

∑
ψ∈Irr(b)

ϵ(ψ)ψ(u).

Proof. The first equality is [3, Theorem 4A]. The second follows from u ∈ Z(CG(u)). If l(b) = 1, then
ψ(1) = dψφφ(1) for ψ ∈ Irr(b) and the last claim follows.

Recall that a canonical character of B is a character θ ∈ Irr(DCG(D)) lying in a Brauer correspondent
of B such that D ≤ Ker(θ) (see [22, Theorem 9.12]). We define the extended stabilizer

NG(D)∗θ :=
{
g ∈ NG(D) : θg ∈ {θ, θ}

}
.

The following results adds some detail to the nilpotent case of [20, Theorem 1].

Theorem 3. Let B be a real, nilpotent p-block with cyclic defect group D = ⟨u⟩ and p > 2. Let
θ ∈ Irr(CG(D)) be a canonical character of B and set T := NG(D)∗θ. Then one of the following holds:

(1) θ ̸= θ. All characters in Irr(B) are real with F-S indicator ϵ(θT ).

(2) θ = θ. The unique non-exceptional character χ0 ∈ Irr(B) is the only real character in Irr(B) and
ϵ(χ0) = sgn(χ0(u))ϵ(θ) where sgn(χ0(u)) is the sign of χ0(u).

Proof. Let bD be a Brauer correspondent of B in CG(D) containing θ. Then T = NG(D, bD)
∗. If θ ̸= θ,

then T inverts the elements of D since p > 2. Thus, Theorem A implies that all characters in Irr(B)
are real. By [20, Theorem 1(v)], the common F-S indicator is the Gow indicator of θ with respect to
T . This is easily seen to be ϵ(θT ) (see [20, after Eq. (2)]).

Now assume that θ = θ. Here Theorem A implies that the unique p-rational character χ0 ∈ Irr(B)
is the only real character. In particular, χ0 must be the unique non-exceptional character. Note that
(u, bD) is a B-subsection and IBr(bD) = {φ}. Since χ0 is p-rational, duχ0φ = ±1. Since all Brauer
correspondents of B in CG(u) are conjugate under NG(D), the generalized decomposition numbers are
Galois conjugate, in particular duχ0φ does not depend on the choice of bD. Hence,

χ0(u) = |NG(D) : NG(D)θ|duχ0φφ(1)

and duχ0φ = sgn(χ0(u)). Moreover, θ is the unique non-exceptional character of bD and θ(u) = θ(1). By
Lemma 2, we obtain

ϵ(χ0) = sgn(χ0(u))
∑

χ∈Irr(B)

ϵ(χ)duχφ =
sgn(χ0(u))

φ(1)

∑
ψ∈Irr(bD)

ϵ(ψ)ψ(u) = sgn(χ0(u))ϵ(θ).

If B is a nilpotent block with canonical character θ ̸= θ, the common F-S indicator of the real characters
in Irr(B) is not always ϵ(θT ) as in Theorem 3. A counterexample is given by a certain 3-block of
G = SmallGroup(288, 924) with defect group D ∼= C3 × C3.

We now restrict ourselves to 2-blocks. Héthelyi–Horváth–Szabó [12] introduced four conjectures, which
are real versions of Brauer’s conjecture, Olsson’s conjecture and Eaton’s conjecture. We only state the
strongest of them, which implies the remaining three. Let D(0) := D and D(k+1) := [D(k), D(k)] for
k ≥ 0 be the members of the derived series of D.
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Conjecture 4 (Héthelyi–Horváth–Szabó). Let B be a 2-block with defect group D. For every h ≥ 0,
the number of real characters in Irr(B) of height ≤ h is bounded by the number of elements of D/D(h+1)

which are real in NG(D)/D(h+1).

A conjugacy class K of G is called real if K = K−1 := {x−1 : x ∈ K}. A conjugacy class K of a
normal subgroup N ⊴G is called real under G if there exists g ∈ G such that Kg = K−1.

Proposition 5. Let B be a nilpotent 2-block with defect group D and Brauer correspondent bD in
DCG(D). Then the number of real characters in Irr(B) of height ≤ h is bounded by the number of
conjugacy classes of D/D(h+1) which are real under NG(D, bD)

∗/D(h+1). In particular, Conjecture 4
holds for B.

Proof. We may assume that B is real. As in the proof of Theorem A, we fix some 2-rational real
character χ0 ∈ Irr(B) of height 0. Now λ∗χ0 has height ≤ h if and only if λ(1) ≤ ph for λ ∈ Irr(B). By
[14, Theorem 5.12], the characters of degree ≤ ph in Irr(D) lie in Irr(D/D(h+1)). By Theorem A, λ∗χ0

is real if and only if λt = λ. By Brauer’s permutation lemma (see [23, Theorem 2.3]), the number of
those characters λ coincides with the number of conjugacy classes K of D/D(h+1) such that Kt = K−1.
Now Conjecture 4 follows from NG(D, bD)

∗ ≤ NG(D).

3 Extended defect groups

We continue to assume that p = 2. As usual we choose a complete discrete valuation ring O such that
F := O/J(O) is an algebraically closed field of characteristic 2. Let Cl(G) be the set of conjugacy
classes of G. For K ∈ Cl(G) let K+ :=

∑
x∈K x ∈ Z(FG) be the class sum of K. We fix a 2-block

B of FG with block idempotent 1B =
∑

K∈Cl(G) aKK
+ where aK ∈ F . The central character of B is

defined by

λB : Z(FG) → F, K+ 7→
( |K|χ(g)

χ(1)

)∗

where g ∈ K, χ ∈ Irr(B) and ∗ denotes the canonical reduction O → F (see [22, Chapter 2]).

Since λB(1B) = 1, there exists K ∈ Cl(G) such that aK ̸= 0 ̸= λB(K
+). We call K a defect class of B.

By [22, Corollary 3.8], K consists of elements of odd order. According to [22, Corollary 4.5], a Sylow
2-subgroup D of CG(x) where x ∈ K is a defect group of B. For x ∈ K let

CG(x)
∗ := {g ∈ G : gxg−1 = x±1} ≤ G

be the extended centralizer of x.

Proposition 6 (Gow, Murray). Every real 2-block B has a real defect class K. Let x ∈ K. Choose a
Sylow 2-subgroup E of CG(x)∗ and put D := E∩CG(x). Then the G-conjugacy class of the pair (D,E)
does not depend on the choice of K or x.

Proof. For the principal block (which is always real since it contains the trivial character), K = {1} is
a real defect class and E = D is a Sylow 2-subgroup of G. Hence, the uniqueness follows from Sylow’s
theorem. Now suppose that B is non-principal. The existence of K was first shown in [8, Theorem 5.5].
Let L be another real defect class of B and choose y ∈ L. By [9, Corollary 2.2], we may assume after
conjugation that E is also a Sylow 2-subgroup of CG(y)∗. Let Dx := E ∩CG(x) and Dy := E ∩CG(y).
We may assume that |E : Dx| = 2 = |E : Dy| (cf. the remark after the proof).
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We now introduce some notation in order to apply [17, Proposition 14]. Let Σ = ⟨σ⟩ ∼= C2. We consider
FG as an F [G× Σ]-module where G acts by conjugation and gσ = g−1 for g ∈ G (observe that these
actions indeed commute). For H ≤ G× Σ let

TrG×Σ
H : (FG)H → (FG)G×Σ, α 7→

∑
x∈R

αx

be the relative trace with respect to H, where R denotes a set of representatives of the right cosets
of H in G × Σ. By [17, Proposition 14], we have 1B ∈ TrG×Σ

Ex
(FG) where Ex := Dx⟨exσ⟩ for some

ex ∈ E \ Dx. By the same result we also obtain that Dy⟨eyσ⟩ with ey ∈ E \ Dy is G-conjugate to
Ex. This implies that Dy is conjugate to Dx inside NG(E). In particular, (Dx, E) and (Dy, E) are
G-conjugate as desired.

Definition 7. In the situation of Proposition 6 we call E an extended defect group and (D,E) a defect
pair of B.

We stress that real 2-blocks can have non-real defect classes and non-real blocks can have real defect
classes (see [10, Theorem 3.5]).

It is easy to show that non-principal real 2-blocks cannot have maximal defect (see [22, Problem 3.8]).
In particular, the trivial class cannot be a defect class and consequently, |E : D| = 2 in those cases.
For non-real blocks we define the extended defect group by E := D for convenience. Every given pair
of 2-groups D ≤ E with |E : D| = 2 occurs as a defect pair of a real (nilpotent) block. To see this, let
Q ∼= C3 and G = Q⋊ E with CE(Q) = D. Then G has a unique non-principal block with defect pair
(D,E).

We recall from [14, p. 49] that ∑
χ∈Irr(G)

ϵ(χ)χ(g) = |{x ∈ G : x2 = g}| (3)

for all g ∈ G. The following proposition provides some interesting properties of defect pairs.

Proposition 8 (Gow, Murray). Let B be a real 2-block with defect pair (D,E). Let bD be a Brauer
correspondent of B in DCG(D). Then the following holds:

(i) NG(D, bD)
∗ = NG(D, bD)E. In particular, bD is real if and only if E = DCE(D).

(ii) For u ∈ D, we have
∑

χ∈Irr(B) ϵ(χ)χ(u) ≥ 0 with strict inequality if and only if u is G-conjugate
to e2 for some e ∈ E \D. In particular, E splits over D if and only if

∑
χ∈Irr(B) ϵ(χ)χ(1) > 0.

(iii) E/D′ splits over D/D′ if and only if all height zero characters in Irr(B) have non-negative F-S
indicator.

Proof.

(i) See [19, Lemma 1.8] and [18, Theorem 1.4].

(ii) See [19, Lemma 1.3].

(iii) See [8, Theorem 5.6].

The next proposition extends [18, Lemma 1.3].
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Corollary 9. Suppose that B is a 2-block with defect pair (D,E) where D is abelian. Then E splits
over D if and only if all characters in Irr(B) have non-negative F-S indicator.

Proof. If B is non-real, then E = D splits over D and all characters in Irr(B) have F-S indicator
0. Hence, let B = B. By Kessar–Malle [15], all characters in Irr(B) have height 0. Hence, the claim
follows from Proposition 8(iii).

Theorem 10. Let B be a real, nilpotent 2-block with defect pair (D,E) where D is abelian. If E
splits over D, then all real characters in Irr(B) have F-S indicator 1. Otherwise exactly half of the real
characters have F-S indicator 1. In either case, Conjecture B holds for B.

Proof. If E splits over D, then all real characters in Irr(B) have F-S indicator 1 by Corollary 9.
Otherwise we have

∑
χ∈Irr(B) ϵ(χ) = 0 by Proposition 8(ii), because all characters in Irr(B) have the

same degree. Hence, exactly half of the real characters have F-S indicator 1. Using Theorem A we can
determine the number of characters for each F-S indicator. For the last claim, we may therefore replace
B by the unique non-principal block of G = Q⋊E where Q ∼= C3 and CE(Q) = D (mentioned above).
In this case Conjecture B follows from Gow [8, Lemma 2.2] or Theorem E.

Example 11. Let B be a real block with defect group D ∼= C4×C2. Then B is nilpotent since Aut(D)
is a 2-group and D is abelian. Moreover |Irr(B)| = 8. The F-S indicators depend not only on E, but
also on the way D embeds into E. The following cases can occur (here M16 denotes the modular group
and [16, 3] refers to the small group library):

F-S indicators E

++++++++ D8 × C2

++++−−−− Q8 × C2, C4 ⋊ C4 with Φ(D) = E′

++++ 0 0 0 0 D, D × C2, D8 ∗ C4, [16, 3]
+ +−− 0 0 0 0 C2

4 , C8 × C2, M16, C4 ⋊ C4 with Φ(D) ̸= E′

The F-S indicator ϵ(Φ) appearing in Conjecture C has an interesting interpretation as follows. Let
Ω := {g ∈ G : g2 = 1}. The conjugation action of G on Ω turns FΩ into an FG-module, called the
involution module.

Lemma 12 (Murray). Let B be a real 2-block and φ ∈ IBr(B). Then ϵ(Φφ) is the multiplicity of φ as
a constituent of the Brauer character of FΩ.

Proof. See [18, Lemma 2.6].

Next we develop a local version of Conjecture C. Let B be a real 2-block with defect pair (D,E) and
B-subsection (u, b). If E = DCE(u), then b is real and (CD(u),CE(u)) is a defect pair of b by [19,
Lemma 2.6] applied to the subpair (⟨u⟩, b). Conversely, if b is real, we may assume that (CD(u),CE(u))
is a defect pair of b by [19, Theorem 2.7]. If b is non-real, we may assume that (CD(u),CD(u)) =
(CD(u),CE(u)) is a defect pair of b.
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Theorem 13. Let B be 2-block of a finite group G with defect pair (D,E). Suppose that Conjecture C
holds for all Brauer correspondents of B in sections of G. Let (u, b) be a B-subsection with defect pair
(CD(u),CE(u)) such that IBr(b) = {φ}. Then

∑
χ∈Irr(B)

ϵ(χ)duχφ =

{
|{x ∈ D : x2 = u}| if B is the principal block,
|{x ∈ E \D : x2 = u}| otherwise.

Proof. If B is not real, then B is non-principal and E = D. It follows that ϵ(χ) = 0 for all χ ∈ Irr(B)
and

|{x ∈ E \D : x2 = u}| = 0.

Hence, we may assume that B is real. By Lemma 2, we have∑
χ∈Irr(B)

ϵ(χ)duχφ =
∑

ψ∈Irr(b)

ϵ(ψ)duψφ =
1

φ(1)

∑
ψ∈Irr(b)

ϵ(ψ)ψ(u). (4)

Suppose that B is the principal block. Then b is the principal block of CG(u) by Brauer’s third main
theorem (see [22, Theorem 6.7]). The hypothesis l(b) = 1 implies that φ = 1CG(u) and CG(u) has a
normal 2-complement N (see [22, Corollary 6.13]). It follows that Irr(b) = Irr(CG(u)/N) = Irr(CD(u))
and ∑

ψ∈Irr(b)

ϵ(ψ)duψφ =
∑

λ∈Irr(CD(u))

ϵ(λ)λ(u) = |{x ∈ CD(u) : x
2 = u}|

by (3). Since every x ∈ D with x2 = u lies in CD(u), we are done in this case.

Now let B be a non-principal real 2-block. If b is not real, then (4) shows that
∑

χ∈Irr(B) ϵ(χ)d
u
χφ = 0.

On the other hand, we have CE(u) = CD(u) ≤ D and |{x ∈ E \ D : x2 = u}| = 0. Hence, we may
assume that b is real. Since every x ∈ E with x2 = u lies in CE(u), we may assume that u ∈ Z(G) by
(4).

Then χ(u) = duχφφ(1) for all χ ∈ Irr(B). If u2 /∈ Ker(χ), then χ(u) /∈ R and ϵ(χ) = 0. Thus, it suffices
to sum over χ with duχφ = ±dχφ. Let Z := ⟨u⟩ ≤ Z(G) and G := G/Z. Let B̂ be the unique (real) block
of G dominated by B. By [19, Lemma 1.7], (D,E) is a defect pair for B̂. Then, using [14, Lemma 4.7]
and Conjecture C for B and B̂, we obtain∑

χ∈Irr(B)

ϵ(χ)duχφ =
∑

χ∈Irr(B)

ϵ(χ)(dχφ + duχφ)−
∑

χ∈Irr(B)

ϵ(χ)dχφ

= 2
∑

χ∈Irr(B̂)

ϵ(χ)dχφ −
∑

χ∈Irr(B)

ϵ(χ)dχφ

= 2|{x ∈ E \D : x2 = 1}| − |{x ∈ E \D : x2 = 1}|

=
∑

λ∈Irr(E)

ϵ(λ)(λ(1) + λ(u))−
∑

λ∈Irr(D)

ϵ(λ)(λ(1) + λ(u))

−
∑

λ∈Irr(E)

ϵ(λ)λ(1) +
∑

λ∈Irr(D)

ϵ(λ)λ(1)

=
∑

λ∈Irr(E)

ϵ(λ)λ(u)−
∑

λ∈Irr(D)

ϵ(λ)λ(u) = |{x ∈ E \D : x2 = u}|.

9



4 Theorems D and E

The following result implies Theorem D.

Theorem 14. Suppose that B is a real, nilpotent, non-principal 2-block fulfilling the statement of
Theorem 13. Then Conjecture B holds for B.

Proof. Let (D,E) be defect pair of B. By Gow [8, Theorem 5.1], there exists a 2-rational character
χ0 ∈ Irr(B) of height 0 and ϵ(χ0) = 1. Let

Γ : Irr(D) → Irr(B), λ 7→ λ ∗ χ0

be the Broué–Puig bijection. Let (u1, b1), . . . , (uk, bk) be representatives for the conjugacy classes of B-
subsections. Since B is nilpotent, we may assume that u1, . . . , uk ∈ D represent the conjugacy classes
of D. Let IBr(bi) = {φi} for i = 1, . . . , k. Since χ0 is 2-rational, we have σi := duχ0,φi

∈ {±1} for
i = 1, . . . , k. Hence, the generalized decomposition matrix of B has the form

Q = (λ(ui)σi : λ ∈ Irr(D), i = 1, . . . , k)

(see [16, Section 8.10]). Let v := (ϵ(Γ(λ)) : λ ∈ Irr(D)) and w := (w1, . . . , wk) where wi := |{x ∈
E \D : x2 = ui}|. Then Theorem 13 reads as vQ = w.

Let di := |CD(ui)| and d = (d1, . . . , dk). Then the second orthogonality relation yields QtQ = diag(d)

where Qt denotes the transpose of Q. It follows that Q−1 = diag(d)−1Q
t and

v = w diag(d)−1Q
t
= w diag(d)−1Qt,

because v = v. Since wi = |{x ∈ E \D : x2 = uyi }| for every y ∈ D, we obtain
∑k

i=1wi|D : CD(ui)| =
|E \D| = |D|. In particular,

1 = ϵ(χ0) =

k∑
i=1

wiσi
|CD(ui)|

≤
k∑
i=1

wi|σi|
|CD(ui)|

= 1.

Therefore, σi = 1 or wi = 0 for each i. This means that the signs σi have no impact on the solution of
the linear system xQ = w. Hence, we may assume that Q = (λ(ui)) is just the character table of D.
Since Q has full rank, v is the only solution of xQ = w. Setting µ(λ) := 1

|D|
∑

e∈E\D λ(e
2), it suffices

to show that (µ(λ) : λ ∈ Irr(D)) is another solution of xQ = w. Indeed,∑
λ∈Irr(D)

λ(ui)

|D|
∑

e∈E\D

λ(e2) =
1

|D|
∑

e∈E\D

∑
λ∈Irr(D)

λ(ui)λ(e
2)

=
1

|D|
∑

e∈E\D
e2=u−1

i

|D : CD(ui)||CD(ui)| = wi

for i = 1, . . . , k.

Theorem E. Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.
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Proof. Let B be a real, nilpotent, non-principal 2-block of a solvable group G with defect pair (D,E).
We first prove Conjecture C for B. Since all sections of G are solvable and all blocks dominated by
B-subsections are nilpotent, Conjecture C holds for those blocks as well. Hence, the hypothesis of
Theorem 13 is fulfilled for B. Now by Theorem 14, Conjecture B holds for B.

Let N := O2′(G) and let θ ∈ Irr(N) such that the block {θ} is covered by B. Since B is non-principal,
θ ̸= 1N and therefore θ ̸= θ as N has odd order. Since B also lies over θ, it follow that Gθ < G. Let
b be the Fong–Reynolds correspondent of B in the extended stabilizer G∗

θ. By [22, Theorem 9.14] and
[20, p. 94], the Clifford correspondence Irr(b) → Irr(B), ψ 7→ ψG preserves decomposition numbers
and F-S indicators. Thus, we need to show that b has defect pair (D,E). Let β be the Fong–Reynolds
correspondent of B in Gθ. By [22, Theorem 10.20], β is the unique block over θ. In particular, the block
idempotents 1β = 1θ are the same (we identify θ with the block {θ}). Since b is also the unique block
of G∗

θ over θ, we have 1b = 1θ +1θ =
∑

x∈N αxx for some αx ∈ F . Let S be a set of representatives for
the cosets G/G∗

θ. Then

1B =
∑
s∈S

(1θ + 1θ)
s =

∑
s∈S

1sb =
∑
g∈N

(∑
s∈S

α
gs−1

)
g.

Hence, there exists a real defect class K of B such that α
gs−1 ̸= 0 for some g ∈ K and s ∈ S. Of

course we can assume that g = gs
−1 . Then 1b does not vanish on g. By [22, Theorem 9.1], the central

characters λB, λb and λθ agree on N . It follows that K is also a real defect class of b. Hence, we may
assume that (D,E) is a defect pair of b.

It remains to consider G = G∗
θ and B = b. Then D is a Sylow 2-subgroup of Gθ by [22, Theorem 10.20]

and E is a Sylow 2-subgroup of G. Since |G : Gθ| = 2, it follows that Gθ ⊴ G and N = O2′(Gθ). By
[21, Lemma 1 and 2], β is nilpotent and Gθ is 2-nilpotent, i. e. Gθ = N ⋊ D and G = N ⋊ E. Let
Φ̃ :=

∑
χ∈Irr(B) χ(1)χ = φ(1)Φ where IBr(B) = {φ}. We need to show that

ϵ(Φ̃) = φ(1)|{x ∈ E \D : x2 = 1}|.

Note that χN = χ(1)
2θ(1)(θ + θ). By Frobenius reciprocity, it follows that Φ̃ = 2θ(1)θG and

Φ̃N = |G : N |θ(1)(θ + θ).

Since Φ vanishes on elements of even order, Φ̃ vanishes outside N . Since Φ̃Gθ
is a sum of non-real

characters in β, we have

ϵ(Φ̃) =
1

|G|
∑
g∈Gθ

Φ̃(g2) +
1

|G|
∑

g∈G\Gθ

Φ̃(g2) =
1

|G|
∑

g∈G\Gθ

Φ̃(g2).

Every g ∈ G \Gθ = NE \ND with g2 ∈ N is N -conjugate to a unique element of the form xy where
x ∈ E \D is an involution and y ∈ CN (x) (Sylow’s theorem). Setting ∆ := {x ∈ E \D : x2 = 1}, we
obtain

ϵ(Φ̃) =
θ(1)

|N |
∑
x∈∆

|N : CN (x)|
∑

y∈CN (x)

(θ(y) + θ(y)) = 2θ(1)
∑
x∈∆

1

|CN (x)|
∑

y∈CN (x)

θ(y). (5)

For x ∈ ∆ let Hx := N⟨x⟩. Again by Sylow’s theorem, the N -orbit of x is the set of involutions in Hx.
From θx = θ we see that θHx is an irreducible character of 2-defect 0. By [8, Theorem 5.1], we have
ϵ(θHx) = 1. Now applying the same argument as before, it follows that

1 = ϵ(θHx) =
1

|N |
∑

g∈Hx\N

θHx(g2) =
2

|CN (x)|
∑

y∈CN (x)

θ(y).
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Combined with (5), this yields ϵ(Φ̃) = 2θ(1)|∆|. By Green’s theorem (see [22, Theorem 8.11]), φN =
θ + θ and ϵ(Φ̃) = φ(1)|∆| as desired.

For non-principal blocks B of solvable groups with l(B) = 1 it is not true in general that Gθ is 2-
nilpotent in the situation of Theorem E. For example, a (non-real) 2-block of a triple cover of A4 ×A4

has a unique simple module. Extending this group by an automorphism of order 2, we obtain the group
G = SmallGroup(864, 3988), which fulfills the assumptions with D ∼= C4

2 , N ∼= C3 and |G : NE| = 9.

In order to prove Conjecture C for arbitrary 2-blocks of solvable groups, we may follow the steps in
the proof above until E is a Sylow 2-subgroup of G and |G : Gθ| = 2. By [24, Theorem 2.1], one gets

φ(1)/θ(1) = 2
√
|Gθ/N |2′ =

√
|G : EN |.

With some more effort, the claim then boils down to a purely group-theoretical statement:

Let B be a real, non-principal 2-block of a solvable group G with defect pair (D,E) and l(B) = 1. Let
N := O2′(G) and G := G/N . Let θ ∈ Irr(N) such {θ} is covered by B. Then

|{x ∈ G \Gθ : x2 = 1}| = |{x ∈ E \D : x2 = 1}|
√

|G : EN |.

Unfortunately, I am unable to prove this.
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