The Alperin-McKay Conjecture for a special class of defect groups

Benjamin Sambale
University of Jena

Global/Local Conjectures in Representation Theory of Finite Groups
Banff

March 18, 2014
Let G be a finite group and p be a prime.

Let B be a p-block of G, i.e. an ideal of OG where O is a complete discrete valuation ring of characteristic 0.

Let $k_i(B)$ be the number of irreducible characters of height $i \geq 0$ in B. Then $k(B) := \sum k_i(B) = |\text{Irr}(B)|$.

Let $\text{Irr}_0(B)$ be the subset of $\text{Irr}(B)$ of characters of height 0.

Let $l(B)$ be the number of irreducible Brauer characters of B.

Suppose that B has metacyclic defect group D, i.e. D has a cyclic normal subgroup such that the corresponding quotient is also cyclic.
What is known?

The case $p = 2$:

- D is dihedral, semidihedral or quaternion (tame case):
 - $k(B)$, $k_i(B)$, $l(B)$ computed by Brauer and Olsson
 - perfect isometries constructed by Cabanes-Picaronny
 - Dade’s Invariant Conjecture verified by Uno
 - Donovan’s Conjecture almost settled by Erdmann and Holm (up to certain scalars)
- $D \cong C_{2^n} \times C_{2^n}$ is homocyclic for some $n \geq 1$:
 - case $n = 1$ known to Brauer (also tame case)
 - perfect isometries constructed by Usami-Puig
 - Donovan’s Conjecture and Broué’s Conjecture recently checked as follows:
What is known?

Theorem (Eaton-Kessar-Külshammer-S., 2013)

Suppose that B is a 2-block with homocyclic defect group D. Then one of the following holds:

1. B is nilpotent and thus Morita equivalent to O_D.
2. B is Morita equivalent to $O[D \rtimes C_3]$.
3. $D \cong C_2 \times C_2$ and B is Morita equivalent to $B_0(OA_5)$.

- remaining metacyclic 2-groups:
 - B is nilpotent (Craven-Glesser, Robinson, S. independently)
 - algebra structure of B known by a result of Puig

Conclusion: The case $p = 2$ is well-understood.
What is known?

The case $p > 2$:
- Brauer’s $k(B)$-Conjecture is true (Gao)
- Olsson’s Conjecture is true (Yang)
- Brauer’s Height Zero Conjecture is true (S.)
- Fusion system \mathcal{F} on the subpairs of B is controlled (Stancu)
- D is cyclic:
 - case $|D| = p$ known to Brauer
 - in general, $k(B)$, $k_i(B)$, $l(B)$ computed by Dade
 - Donovan’s Conjecture verified (Brauer trees)
 - Broué’s Conjecture verified by Rickard and Linckelmann
What is known?

- **D is abelian but non-cyclic:**
 - smallest case $D \cong C_3 \times C_3$ still open! Partial results by Kiyota and Watanabe.
 - Broué’s Conjecture and Donovan’s Conjecture checked for principal blocks in case $D \cong C_3 \times C_3$ by Koshitani, Kunugi and Miyachi.
 - perfect isometries known for $D \cong C_{3^m} \times C_{3^n}$ if $n \neq m$ (Usami-Puig)
 - More partial results for $D \cong C_p \times C_p$ by Kessar-Linckelmann

- **D is non-abelian and non-split:**
 - $\text{Aut}(D)$ is a p-group (Dietz)
 - all blocks are nilpotent
\textbf{What is known?}

- D is non-abelian and split:
 - $k(B)$, $k_i(B)$, $l(B)$ known if B has \textit{maximal} defect (Gao)
 - perfect isometries constructed if B is \textit{principal} by Horimoto and Watanabe
 - the p-\textit{solvable} case follows from a result by Külshammer
 - G is not \textit{quasisimple} by work of An
 - $D \cong C_p^m \rtimes C_p$:
 - $k(B) - l(B)$ known by Gao-Zeng
 - Holloway, Koshitani and Kunugi determined $k(B)$, $k_i(B)$, $l(B)$ under additional assumptions on G
 - Partial results in case $|D| = p^3$ by Hendren
 - $k(B)$, $k_i(B)$, $l(B)$ determined for $|D| = 3^3$ by S.

\textbf{Conclusion}: Many things are open in case $p > 2$.
Let \(p > 2 \) and

\[
D = \langle x, y \mid x^{p^m} = y^{p^n} = 1, \ yxy^{-1} = x^{1+p^{m-1}} \rangle \cong C_{p^m} \rtimes C_{p^n}
\]

where \(m \geq 2 \) and \(n \geq 1 \).

- These are precisely the metacyclic defect groups \(D \) such that \(|D'| = p \).
- These are precisely the metacyclic, minimal non-abelian groups, i.e. all proper subgroups of \(D \) are abelian.
- The family includes the groups \(D \cong C_{p^m} \rtimes C_p \) mentioned above.
New results

Theorem (S., 2014)

The Alperin-McKay Conjecture holds for all blocks with metacyclic, minimal non-abelian defect groups.
Sketch of proof

Idea: Compute $k_0(B)$ in terms of the fusion system \mathcal{F} only.

- By a result of Stancu, \mathcal{F} is controlled, i.e. any conjugation on subpairs is induced from Aut(D).
- Moreover, $\text{Out}_{\mathcal{F}}(D)$ is cyclic of order dividing $p - 1$ by a result of Sasaki.
- In particular, \mathcal{F} only depends on the inertial index $e(B) := |\text{Out}_{\mathcal{F}}(D)|$.
- Let

 $$\text{foc}(B) := \langle f(a)a^{-1} : a \in Q \leq D, f \in \text{Aut}_{\mathcal{F}}(Q) \rangle$$

 be the *focal subgroup* of B.
- It follows that $\text{foc}(B)$ lies in the cyclic normal subgroup $\langle x \rangle$. In particular $p^n \mid |D : \text{foc}(B)|$.
Sketch of proof

- By Broué-Puig and Robinson, $D/\mathfrak{soc}(B)$ acts freely on $\text{Irr}_0(B)$ via the \ast-construction.
- In particular $p^n \mid k_0(B)$.
- On the other hand, we have upper bounds for $k_0(B)$ and $\sum p^{2i}k_i(B)$ from Héthelyi-Külshammer-S. (using properties of decomposition numbers)
- Finally, a formula by Brauer gives a lower bound for $k(B)$.
- The claim follows by a combination of these estimates. □
The proof does not rely on the classification.

As a corollary, one gets $k_1(B) = k(B) - k_0(B)$.

This confirms less-known conjectures by Eaton, Eaton-Moretó, Robinson and Malle-Navarro, for B.
Isaacs and Navarro proposed a refinement of the Alperin-McKay-Conjecture:

Conjecture (Isaacs-Navarro, 2002)

Let b_D be the Brauer correspondent of B in $N_G(D)$. Then for every p-automorphism $\gamma \in \text{Gal}(\mathbb{Q}|_G|\mathbb{Q}|_G|_{p'})$ we have

$$|\{\chi \in \text{Irr}_0(B) : \gamma \chi = \chi\}| = |\{\chi \in \text{Irr}_0(b_D) : \gamma \chi = \chi\}|.$$
Remarks

Proposition (S.)

The Isaacs-Navarro Conjecture holds for all blocks with defect group $C_p^2 \rtimes C_p$.

In fact every p-automorphism $\gamma \in \text{Gal}(\mathbb{Q}|_G|\mathbb{Q}|_G|_p)$ acts trivially on $\text{Irr}_0(B)$.
The case $p = 3$

Theorem (S., 2014)

Let B be a non-nilpotent 3-block with metacyclic, minimal non-abelian defect groups. Then

\[
\begin{align*}
 k_0(B) &= \frac{3^{m-2} + 1}{2} 3^{n+1}, \\
 k_1(B) &= 3^{m+n-3}, \\
 k(B) &= \frac{11 \cdot 3^{m-2} + 9}{2} 3^{n-1}, \\
 l(B) &= 2
\end{align*}
\]

where m and n are the parameters in the presentation of D.
Since B is non-nilpotent and $e(B) \mid p - 1$, we have $e(B) = 2$.

The theory of lower defect groups implies $l(B) \in \{2, 3\}$.

Use induction on n. In case $n = 1$ and $l(B) = 3$, decomposition numbers are in exceptional configuration → contradiction.

Let $n \geq 2$. Then induction gives $k(B) - l(B)$.

By a result of Robinson, $Z(D)\text{foc}(B)/\text{foc}(B)$ acts freely on $\text{Irr}(B)$ by the \ast-construction.

In particular $3^{n-1} \mid k(B)$, and the result follows. □
The proof is still classification-free.
The induction argument works for any prime $p > 2$.
Therefore, it suffices to handle the defect groups $D \cong C_{p^m} \rtimes C_p$ for $m \geq 2$.
Remarks

- Since \mathcal{F} is controlled and $\text{Out}_F(D)$ is cyclic, Alperin’s Weight Conjecture asserts $l(B) = e(B)$.
- The Ordinary Weight Conjecture is equivalent Dade’s Projective Conjecture and predicts $k_i(B)$ in terms of \mathcal{F}.

Corollary

Alperin’s Weight Conjecture and the Ordinary Weight Conjecture are satisfied for every 3-block with metacyclic, minimal non-abelian defect groups.
The case $p = 5$

Theorem (S., 2014)

Let B be a 5-block of a finite group with non-abelian defect group $C_{25} \rtimes C_{5^n}$ where $n \geq 1$. Then

\[
\begin{align*}
 k_0(B) &= \left(\frac{4}{e(B)} + e(B) \right) 5^n, \\
 k_1(B) &= \frac{4}{e(B)} 5^{n-1}, \\
 k(B) &= \left(\frac{24}{e(B)} + 5e(B) \right) 5^{n-1}, \\
 l(B) &= e(B).
\end{align*}
\]

Again Alperin’s Weight Conjecture and the Ordinary Weight Conjecture are satisfied in this special case.
Proposition

Let \(p \in \{7, 11, 13, 17, 23, 29\} \) and let \(B \) be a \(p \)-block with defect group \(C_{p^2} \rtimes C_{p^n} \) where \(n \geq 1 \). If \(e(B) = 2 \), then

\[
\begin{align*}
 k_0(B) &= \frac{p + 3}{2} p^n, \\
 k_1(B) &= \frac{p - 1}{2} p^{n-1}, \\
 k(B) &= \frac{p^2 + 4p - 1}{2} p^{n-1}, \\
 l(B) &= 2.
\end{align*}
\]
Let B be a block with defect group D and fusion system \mathcal{F}.

Then the hyperfocal subgroup of B is defined by

$$\mathfrak{h}(B) := \langle f(a)a^{-1} : a \in Q \leq D, f \in O^p(\text{Aut}_\mathcal{F}(Q)) \rangle$$

By a result of Puig the source algebra iBi of B can be expressed as a crossed product:

$$iBi = \bigoplus_{x \in D/\mathfrak{h}(B)} \mathcal{H}x$$

where \mathcal{H} is the hyperfocal subalgebra of iBi.

\mathcal{H} is unique up to $(iBi^D)^\times$-conjugation as D-stable unitary subalgebra of iBi.

Final remarks

- Let B be a block with defect group D and fusion system \mathcal{F}.
- Then the hyperfocal subgroup of B is defined by

$$\mathfrak{h}(B) := \langle f(a)a^{-1} : a \in Q \leq D, f \in O^p(\text{Aut}_\mathcal{F}(Q)) \rangle$$

By a result of Puig the source algebra iBi of B can be expressed as a crossed product:

$$iBi = \bigoplus_{x \in D/\mathfrak{h}(B)} \mathcal{H}x$$

where \mathcal{H} is the hyperfocal subalgebra of iBi.

\mathcal{H} is unique up to $(iBi^D)^\times$-conjugation as D-stable unitary subalgebra of iBi.

Final remarks

- Moreover, $\mathcal{H} \cap Di = \eta \eta p(B)i$.
- If D is non-abelian, metacyclic for an odd prime p, then $\eta \eta p(B) \subseteq \text{foc}(B)$ are cyclic.
- Assume that $F = \mathcal{O}/\text{Rad}(\mathcal{O})$ is an algebraically closed field of characteristic p.
- It follows from Watanabe that \mathcal{H}, considered as an algebra over F, has finite representation type.