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Introduction

Let G be a finite group and p be a prime.
Let B be a p-block of G with respect to a sufficiently large
p-modular system.
We denote the number of ordinary irreducible characters of B
by k(B), and the number of modular irreducible characters by
l(B).
It is well known that the Cartan matrix C of B cannot be ar-
ranged in the form C =

( C1 0
0 C2

)
, i. e. C is indecomposable.

However, in practice C is often only known up to basic sets, i. e.
up to a matrix S ∈ GL(l(B),Z) with STCS .
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A question

We call two matrices M1,M2 ∈ Zl×l equivalent if there exists a
matrix S ∈ GL(l ,Z) such that M1 = STM2S .

Open question
Is the Cartan matrix C equivalent to a decomposable matrix?

This can certainly happen for arbitrary matrices. For example
A =

(
1 1
1 2
)
is indecomposable, but

( 1 −1
0 1

)TA( 1 −1
0 1

)
=
(

1 0
0 1
)
is not.
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Some results

Proposition

Let d be the defect of B. If detC = pd , then the matrices STCS are
indecomposable for every S ∈ GL(l(B),Z).

In general pd divides detC . Thus, in the proposition detC is
minimal.
This holds for blocks with cyclic defect groups for instance.
Moreover, detC can be determined locally with the notion of
lower defect groups.
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Some results

Proposition

If G is p-solvable and l := l(B) ≥ 2, then C is not equivalent to a
matrix of the form

( pd 0
0 C1

)
, where C1 ∈ Z(l−1)×(l−1). In particular

C is not equivalent to a diagonal matrix.

The proof of this proposition uses a result by Fong that the
Cartan invariants are bounded by pd for p-solvable groups.
This is known to be false for arbitrary groups.
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Motivation

Proposition (Külshammer-Wada)

Let B be a block with Cartan matrix C = (cij) up to equiv-
alence. Then for every positive definite, integral quadratic form
q :=

∑
1≤i≤j≤l(B) qijXiXj we have

k(B) ≤
∑

1≤i≤j≤l(B)

qijcij .

In particular

k(B) ≤
l(B)∑
i=1

cii −
l(B)−1∑

i=1

ci ,i+1. (KW)
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An example

These bounds are usually sharper for indecomposable Cartan
matrices.

Example

Assume that l(B) = p = 2 and C has elementary divisors 2 and 16.
Then C is equivalent to(

2 0
0 16

)
or
(
6 2
2 6

)
.

Inequality (KW) gives k(B) ≤ 18 in the first case and k(B) ≤ 10 in
the second.
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Quadratic forms

One can view C = (cij) as a quadratic form q(x) := xCxT for
x ∈ Zl with l := l(B).
The reduction theory of quadratic forms allows to replace C by
an equivalent matrix with “small” entries.
More precisely we may assume that

cii ≤ q(x) for x = (x1, . . . , xl ) ∈ Zl with gcd(xi , . . . , xl ) = 1.

It follows that c11 ≤ c22 ≤ . . . ≤ cll and 2|cij | ≤ min{cii , cjj}
for i 6= j
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Quadratic forms

Moreover, the “fundamental inequality”

c11c22 . . . cll ≤ λl detC

holds for a constant λl which only depends on l .
In particular there are only finitely many equivalence classes of
Cartan matrices for a given block.
However, λl increases rapidly with l .
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A bound for k(B)

Theorem

Let B be a block with defect d and Cartan matrix C . If detC = pd

and l(B) ≤ 4, then

k(B) ≤ pd − 1
l(B)

+ l(B).

Moreover, this bound is sharp.
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Subsections

Let u be a p-element of G , and let b be a Brauer correspondent
of B in CG (u).
Then the pair (u, b) is called B-subsection.
If b and B have the same defect, then (u, b) is called major.
If u lies in the center of a defect group of B , then (u, b) is major.
For the rest of this talk we assume p = 2.
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A generalization for p = 2

Proposition

Let (u, b) be a major B-subsection. Then for every positive defi-
nite, integral quadratic form q(x1, . . . , xl(b)) =

∑
1≤i≤j≤l(b) qijxixj

we have
k(B) ≤

∑
1≤i≤j≤l(b)

qijcij ,

where C = (cij) is the Cartan matrix of b. In particular

k(B) ≤
l(b)∑
i=1

cii −
l(b)−1∑
i=1

ci ,i+1.
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Central extensions

The Cartan invariants of b can often be determined easier than
the Cartan invariants of B .
Brauer’s k(B)-conjecture asserts that k(B) ≤ pd holds for every
block B of defect d .

Theorem
Brauer’s k(B)-conjecture holds for defect groups which are central
extensions of metacyclic 2-groups by cyclic groups. In particular the
k(B)-conjecture holds for abelian defect 2-groups of rank at most 3.
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2-Blocks of defect at most 4

Theorem
Brauer’s k(B)-conjecture holds for defect groups which contain a
central cyclic subgroup of index 8.

Corollary

Brauer’s k(B)-conjecture holds for 2-blocks of defect at most 4.

Benjamin Sambale Cartan matrices and Brauer’s k(B)-conjecture



Cartan matrices
Brauer’s k(B)-conjecture

Minimal nonmetacyclic defect groups

Central extensions
A counterexample
2-Blocks of defect 5

Minimal nonabelian groups

A group is called minimal nonabelian if every proper subgroup is
abelian.

Proposition (Rédei)

A minimal nonabelian 2-group is metacyclic or of type

D(r , s) := 〈x , y | x2r
= y2s

= [x , y ]2 = [x , x , y ] = [y , x , y ] = 1〉

with r ≥ s ≥ 1, [x , y ] := xyx−1y−1 and [x , x , y ] := [x , [x , y ]].
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2-Blocks with minimal nonabelian defect groups

Theorem
Brauer’s k(B)-conjecture holds for 2-blocks with minimal nonabelian
defect groups. Moreover, let Q be a minimal nonabelian 2-group,
but not of type D(r , r) with r ≥ 3 (these groups have order 22r+1 ≥
128). Then Brauer’s k(B)-conjecture holds for defect groups with
are central extensions of Q by a cyclic group.
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Wreath products

Proposition

Brauer’s k(B)-conjecture holds for defect groups which are central
extensions of C4 o C2 by a cyclic group.

This follows from the PhD thesis of Külshammer about defect
groups of type C2n o C2.

Benjamin Sambale Cartan matrices and Brauer’s k(B)-conjecture



Cartan matrices
Brauer’s k(B)-conjecture

Minimal nonmetacyclic defect groups

Central extensions
A counterexample
2-Blocks of defect 5

A question

For a block B with Cartan matrix C = (cij) there is not always
a positive definite quadratic form q such that

k(B) =
∑

1≤i≤j≤l(B)

qijcij .

One may ask if there is always a positive definite quadratic form
q such that ∑

1≤i≤j≤l(B)

qijcij ≤ pd ,

where d is the defect of B .
A positive answer would imply Brauer’s k(B)-conjecture in gen-
eral.
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A counterexample

Let D ∼= C 4
2 , A ∈ Syl3(Aut(D)), G = D o A and B = B0(G ).

Then k(B) = |D| = 16, l(B) = 9, and the Cartan matrix C of
B is given by

C =



4 2 2 1 1 2 2 1 1
2 4 2 1 2 1 1 2 1
2 2 4 2 1 1 1 1 2
1 1 2 4 1 2 1 2 2
1 2 1 1 4 1 2 2 2
2 1 1 2 1 4 2 2 1
2 1 1 1 2 2 4 1 2
1 2 1 2 2 2 1 4 1
1 1 2 2 2 1 2 1 4


.
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A counterexample

Assume ∑
1≤i≤j≤9

qijcij ≤ 16.

Then it is easy to see that qii = 1 for i = 1, . . . , 9 and qij ∈
{−1, 0, 1} for i 6= j .
Using GAP, we showed that q does not exist.
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2-Blocks of defect 5

Recently Kessar, Koshitani and Linckelmann obtained the invari-
ants of blocks with defect group C 3

2 (using the classification).
We use their result (and thus the classification) to extend the
previous results.
For this, let e(B) be the inertial index of a block B .

Theorem
Let B be a block with a defect group which is a central extension of
a group Q of order 16 by a cyclic group. If Q 6∼= C 4

2 or 9 - e(B), then
Brauer’s k(B)-conjecture holds for B.
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2-Blocks of defect 5

The exception in this theorem is due to the counterexample shown
above.

Corollary
Let B be a block with defect group D of order 32. If D is not
extraspecial of type D8 ∗ D8 or if 9 - e(B), then Brauer’s k(B)-
conjecture holds for B.

In particular the k(B)-conjecture holds for D ∼= C 5
2 . In this case it

is possible to choose a major subsection (u, b) such that 9 - e(b).
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Minimal nonmetacyclic groups

A group is called minimal nonmetacyclic if every proper subgroup is
metacyclic.

Proposition (Blackburn)

There are just four minimal nonmetacyclic 2-groups:
(i) C 3

2 ,
(ii) Q8 × C2,
(iii) D8 ∗ C4 ∼= Q8 ∗ C4 (central product),
(iv) D := 〈x , y , z | x4 = y4 = [x , y ] = 1, z2 = x2,

zxz−1 = xy2, zyz−1 = x2y〉.
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Fusion systems

One can show that D has order 32.

Proposition
Every fusion system on D is nilpotent. In particular every block with
defect group D is nilpotent.

As a byproduct of the former results, we obtain the block in-
variants of 2-blocks with minimal nonmetacyclic defect groups.
For this, let ki (B) be the number of irreducible characters of
height i ∈ N0.
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2-Blocks with minimal nonmetacyclic defect groups

Theorem
Let B be a 2-block with minimal nonmetacyclic defect group D.
Then one of the following holds:
(i) B is nilpotent. Then ki (B) is the number of ordinary characters

of D of degree 2i . In particular k(B) is the number of conjugacy
classes of D and k0(B) = |D : D ′|. Moreover, l(B) = 1.

(ii) D ∼= C 3
2 . Then k(B) = k0(B) = 8 and l(B) ∈ {3, 5, 7} (all

cases occur).
(iii) D ∼= Q8 × C2 or D ∼= D8 ∗ C4. Then k(B) = 14, k0(B) = 8,

k1(B) = 6 and l(B) = 3.
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