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Abstract

We prove that the number of irreducible real characters in a nilpotent block of a finite group is
locally determined. We further conjecture that the Frobenius—Schur indicators of those characters
can be computed for p = 2 in terms of the extended defect group. We derive this from a more
general conjecture on the Frobenius—Schur indicator of projective indecomposable characters of 2-
blocks with one simple module. This extends results of Murray on 2-blocks with cyclic and dihedral
defect groups.
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1 Introduction

An important task in representation theory is to determine global invariants of a finite group G by
means of local subgroups. Dade’s conjecture, for instance, predicts the number of irreducible characters
X € Irr(G) such that the p-part x(1), is a given power of a prime p (see [23, Conjecture 9.25]). Since
Gow’s work [7], there has been an increasing interest in counting real (i. e. real-valued) characters and
more generally characters with a given field of values.

The quaternion group (Jg testifies that a real irreducible character y is not always afforded by a
representation over the real numbers. The precise behavior is encoded by the Frobenius—Schur indicator
(F-S indicator, for short)

) 0 ifX#x
e(x) == @ Z x(g?) =<1  if x is realized by a real representation, (1)
9eC —1 if x is real, but not realized by a real representation.

A new interpretation of the F-S indicator in terms of superalgebras has been given recently in [I3].
The case of the dihedral group Dg shows that €(x) is not determined by the character table of G. The
computation of F-S indicators can be a surprisingly difficult task, which has not been fully completed
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for the simple groups of Lie type, for instance (see [25]). Problem 14 on Brauer’s famous list [2] asks
for a group-theoretical interpretation of the number of x € Irr(G) with €(x) = 1.

To obtain deeper insights, we fix a prime p and assume that x lies in a p-block B of G with defect
group D. By complex conjugation we obtain another block B of G. If B # B, then clearly e(x) = 0
for all x € Irr(B). Hence, we assume that B is real, i.e. B = B. John Murray [I8, 19] has computed
the F-S indicators when D is a cyclic 2-group or a dihedral 2-group (including the Klein four-group).
His results depend on the fusion system of B, on Erdmann’s classification of tame blocks and on the
structure of the so-called extended defect group E of B (see below). For p > 2 and D

cyclic, he obtained in [20] partial information on the F-S indicators in terms of the Brauer tree of B.

The starting point of my investigation is the well-known fact that 2-blocks with cyclic defect groups
are nilpotent. Assume that B is nilpotent and real. If B is the principal block, then G = O,/(G)D and
Irr(B) = Irr(G/Op (G)) = Irr(D). In this case the F-S indicators of B are determined by D alone.
Thus, suppose that B is non-principal. By Broué-Puig [4], there exists a height-preserving bijection
Irr(D) — Irr(B), A — A% xo where xo € Irr(B) is a fixed character of height 0 (see also [16], Definition
8.10.2]). However, this bijection does not in general preserve F-S indicators. For instance, the dihedral
group Dsy has a nilpotent 2-block with defect group Cy and a nilpotent 3-block with defect group Cs,
although every character of Doy is real. Our main theorem asserts that the number of real characters
in a nilpotent block is nevertheless locally determined. To state it, we introduce the extended inertial
group
Ng(D,bp)* :={g € Na(D) : b%, € {bp,bp}}

where bp is a Brauer correspondent of B in DCqg(D).

Theorem A. Let B be a real, nilpotent p-block of a finite group G with defect group D. Let bp be
a Brauer correspondent of B in DCg(D). Then the number of real characters in Irr(B) of height h
coincides with the number of characters A € Irr(D) of degree p" such that X' = X where

Ne(D,bp)"/DCq(D) = (tDCq(D)).

If p > 2, then all real characters in Irr(B) have the same F-S indicator.

In contrast to arbitrary blocks, Theorem A implies that nilpotent real blocks have at least one real
character (cf. 20, p. 92| and [8, Theorem 5.3]). If bp = bp, then B and D have the same number
of real characters, because Ng(D,bp) = DCq(D). This recovers a result of Murray [I8, Lemma 2.2].
As another consequence, we will derive in a real version of Eaton’s conjecture [5] for
nilpotent blocks as put forward by Héthelyi-Horvath—Szabo [12].

The F-S indicators of real characters in nilpotent blocks seem to lie somewhat deeper. We still conjecture

that they are locally determined by a defect pair (see [Definition 7)) for p = 2 as follows.

Conjecture B. Let B be a real, nilpotent, non-principal 2-block of a finite group G with defect pair
(D, E). Then there exists a height preserving bijection I' : Irr(D) — Irr(B) such that

e<m>>—|}), S M) 2)

e€E\D

for all X € Irr(D).



The right hand side of was introduced and studied by Gow [8, Lemma 2.1] more generally for any
groups D < E with |E : D| = 2. This invariant was later coined the Gow indicator by Murray [20, Eq.
(2)]. For 2-blocks of defect 0, Conjecture B confirms the known fact that real characters of 2-defect
0 have F-S indicator 1 (see [8, Theorem 5.1]). There is no such result for odd primes p. As a matter
of fact, every real character has p-defect 0 whenever p does not divide |G|. In we prove
Conjecture B for abelian defect groups D. Then it also holds for all quasisimple groups G by work of
An-FEaton [I]. Murray’s results mentioned above, imply Conjecture B also for dihedral D.

For p > 2, the common F-S indicator in the situation of Theorem A is not locally determined. For
instance, G = Qs X Cy = SmallGroup(72,3) has a non-principal real 3-block with D = Cgy and
common F-S indicator —1, while its Brauer correspondent in Ng(D) = C1g has common F-S indicator
1. Nevertheless, for cyclic defect groups D we find another way to compute this F-S indicator in

Mheorem 3| below.

Our second conjecture applies more generally to blocks with only one simple module.

Conjecture C. Let B be a real, non-principal 2-block with defect pair (D, E) and a unique projective
indecomposable character ®. Then

(@) =|{rc E\D:2?=1}|.

Here €(®) is defined by extending linearly. If e(®) = 0, then E does not split over D and Conjec-
ture C holds (see below). Conjecture C implies a stronger, but more technical statement
on 2-blocks with a Brauer correspondent with one simple module (see below). This allows
us to prove the following.

Theorem D. Conjecture C implies Conjecture B.

We remark that our proof of Theorem D does not work block-by-block. For solvable groups we offer a
purely group-theoretical version of Conjecture C at the end of

Theorem E. Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.

We have checked Conjectures B and C with GAP [6] in many examples using the libraries of small
groups, perfect groups and primitive groups.

2 Theorem A and its consequences

Our notation follows closely Navarro’s book [22]. In particular, G° denotes the set of p-regular elements
of a finite group G. Let B be a p-block of G with defect group D. Recall that a B-subsection is a pair
(u,b) where u € D and b is a Brauer correspondent of B in Cg(u). For x € Irr(B) and ¢ € IBr(b) we
denote the corresponding generalized decomposition number by dy,. If u = 1, we obtain the (ordinary)
decomposition number dy, = d,. We put I(b) = [IBr(b)| as usual.

Following [22, p. 114], we define a class function y(*“?) by

XO(us) = Y dyp(s)

©€IBr(b)



for s € Cg(u)? and x(*“?) (z) = 0 whenever z is outside the p-section of u. If R is a set of representatives
for the G-conjugacy classes of B-subsections, then x = > (ub)ER x (1) by Brauer’s second main theorem
(see [22, Problem 5.3]). Now suppose that B is nilpotent and A € Irr(D). By [16, Proposition 8.11.4],
each Brauer correspondent b of B is nilpotent and in particular [(b) = 1. Broué¢-Puig [4] have shown
that, if x has height 0, then
Ak = Z Auw)x ™) € Trr(B)
(u,b)ER

and (A= x)(1) = A(1)x(1). Note also that d} Au)dy,.

P
Proof of Theorem A. Let R be a set of representatives for the G-conjugacy classes of B-subsections
(u,by) < (D,bp) (see |22, p. 219]). Since B is nilpotent, we have IBr(b,) = {¢.} for all (u,b,) € R.
Since the Brauer correspondence is compatible with complex conjugation, (u,b,)! < (D,bp)* = (D, bp)
where Ng(D,bp)*/DCq(D) = (tDCq(D)). Thus, (u,b,)! is D-conjugate to some (u’,b,/) € R.

If p > 2, there exists a unique p-rational character xo € Irr(B) of height 0, which must be real by
uniqueness (see [4, Remark after Theorem 1.2]). If p = 2, there is a 2-rational real character x¢ € Irr(B)

of height 0 by [8 Theorem 5.1]. Then dYoou = dyyzn € Z and
bu b bu )’ o
Xéu ) _ X(()u ) _ Xéu ) _ Xéu )

Now let A € Irr(D). Then

Nexo= Y s = 30 M.
(u,bu)ER (u,bu)ER
Since the class functions X(()u’b) have disjoint support, they are linearly independent. Therefore, A * xq
is real if and only if A(u') = A(v/) = A(u) for all (u,b,) € R. Since every conjugacy class of D is
represented by some u with (u,b,) € R, we conclude that X * xq is real if and only A\* = X\. Moreover,
if A\(1) = p”, then A x xo has height h. This proves the first claim.

To prove the second claim, let p > 2 and IBr(B) = {¢}. Then the decomposition numbers dy.y,, =
A(1) are powers of p; in particular they are odd. A theorem of Thompson and Willems (see [26),
Theorem 2.8|) states that all real characters x with d, , odd have the same F-S indicator. So in our
situation all real characters in Irr(B) have the same F-S indicator. O

Since the automorphism group of a p-group is “almost always” a p-group (see [1I]), the following
consequence is of interest.

Corollary 1. Let B be a real, nilpotent p-block with defect group D such that p and |Aut(D)| are odd.
Then B has a unique real character.

Proof. The hypothesis on Aut(D) implies that Ng(D,bp)* = DCq(D). Hence by Theorem A, the
number of real characters in Irr(B) is the number of real characters in D. Since p > 2, the trivial
character is the only real character of D. O

The next lemma is a consequence of Brauer’s second main theorem and the fact that |{g € G : g% =
r}| = [{g € Ca(x) : g% = z}| is locally determined for g,z € G.



Lemma 2 (Brauer). For every p-block B of G and every B-subsection (u,b) with ¢ € IBr(b) we have

> bt = X i, = X ) d

x€Irr(B) Ypelrr(b) Yelrr(b)
Ifl(b) =1, then

) 6(x)d;<p=<11) S @)l

x€lrr(B)

Proof. The first equality is |3, Theorem 4A]. The second follows from u € Z(Cg(w)). If I(b) = 1, then
(1) = dypp(1) for ¢ € Irr(b) and the last claim follows. O

Recall that a canonical character of B is a character § € Irr(DCg(D)) lying in a Brauer correspondent
of B such that D < Ker(6) (see [22, Theorem 9.12]). We define the extended stabilizer

Na(D) :={g € Ng(D) : 69 € {,0}}.

The following results adds some detail to the nilpotent case of [20, Theorem 1].

Theorem 3. Let B be a real, nilpotent p-block with cyclic defect group D = (u) and p > 2. Let
0 € Irr(Cg(D)) be a canonical character of B and set T := Ng(D)y;. Then one of the following holds:

(1) 0 # 0. All characters in Irr(B) are real with F-S indicator ¢(67).

(2) 6 = 0. The unique non-exceptional character xo € Irr(B) is the only real character in Irr(B) and
€(Xx0) = sgn(xo(u))e(0) where sgn(xo(u)) is the sign of xo(u).

Proof. Let bp be a Brauer correspondent of B in Cg(D) containing 6. Then T = Ng (D, bp)*. If 0 # 0,
then T inverts the elements of D since p > 2. Thus, Theorem A implies that all characters in Irr(B)

are real. By [20, Theorem 1(v)|, the common F-§ indicator is the Gow indicator of § with respect to
T. This is easily seen to be €(67) (see [20, after Eq. (2)]).

Now assume that § = 6. Here Theorem A implies that the unique p-rational character xq € Irr(B)
is the only real character. In particular, xg must be the unique non-exceptional character. Note that
(u,bp) is a B-subsection and IBr(bp) = {¢}. Since xo is p-rational, dy , = +1. Since all Brauer
correspondents of B in Cg(u) are conjugate under Ng (D), the generalized decomposition numbers are

Galois conjugate, in particular dy , does not depend on the choice of bp. Hence,

xo(u) = [Na(D) : Na(D)oldy, (1)

and dy , = sgn(xo(u)). Moreover, 0 is the unique non-exceptional character of bp and 6(u) = 6(1). By

emma 2| we obtain

e(x0) = sem(xo(@) 3 e(x)d;z@:w S )(u) = selxo()e(®). O
xelrr(B) Y€lrr(bp)

If B is a nilpotent block with canonical character # # 0, the common F-S indicator of the real characters

in Irr(B) is not always (1) as in A counterexample is given by a certain 3-block of
G = SmallGroup(288,924) with defect group D = C5 x Cj.

We now restrict ourselves to 2-blocks. Héthelyi-Horvath—-Szabo [12] introduced four conjectures, which
are real versions of Brauer’s conjecture, Olsson’s conjecture and Eaton’s conjecture. We only state the
strongest of them, which implies the remaining three. Let D) := D and D*+1) .= [D®*) D®)] for
k > 0 be the members of the derived series of D.



Conjecture 4 (Héthelyi-Horvath—Szabo). Let B be a 2-block with defect group D. For every h > 0,
the number of real characters in Irr(B) of height < h is bounded by the number of elements of D/D(hH)
which are real in Ng(D)/DHh+1D,

A conjugacy class K of G is called real if K = K~' := {z7! : 2 € K}. A conjugacy class K of a
normal subgroup N < G is called real under G if there exists g € G such that K9 = K.

Proposition 5. Let B be a nilpotent 2-block with defect group D and Brauer correspondent bp in
DCg(D). Then the number of real characters in Irr(B) of height < h is bounded by the number of
conjugacy classes of D/DMY which are real under Ng(D,bp)* /DY . In particular,
holds for B.

Proof. We may assume that B is real. As in the proof of Theorem A, we fix some 2-rational real
character xo € Irr(B) of height 0. Now A xg has height < & if and only if A(1) < p” for A € Irr(B). By
[T, Theorem 5.12|, the characters of degree < p" in Irr(D) lie in Trr(D/D"+1). By Theorem A, A * o
is real if and only if X' = X\. By Brauer’s permutation lemma (see [23, Theorem 2.3]), the number of
those characters A coincides with the number of conjugacy classes K of D/ D"+ guch that Kt = K1,

Now follows from Ng(D,bp)* < Ng(D). O

3 Extended defect groups

We continue to assume that p = 2. As usual we choose a complete discrete valuation ring O such that
F := 0/J(0) is an algebraically closed field of characteristic 2. Let CI(G) be the set of conjugacy
classes of G. For K € CI(G) let Kt := 3" _, x € Z(FG) be the class sum of K. We fix a 2-block
B of FG with block idempotent 1g = ZKGCI(G) ar KT where ax € F. The central character of B is
defined by

K |x(9)>*
x(1)

where g € K, x € Irr(B) and * denotes the canonical reduction O — F' (see [22, Chapter 2]).

Since Ap(1p) = 1, there exists K € CI(G) such that ax # 0 # Ag(K™). We call K a defect class of B.

By [22 Corollary 3.8|, K consists of elements of odd order. According to [22, Corollary 4.5|, a Sylow
2-subgroup D of Cg(x) where x € K is a defect group of B. For x € K let

Ap 1 Z(FG) —» F, K¥ s (

Co(x)*:={geG:grg ' =2} <G

be the extended centralizer of x.

Proposition 6 (Gow, Murray). Every real 2-block B has a real defect class K. Let x € K. Choose a
Sylow 2-subgroup E of Cq(x)* and put D := ENCg(x). Then the G-conjugacy class of the pair (D, E)
does not depend on the choice of K or x.

Proof. For the principal block (which is always real since it contains the trivial character), K = {1} is
a real defect class and £ = D is a Sylow 2-subgroup of GG. Hence, the uniqueness follows from Sylow’s
theorem. Now suppose that B is non-principal. The existence of K was first shown in [8, Theorem 5.5].
Let L be another real defect class of B and choose y € L. By [9, Corollary 2.2], we may assume after
conjugation that E is also a Sylow 2-subgroup of Cq(y)*. Let D, := ENCg(z) and D, := ENCg(y).
We may assume that |E : Dy| =2 = |E : Dy| (cf. the remark after the proof).



We now introduce some notation in order to apply [I7, Proposition 14|. Let ¥ = (o) = C3. We consider
FG as an F[G x X]-module where G acts by conjugation and g° = g~! for g € G (observe that these
actions indeed commute). For H < G x ¥ let

TlrgXE : (FG’)H — (FG’)GXE, a— Z o®
zER

be the relative trace with respect to H, where R denotes a set of representatives of the right cosets
of H in G x X. By [I7, Proposition 14|, we have 1p € Trng(FG) where E, := D,(ey0) for some
ex € E\ D,. By the same result we also obtain that D,(e,o) with e, € E \ D, is G-conjugate to
E,. This implies that D, is conjugate to D, inside Ng(FE). In particular, (D, E) and (D, E) are
G-conjugate as desired. O

Definition 7. In the situation of |[Proposition 6{we call E an extended defect group and (D, E) a defect
pair of B.

We stress that real 2-blocks can have non-real defect classes and non-real blocks can have real defect
classes (see [10, Theorem 3.5]).

It is easy to show that non-principal real 2-blocks cannot have maximal defect (see [22, Problem 3.8]).
In particular, the trivial class cannot be a defect class and consequently, |F : D| = 2 in those cases.
For non-real blocks we define the extended defect group by E := D for convenience. Every given pair
of 2-groups D < E with |E : D| = 2 occurs as a defect pair of a real (nilpotent) block. To see this, let
Q = C5and G = Q x F with Cg(Q) = D. Then G has a unique non-principal block with defect pair
(D, E).

We recall from [14] p. 49] that
> el)xlg) = {z € G a? =g} (3)
x€lrr(GQ)

for all g € G. The following proposition provides some interesting properties of defect pairs.

Proposition 8 (Gow, Murray). Let B be a real 2-block with defect pair (D, E). Let bp be a Brauer
correspondent of B in DCg(D). Then the following holds:

(i) Na(D,bp)* = Ng(D,bp)E. In particular, bp is real if and only if E = DCg(D).

(i) Foru € D, we have erlrr(B) e(x)x(u) > 0 with strict inequality if and only if u is G-conjugate
to €2 for some e € E\ D. In particular, E splits over D if and only if erm(B) e(x)x(1) > 0.

(iii) E/D" splits over D/D' if and only if all height zero characters in Irr(B) have non-negative F-S
indicator.
Proof.
(i) See [19, Lemma 1.8] and [I8, Theorem 1.4].
(i) See [19] Lemma 1.3|.
(iii) See [8, Theorem 5.6]. O

The next proposition extends [I8, Lemma 1.3].



Corollary 9. Suppose that B is a 2-block with defect pair (D, E) where D is abelian. Then E splits
over D if and only if all characters in Irr(B) have non-negative F-S indicator.

Proof. If B is non-real, then E = D splits over D and all characters in Irr(B) have F-S indicator
0. Hence, let B = B. By Kessar-Malle [15], all characters in Irr(B) have height 0. Hence, the claim

follows from [Proposition §|(iii). O

Theorem 10. Let B be a real, nilpotent 2-block with defect pair (D, E) where D is abelian. If E
splits over D, then all real characters in Irr(B) have F-S indicator 1. Otherwise exactly half of the real
characters have F-S indicator 1. In either case, Conjecture B holds for B.

Proof. If E splits over D, then all real characters in Irr(B) have F-S indicator 1 by .
Otherwise we have }_, 1, (g €(x) = 0 by [Proposition 8(ii), because all characters in Irr(B) have the
same degree. Hence, exactly half of the real characters have F-S indicator 1. Using Theorem A we can
determine the number of characters for each F-S indicator. For the last claim, we may therefore replace
B by the unique non-principal block of G = Q x E where @ = C3 and Cg(Q) = D (mentioned above).
In this case Conjecture B follows from Gow [8, Lemma 2.2] or Theorem E. O

Example 11. Let B be a real block with defect group D = Cy x Cy. Then B is nilpotent since Aut(D)
is a 2-group and D is abelian. Moreover |Irr(B)| = 8. The F-S indicators depend not only on E, but
also on the way D embeds into E. The following cases can occur (here Mg denotes the modular group
and [16, 3] refers to the small group library):

F-S indicators E

++++++++ DgxCo

+4+++——— Qg xCCq, C4><104With(I)(D)=El
+4+4++0000 D, DxCy DgxCy, [16,3]
+4+—-—=0000 C3F CgxCy Myg, CqyxCywith ®(D) # E'

The F-S indicator e¢(®) appearing in Conjecture C has an interesting interpretation as follows. Let
Q= {g € G: g? = 1}. The conjugation action of G on  turns F2 into an FG-module, called the
tnwvolution module.

Lemma 12 (Murray). Let B be a real 2-block and ¢ € IBr(B). Then e(®y) is the multiplicity of ¢ as
a constituent of the Brauer character of F().

Proof. See [18, Lemma 2.6|. O

Next we develop a local version of Conjecture C. Let B be a real 2-block with defect pair (D, E') and
B-subsection (u,b). If E = DCg(u), then b is real and (Cp(u),Cg(u)) is a defect pair of b by [19}
Lemma 2.6] applied to the subpair ((u),b). Conversely, if b is real, we may assume that (Cp(u), Cg(u))
is a defect pair of b by [19, Theorem 2.7]. If b is non-real, we may assume that (Cp(u),Cp(u)) =
(Cp(u),Cg(u)) is a defect pair of b.



Theorem 13. Let B be 2-block of a finite group G with defect pair (D, E). Suppose that Conjecture C
holds for all Brauer correspondents of B in sections of G. Let (u,b) be a B-subsection with defect pair
(Cp(u),Cg(u)) such that IBr(b) = {¢}. Then

Z (x)d" {z € D: 2% =u}| if B is the principal block,
€ =
Wixe Hx € E\D:2%=u}| otherwise.

Xx€Elrr(B)

Proof. If B is not real, then B is non-principal and E = D. It follows that €(x) = 0 for all x € Irr(B)
and
Hz € E\D:2*=u}|=0.

Hence, we may assume that B is real. By we have

Y dy,= Y ew) Z¢=w > cW)p(u). (4)

Xx€Elrr(B) Yelrr(d) Pelrr(b)

Suppose that B is the principal block. Then b is the principal block of Cg(u) by Brauer’s third main
theorem (see [22, Theorem 6.7]). The hypothesis I(b) = 1 implies that ¢ = 1¢, () and Cg(u) has a
normal 2-complement N (see [22], Corollary 6.13]). It follows that Irr(b) = Irr(Cg(u)/N) = Irr(Cp(u))
and

Yo oWdi,= Y eMA(w) =|{z € Cp(u) :2® = u}|

Yelrr(b) Aelrr(Cp (u))
by . Since every x € D with 22 = u lies in Cp(u), we are done in this case.

Now let B be a non-principal real 2-block. If b is not real, then (4)) shows that >, .y, p) €(x)dy, = 0.
On the other hand, we have Cg(u) = Cp(u) < D and |[{x € E\ D : 22 = u}| = 0. Hence, we may
assume that b is real. Since every € E with 22 = u lies in Cg(u), we may assume that u € Z(G) by

(14)-
Then x(u) = d¥ (1) for all x € Irr(B). If u* ¢ Ker(x), then x(u) ¢ R and €(x) = 0. Thus, it suffices
to sum over x with dy, = £dy,. Let Z := (u) < Z(G) and G := G/Z. Let B be the unique (real) block

of G dominated by B. By [19,ALemma 1.7, (D, E) is a defect pair for B. Then, using [14] Lemma 4.7]
and Conjecture C for B and B, we obtain

Y dy, = Y elde +dy,) = Y e(X)dyg

x€lrr(B) x€lIrr(B) x€lIrr(B)
=2 Z e(x)dyyp — Z e(X)dyyp
X€EIrr(B) x€lrr(B)

—o{z e E\D:#* =1} - [{z € B\ D: 2% =1}
= Y VA +FA@) = D WA +Aw)

Aelrr(E) XeIrr(D)
= ) ML)+ D e(MAL)
Aelrr(E) AeIrr(D)
= D eMAMu) = D eMAu)=|{z € E\D:a* =u}|. O
Aelrr(E) Aelrr(D)



4 Theorems D and E

The following result implies Theorem D.

Theorem 14. Suppose that B is a real, nilpotent, non-principal 2-block fulfilling the statement of
[Theorem 13 Then Congecture B holds for B.

Proof. Let (D, E) be defect pair of B. By Gow [8, Theorem 5.1, there exists a 2-rational character
Xo € Irr(B) of height 0 and €(xo) = 1. Let

I': Irr(D) — Irr(B), A= A% xo

be the Broué—Puig bijection. Let (u1,b1),..., (uk, bx) be representatives for the conjugacy classes of B-
subsections. Since B is nilpotent, we may assume that uy,...,ur € D represent the conjugacy classes
of D. Let IBr(b;) = {pi} for i = 1,...,k. Since xo is 2- ratlonal we have o; := d¥ € {£1} for
t=1,..., k. Hence, the generalized decomp031t10n matrix of B has the form

X0,%i

Q= ANw)o;: AeTrr(D),i=1,...,k)

(see [16, Section 8.10]). Let v := (e(I'(\)) : A € Irr(D)) and w := (wy,...,wy) where w; = [{z €
E\ D : 2? = u;}|. Then reads as v@Q = w.

Let d; := |Cp(u;)| and d = (dy,. .., dy). Then the second orthogonality relation yields Q'Q = diag(d)
where Q' denotes the transpose of Q. It follows that Q~! = diaug(d)_lat and

v = wdiag(d)_lat = wdiag(d)~'Q",

because ¥ = v. Since w; = |[{x € E\ D : 22 = u?}| for every y € D, we obtain Zle w;|D : Cp(w;)| =
|E\ D| = |D|. In particular,

W;0; wz‘0'7,|
e(xo0)
Z G () Z G ()
Therefore, o; = 1 or w; = 0 for each 4. This means that the signs o; have no impact on the solution of
the linear system x@ = w. Hence, we may assume that Q = (A(u;)) is just the character table of D.

Since @ has full rank, v is the only solution of Q) = w. Setting () := |D‘ 2eerm\p Ale %), it suffices
to show that (u(A) : A € Irr(D)) is another solution of Q) = w. Indeed,

Y Y A - XX A

Xelrr(D) e€E\D e€E\D Aelrr(D)
1
=D > 1D Cp(w)||Cp(ui)] = w;
e€E\D
e2zu;1
fori=1,... k. O

Theorem E. Conjectures B and C hold for all nilpotent 2-blocks of solvable groups.
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Proof. Let B be a real, nilpotent, non-principal 2-block of a solvable group G with defect pair (D, E).
We first prove Conjecture C for B. Since all sections of GG are solvable and all blocks dominated by
B-subsections are nilpotent, Conjecture C holds for those blocks as well. Hence, the hypothesis of

is fulfilled for B. Now by Conjecture B holds for B.

Let N := Oy(G) and let 6 € Irr(N) such that the block {6} is covered by B. Since B is non-principal,
0 # 1 and therefore § # 6 as N has odd order. Since B also lies over 6, it follow that Gy < G. Let
b be the Fong-Reynolds correspondent of B in the extended stabilizer G}. By [22, Theorem 9.14] and
[20, p. 94], the Clifford correspondence Irr(b) — Irr(B), ¢ + ¥% preserves decomposition numbers
and F-S indicators. Thus, we need to show that b has defect pair (D, E). Let § be the Fong—Reynolds
correspondent of B in Gy. By [22] Theorem 10.20], 3 is the unique block over 6. In particular, the block
idempotents 13 = 1y are the same (we identify 6 with the block {#}). Since b is also the unique block
of G} over 0, we have 1, = 1g +15 = > o,z for some a, € F. Let S be a set of representatives for
the cosets G//G}. Then

1322 19+1 Zlb Z(Zags—1>g.
seS seS geN seS

Hence, there exists a real defect class K of B such that Qs =% 0 for some g € K and s € §. Of

course we can assume that g = gs_l. Then 1, does not vanish on g. By [22, Theorem 9.1], the central
characters Ap, A\p and Ay agree on N. It follows that K is also a real defect class of b. Hence, we may
assume that (D, E) is a defect pair of b.

It remains to consider G = G and B = b. Then D is a Sylow 2-subgroup of Gy by [22, Theorem 10.20]
and E is a Sylow 2-subgroup of G. Since |G : Gy| = 2, it follows that Gy < G and N = O« (Gy). By
[21, Lemma 1 and 2|, 8 is nilpotent and Gy is 2-nilpotent, i.e. Gop = N x D and G = N x E. Let
=3 crr(p) X(1)x = (1)@ where IBr(B) = {¢}. We need to show that

(@) = p()|{z € E\ D : 2% =1}

Note that xny = %(9 + 6). By Frobenius reciprocity, it follows that ® = 26(1)# and

Dy = |G : N|O(1)(6 + ).

Since ® vanishes on elements of even order, ® vanishes outside N. Since ®¢, is a sum of non-real
characters in 3, we have

~ 1 ~

geGy geG\Gy geG\Gy

Every g € G\ Gy = NE\ ND with g? € N is N-conjugate to a unique element of the form zy where
x € E\ D is an involution and y € Cy(z) (Sylow’s theorem). Setting A := {x € E\ D : 2% = 1}, we
obtain

‘N‘Zw Cn(@) D (Bly) +6(y) =26(1 Z Z o(y (5)
TEA yGCN(:L‘) yeCn(z)

For z € Alet H, := N(x). Again by Sylow’s theorem, the N-orbit of z is the set of involutions in Hy.
From 6% = § we see that #= is an irreducible character of 2-defect 0. By [8, Theorem 5.1], we have
€(#H=) = 1. Now applying the same argument as before, it follows that

1 =e(pfe) = Z 0= (¢2) = Z (y

gEHz\N yGCN(x)
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Combined with (5), this yields e(®) = 20(1)|A|. By Green’s theorem (see [22, Theorem 8.11]), on =
0+ 0 and €(®) = ¢(1)|A| as desired. O

For non-principal blocks B of solvable groups with [(B) = 1 it is not true in general that Gy is 2-
nilpotent in the situation of Theorem E. For example, a (non-real) 2-block of a triple cover of A4 x Ay
has a unique simple module. Extending this group by an automorphism of order 2, we obtain the group
G = SmallGroup(864, 3988), which fulfills the assumptions with D =2 C3, N = C3 and |G : NE| = 9.

In order to prove Conjecture C for arbitrary 2-blocks of solvable groups, we may follow the steps in
the proof above until E is a Sylow 2-subgroup of G and |G : Gy| = 2. By [24, Theorem 2.1|, one gets

p(1)/6(1) = 2V/|Go/N|z» = /|G : EN|.

With some more effort, the claim then boils down to a purely group-theoretical statement:

Let B be a real, non-principal 2-block of a solvable group G with defect pair (D, E') and [(B) = 1. Let
N := 09(G) and G := G/N. Let § € Irr(N) such {6} is covered by B. Then

HZ e G\Gy: 72 =1}|=|{z € E\D:2%=1}|\/|G: EN|.

Unfortunately, I am unable to prove this.
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