Determination of block invariants

Morita equivalence problems for blocks of finite groups CIB Lausanne

Benjamin Sambale*

September 5–6, 2016

1 Local and global invariants

Let G be a finite group, and let p be a prime. We consider a p-modular system (K, \mathcal{O}, F) with the following properties:

- \mathcal{O} is a complete discrete valuation ring with valuation ν and field of fractions K,
- K has characteristic 0 and contains a primitive |G|-th root of unity,
- $F = \mathcal{O}/J(\mathcal{O})$ is an algebraically closed field of characteristic p.

The group algebra $\mathcal{O}G$ decomposes into a direct sum of indecomposable (twosided) ideals

$$\mathcal{O}G = B_1 \oplus \ldots \oplus B_n.$$

The summands B_i are called the (p-)blocks of $\mathcal{O}G$. The natural homomorphism $\mathcal{O} \to F$, $\alpha \mapsto \alpha + J(\mathcal{O})$ induces a bijection between the blocks of $\mathcal{O}G$ and the blocks of FG. In the following we assume that B is a block of RG where $R \in \{\mathcal{O}, F\}$ (whatever is appropriate). Then B is a subalgebra of RG and the unity element 1_B is a primitive idempotent of the center Z(RG).

Definition 1.1 (Global numerical invariants).

(i) Let Irr(B) be the set of irreducible characters of G over K belonging to B. We set k(B) := |Irr(B)|. Then the *defect* $d(B) \ge 0$ of B is defined by

$$p^{d(B)}\min\{\chi(1)_p:\chi\in\operatorname{Irr}(B)\}=|G|_p.$$

The height $h(\chi)$ of $\chi \in Irr(B)$ is determined via

$$p^{d(B)-h(\chi)}\chi(1)_p = |G|_p$$

We set $\operatorname{Irr}_i(B) := \{\chi \in \operatorname{Irr}(B) : h(\chi) = i\}$ and $k_i(B) := |\operatorname{Irr}_i(B)|$ for $i \ge 0$.

(ii) The sets $\operatorname{Irr}_i(B)$ can be partitioned further into families of *p*-conjugate characters. These are the orbits of the Galois group \mathcal{G} of the cyclotomic field extension $\mathbb{Q}_{|G|} \supseteq \mathbb{Q}_{|G|_{p'}}$. The *p*-rational characters are the fixed points under this action. Note that $\mathcal{G} \cong (\mathbb{Z}/|G|_p\mathbb{Z})^{\times}$.

^{*}Fachbereich Mathematik, TU Kaiserslautern, 67653 Kaiserslautern, Germany, sambale@mathematik.uni-kl.de

- (iii) Similarly, one may count the *real* characters in Irr(B) and determine their *Frobenius-Schur-Indicators*.
- (iv) The *F*-representations of *G* determine *Brauer characters*. The irreducible Brauer characters IBr(G) of *G* can be distributed into the blocks. Accordingly we define l(B) := |IBr(B)|. This is also the number of simple *B*-modules.
- (v) There exist non-negative integers $d_{\chi\varphi}$ such that

$$\chi(g) = \sum_{\varphi \in \mathrm{IBr}(B)} d_{\chi \varphi} \varphi(g)$$

for every $\chi \in \operatorname{Irr}(B)$ and $g \in G_{p'}$. Let $Q := (d_{\chi\varphi}) \in \mathbb{Z}^{k(B) \times l(B)}$ be the *decomposition matrix* of B. Then $C(B) := Q^{\mathrm{T}}Q$ is the *Cartan matrix* of B.

(vi) The Loewy length LL(B) of B is the smallest positive integer l such that $J(B)^{l} = 0$. Also LL(Z(B)) is of interest.

Global structural invariants:

Definition 1.2 (Local data).

(i) Recall that a defect group D = D(B) of B is a p-subgroup of G which is unique up to conjugation. Moreover, $|D| = p^{d(B)}$. Let b_D be a Brauer correspondent of B in $C_G(D)$. Then

$$I(B) := N_G(D, b_D) / DC_G(D)$$

is the *inertial quotient* of B. A result by Külshammer shows that $B_D := b_D^{N_G(D)}$ is Morita equivalent to a twisted group algebra of the form $R_{\alpha}[D \rtimes I(B)]$. The 2-cocycle α is called the Külshammer-Puig class of B_D .

- (ii) The fusion system $\mathcal{F} = \mathcal{F}(B)$ of B is a category with
 - objects: subgroups of D,
 - morphisms: certain conjugation maps induced by elements in G.

We have $I(B) \cong \operatorname{Out}_{\mathcal{F}}(D)$ and this is p'-group.

It is conjectured that every fusion system of a block is represented by a finite group H with $D \in Syl_p(H)$.

Philosophy: Local data determine global invariants

Conjectures:

- $k_0(B) = k_0(B_D)$ (Alperin-McKay)
- $k(B) = k_0(B)$ if and only if D abelian (Brauer)
- $\inf\{i \ge 1 : k_i(B) > 0\} = \inf\{i \ge 1 : k_i(D) > 0\}$ (Eaton-Moretó)
- l(B) is determined by \mathcal{F} and Külshammer-Puig classes of certain Brauer correspondents (Alperin)
- $k_i(B)$ is determined in a similar fashion (Dade, Robinson)
- If D is abelian, then B is (splendid) Rickard equivalent to B_D (Broué)
- There are only finitely many Morita (Puig) equivalence classes of *p*-blocks with a given defect (Donovan, Puig)

Results:

Theorem 1.3. If G is p-solvable, then the source algebra of B can be described locally.

Theorem 1.4.

- (i) B is a simple algebra if and only if D = 1. In this case $B \cong \mathbb{R}^{n \times n}$ where n is the degree of the unique irreducible character of B.
- (ii) B has finite representation type if and only if D is cyclic. In this case the source algebra of B is determined by an endo-permutation module for D and the planar embedding of a Brauer tree.
- (iii) B has tame representation type if and only if p = 2 and D is dihedral, semidihedral or (generalized) quaternion. Here, the Morita equivalence classes are determined by Auslander-Reiten quivers (up to scalars).
- (iv) In all other cases B has wild representation type.

Aim: Say more in the wild case!

2 Methods

Given: *D* **Wanted:** Global invariants of *B*

2.1 Fusion systems

Theorem 2.1 (Alperin's Fusion Theorem). The morphisms of \mathcal{F} are compositions of restrictions from Aut(S) where S = D or S is essential, i. e. $\operatorname{Out}_{\mathcal{F}}(S)$ contains a strongly p-embedded subgroup.

Groups with strongly embedded p-subgroups are classified. Moreover, the automorphism group of a p-group is "almost always" a p-group. In this way one can classify all (saturated) fusion systems on D.

Corollary 2.2. "Most" blocks are nilpotent, i. e. the morphisms of \mathcal{F} are restrictions from Inn(D).

Theorem 2.3 (Puig). The block B is nilpotent if and only if $B \cong (\mathcal{O}D)^{n \times n}$ for some $n \ge 1$.

Example 2.4.

- (i) If G has a normal p-complement, then B is nilpotent. The converse holds for the principal block.
- (ii) If D is abelian and I(B) = 1, then B is nilpotent.
- (iii) If D is a cyclic 2-group, then B is nilpotent.

If p > 2 and \mathcal{F} is not nilpotent, then there exists a finite group H with $D \in \text{Syl}_p(H)$ and without normal *p*-complement (not necessarily with the same fusion system).

2.2 Subsections

A (B)-subsection is a pair (u, b) where $u \in G_p$ and b is a Brauer correspondent of B in $C_G(u)$.

Proposition 2.5. Choose a set \mathcal{R} of representatives for the \mathcal{F} -orbits of D such that $|C_D(u)|$ is as large as possible for every $u \in \mathcal{R}$. Then there exist blocks b_u ($u \in \mathcal{R}$) with the following properties:

- (i) every subsection is G-conjugate to exactly one (u, b_u) with $u \in \mathcal{R}$,
- (ii) $D(b_u) = C_D(u)$ and $\mathcal{F}(b_u) = C_{\mathcal{F}}(u)$, in particular $I(b_u) \cong C_{Out_{\mathcal{F}}(C_D(u))}(u)$,
- (iii) b_u dominates a unique block $\overline{b_u}$ of $C_G(u)/\langle u \rangle$ with $D(\overline{b_u}) = C_D(u)/\langle u \rangle$ and $\mathcal{F}(\overline{b_u}) = C_{\mathcal{F}}(u)/\langle u \rangle$, in particular $I(\overline{b_u}) \cong I(b_u)$,
- (iv) $C(b_u) = |\langle u \rangle| C(\overline{b_u})$, in particular $l(b_u) = l(\overline{b_u})$, (v)

$$k(B) = \sum_{u \in \mathcal{R}} l(b_u) = \sum_{u \in \mathcal{R}} l(\overline{b_u}).$$

Corollary 2.6. The difference k(B) - l(B) is determined locally.

2.3 Generalized decomposition numbers

Proposition 2.7. Let $u \in G_p$ and let $\chi \in Irr(B)$. Then there are uniquely determined algebraic integers $d^u_{\chi\varphi}$ in the cyclotomic field $\mathbb{Q}_{|\langle u \rangle|}$ such that

$$\chi(uv) = \sum_{\varphi \in \mathrm{IBr}(\mathrm{C}_G(u))} d^u_{\chi\varphi}\varphi(v) \qquad \forall v \in \mathrm{C}_G(u)_{p'}$$

The numbers $d^u_{\chi\varphi}$ are called generalized decomposition numbers.

Theorem 2.8 (Brauer's Second Main Theorem). Let $\chi \in Irr(B)$, $u \in G_p$ and $\varphi \in IBr(b)$ for some block b of $C_G(u)$. Then $d^u_{\chi\varphi} = 0$ unless $b^G = B$.

For $u \in \mathcal{R}$ we write

$$Q_u := (d^u_{\chi\varphi})_{\chi \in \operatorname{Irr}(B), \, \varphi \in \operatorname{IBr}(b_u)} \in \mathcal{O}^{k(B) \times l(b_u)}.$$

Note that $Q_1 = Q$. By choosing an integral basis of $\mathbb{Q}_{|\langle u \rangle|}$, we may replace Q_u by its integral coefficient matrix.

Theorem 2.9 (Orthogonality relations). For $u, v \in \mathcal{R}$ we have

$$Q_u^{\mathrm{T}}\overline{Q_v} = \delta_{uv}C(b_u).$$

For $u \in \mathcal{R}$ let

$$M_u := (m_{\chi\psi}^u)_{\chi,\psi\in\operatorname{Irr}(B)} = \overline{Q_u}C(b_u)^{-1}Q_u^{\mathrm{T}} = \overline{Q_u}(Q_u^{\mathrm{T}}\overline{Q_u})^{-1}Q_u^{\mathrm{T}} \in \mathbb{C}^{k(B)\times k(B)}$$

be the *contribution matrix* of B with respect to (u, b_u) .

Proposition 2.10 (Divisibility relations). For $u \in \mathcal{R}$ the following holds:

- (i) $\nu(p^{d(b_u)}m^u_{\chi\psi}) \geq 0$. Equality holds if and only if $h(\chi) = h(\psi) = 0$. In particular, for every $\chi \in \operatorname{Irr}_0(B)$ there exists a $\varphi \in \operatorname{IBr}(b_u)$ such that $d^u_{\chi\varphi} \neq 0$.
- (ii) $\nu(p^{d(B)}m^u_{\chi\psi}) \ge h(\chi)$. Equality holds if and only if $u \in Z(D)$ and $h(\psi) = 0$. In particular, for every $u \in Z(D)$ and $\chi \in Irr(B)$ there exists a $\varphi \in IBr(b_u)$ such that $d^u_{\chi\varphi} \ne 0$.

Corollary 2.11. The numbers $k_i(B)$ can be read off from Q_u whenever $u \in Z(D)$.

Proof. Pick a $\psi \in \operatorname{Irr}(B)$ with $p^{d(B)}m^u_{\psi\psi} \in \mathcal{O}^{\times}$. Then $h(\psi) = 0$ and $h(\chi) = \nu \left(p^{d(B)}m^u_{\chi\psi}\right)$ for every $\chi \in \operatorname{Irr}(B)$ by Proposition 2.10.

Proposition 2.12 (Surjectivity of decomposition). Let \widetilde{Q} be a matrix whose columns form a basis of the \mathbb{Z} -module

$$\{v \in \mathbb{Z}^{k(B)} : Q_u^{\mathrm{T}}v = 0 \ \forall u \in \mathcal{R} \setminus \{1\}\}.$$

Then there exists $S \in GL(l(B), \mathbb{Z})$ such that $Q = \widetilde{Q}S$.

Remark 2.13. Arguing by induction on |D|, we may assume that $C(\overline{b_u})$ and therefore $C(b_u)$ is known for $1 \neq u \in \mathcal{R}$. By the "integrity" of Q_u (and the Brauer-Feit bound), there are only finitely many solutions of the matrix equation $Q_u^T \overline{Q_u} = C(b_u)$. The solutions can be determined with an algorithm by Plesken (implemented as **OrthogonalEmbeddings** in GAP). Now Proposition 2.12 implies that Qcan be computed up to *basic sets* from the Q_u ($u \neq 1$). Here, a basic set is a basis for $\mathbb{Z} \operatorname{IBr}(B)$. Note that $C(B) = Q^T Q = S^T \widetilde{Q}^T \widetilde{Q}S$. In particular, the elementary divisors and the determinant of C(B)are encoded in \widetilde{Q} . This can be stated more explicitly in terms of *lower defect groups*. We will see later that not all elements $u \in \mathcal{R} \setminus \{1\}$ in Proposition 2.12 are needed. Observe also that the contribution matrices M_u do not depend on the basic sets of b_u (but on the order of $\operatorname{Irr}(B)$).

2.4 Galois actions

Since the matrix factorization $X^{\mathrm{T}}\overline{X} = C(b_u)$ has usually many solutions X, it is of interest to investigate relations between the Q_u 's.

The generalized decomposition matrix of B is defined by

$$Q_* := \left(d^u_{\chi \varphi} : \chi \in \operatorname{Irr}(B), \ u \in \mathcal{R}, \ \varphi \in \operatorname{IBr}(b_u) \right) = \left(Q_u : u \in \mathcal{R} \right) \in \mathcal{O}^{k(B) \times k(B)}.$$

Example 2.14. If G = D, then Q_* is just the character table of G.

Proposition 2.15. The Galois group \mathcal{G} introduced in Definition 1.1(ii) acts on the rows and on the columns of Q_* such that

$$\gamma(d^u_{\chi\varphi}) = d^{u^{\gamma}}_{\chi\varphi} = d^u_{\chi^{\gamma},\varphi}$$

for $\gamma \in \mathcal{G}$. The number of orbits on both sets is the same. If p > 2, then the number of p-rational characters in $\operatorname{Irr}(B)$ coincides with the number of integral columns of Q_* .

Sketch of proof. The equation is a direct consequence of Proposition 2.7. By Brauer's Permutation Lemma, every $\gamma \in \mathcal{G}$ has the same number of fixed points on the rows as on the columns of Q_* . Hence, Burnside's Lemma implies that the number of orbits coincides. Finally, if p > 2, then \mathcal{G} is cyclic and the last claim follows.

If u and u^{γ} ($\gamma \in \mathcal{G}$) lie in the same \mathcal{F} -orbit, then there exists a $g \in N_G(\langle u \rangle, b_u)$ such that $d_{\chi\varphi}^{u^{\gamma}} = d_{\chi\varphi}^{u^g} = d_{\chi,\varphi^g}^u$. Thus, γ permutes the columns of Q_u in this case. Here, at least one column is fixed if p = 2. Also note that for the computation of Q in Proposition 2.12 we only need Q_u with $u \in \mathcal{R}'$ where \mathcal{R}' is a set of representatives of $\mathcal{R} \setminus \{1\}$ under \mathcal{G} .

2.5 Broué-Puig's *-construction

Let $\mathbb{Z}\operatorname{Irr}(D)^{\mathcal{F}}$ be the \mathbb{Z} -module of \mathcal{F} -stable generalized characters of D. Then

$$\operatorname{rk}(\mathbb{Z}\operatorname{Irr}(D)^{\mathcal{F}}) = |D/\mathcal{F}| = |\mathcal{R}|.$$

For $\chi \in \operatorname{Irr}(B)$ and $\lambda \in \mathbb{Z} \operatorname{Irr}(D)^{\mathcal{F}}$ there exists a character $\lambda * \chi \in \mathbb{Z} \operatorname{Irr}(B)$. It follows that

$$\sum_{u \in \mathcal{R}} \lambda(u) M_u = \left((\lambda * \chi, \psi)_G \right)_{\chi, \psi \in \operatorname{Irr}(B)} \in \mathbb{Z}^{k(B) \times k(B)}$$

If $\lambda = 1$, this simplifies to

$$\sum_{u \in \mathcal{R}} M_u = 1$$

(which is also a consequence of Theorem 2.9). If λ is the regular character of D and $\chi \in \operatorname{Irr}_0(B)$, then every $\psi \in \operatorname{Irr}(B)$ is a constituent of $\lambda * \chi$ with multiplicity $p^{d(B)}m_{\chi\psi}^1 \neq 0$.

The *hyperfocal subgroup* of B is defined by

$$\mathfrak{hyp}(B) := \langle x^{-1}x^f : x \in S \le D, \ f \in \mathcal{O}^p(\operatorname{Aut}_{\mathcal{F}}(S)) \rangle.$$

Moreover, $\mathfrak{foc}(B) := D'\mathfrak{hpp}(B)$ is the *focal subgroup* of B. If \mathcal{F} is realized by a finite group H, then we may use the focal subgroup theorem $\mathfrak{foc}(B) = D \cap H'$. Observe that

$$\overline{D} := D/\mathfrak{foc}(B) \cong \operatorname{Irr}(D/\mathfrak{foc}(B)) \subseteq \operatorname{Irr}(D)^{\mathcal{F}}.$$

Proposition 2.16. If $\chi \in \operatorname{Irr}_i(B)$ and $\lambda \in \operatorname{Irr}(\overline{D})$, then $\lambda * \chi \in \operatorname{Irr}_i(B)$ with

$$d^u_{\lambda*\chi,\varphi}=\lambda(u)d^u_{\chi\varphi}$$

for $u \in \mathcal{R}$. This induces an action on the rows of Q_* with the following properties:

- (i) \overline{D} acts semiregularly on $\operatorname{Irr}_0(B)$. In particular, $k_0(B) \equiv 0 \pmod{|\overline{D}|}$. The action is regular if and only if B is nilpotent.
- (ii) $\overline{Z(D)}$ acts semiregularly on $\operatorname{Irr}_i(B)$. In particular, $k_i(B) \equiv 0 \pmod{|\overline{Z(D)}|}$ and $C(B) \equiv 0 \pmod{|\overline{Z(D)}|}$ for $i \geq 0$.
- (iii) \mathcal{G} acts on the set of \overline{D} -orbits of $\operatorname{Irr}(B)$.
- (iv) The number of \overline{D} -orbits is

$$|\mathrm{Irr}(B)/\overline{D}| = \sum_{u \in \mathcal{R} \cap \mathfrak{foc}(B)} l(b_u).$$

Sketch of proof. Once $d^u_{\lambda^*\chi,\varphi} = \lambda(u)d^u_{\chi\varphi}$ is proven, the claims about semiregularity follow from Proposition 2.10. A result by Kessar-Linckelmann-Navarro provides the characterization of nilpotent blocks. Part (iii) is easy, since \mathcal{G} acts naturally on $\operatorname{Irr}(\overline{D})$. The last claim is explained in Remark 2.17 below. \Box

In general \overline{D} does not act on the columns of Q_* .

Remark 2.17. Now we combine the actions of \mathcal{G} and \overline{D} . Let $\widehat{\mathcal{G}} := \overline{D} \rtimes \mathcal{G}$, and let \mathcal{S} be a set of representatives for the $\widehat{\mathcal{G}}$ -orbits of $\operatorname{Irr}(B)$. For $x \in \mathbb{Q}_{|G|_p}$ let

$$\operatorname{tr}(x) := \frac{1}{|\mathcal{G}|} \sum_{\gamma \in \mathcal{G}} \gamma(x) \in \mathbb{Q}.$$

Define

$$\widehat{Q}_u := \left(|\widehat{\mathcal{G}} : \widehat{\mathcal{G}}_{\chi}| \operatorname{tr}(d^u_{\chi\varphi}) : \chi \in \mathcal{S}, \, \varphi \in \operatorname{IBr}(b_u) \right)$$

for $u \in \mathcal{R}'$. Since Q is constant on the $\widehat{\mathcal{G}}$ -orbits, we can recover Q from $\widehat{Q} := (d_{\chi\varphi} : \chi \in \mathcal{S}, \varphi \in \operatorname{IBr}(B))$. The columns of \widehat{Q} form a basis of the \mathbb{Z} -module

$$\big\{v\in\mathbb{Z}^{|\mathcal{S}|}:\widehat{Q}_{u}^{\mathrm{T}}v=0\ \forall u\in\mathcal{R}'\cap\mathfrak{foc}(B)\big\}.$$

Example 2.18 (Robinson). If $p \ge 5$, $D \ne 1$ and I(B) = 1, then $\overline{D} \ne 1$.

Note that B is nilpotent if and only if $\mathfrak{hyp}(B) = 1$.

Theorem 2.19 (Watanabe). If $\mathfrak{hyp}(B)$ is cyclic, then l(B) = |I(B)| and $k(B) = k(B_D) = k(D \rtimes I(B))$.

Let

$$Z(\mathcal{F}) := \{x \in D : x^f = x \text{ for every morphism } f \text{ in } \mathcal{F}\} \le D.$$

Proposition 2.20. For $u \in Z(\mathcal{F})$ we have $k(B) \ge k(b_u)$ and $l(B) \ge l(b_u)$. If (in addition) D is abelian, then equality holds and $Z(B) \cong Z(b_u)$.

It is conjectured that B and b_u are Morita equivalent whenever $u \in Z(\mathcal{F})$. This can be regarded as a Z^* -*Theorem* for blocks.

2.6 Quadratic forms

By construction, the Cartan matrix $C(b_u)$ $(u \in \mathcal{R})$ is symmetric and positive definite. Hence, it gives rise to an integral quadratic form

$$q_u: \mathbb{Z}^{l(b_u)} \to \mathbb{Z}, \qquad x \mapsto xC(b_u)x^{\mathrm{T}}.$$

If we change the basic set of b_u , $C(b_u)$ becomes $SC(b_u)S^T$ for some $S \in GL(l(b_u), \mathbb{Z})$. This yields an *equivalent* quadratic form.

Theorem 2.21 (Reduction of quadratic form). There are only finitely many equivalence classes of integral, positive definite quadratic forms with given dimension and determinant (discriminant).

Theorem 2.22. There are only finitely many isotypy classes of p-blocks with a given defect.

Sketch of proof. For a p-block B with a given defect there are only finitely many possible defect groups D. Let $u \in \mathcal{R}$. By Brauer-Feit, $l(b_u) \leq k(B) \leq p^{2d(B)}$. Moreover, the elementary divisors of $C(b_u)$ divide $p^{d(b_u)} \leq p^{d(B)}$. In particular, $\det(C(b_u)) \leq p^{d(B)l(b_u)}$. Hence, by Theorem 2.21 there are only finitely many possibilities for $C(b_u)$ up to basic sets. If a basic set for b_u is fixed, then there are only finitely many choices for Q_u . Since $|\mathcal{R}| \leq p^{d(B)}$, there are only finitely many possibilities for Q_* up to basic sets. This allows only finitely many perfect isometry classes. The refinement to isotypy classes can be achieved inductively.

Corollary 2.23. There are only finitely many isomorphism types of centers of p-blocks with given defect.

This corollary can be shown more directly by observing that Z(B) has an F-basis of the form

$$L_1^+ 1_B, \ldots, L_k^+ 1_B$$

where L_1^+, \ldots, L_k^+ are class sums of G. Then the structure constants lie in \mathbb{F}_p and there are only finitely many multiplication tables.

If l(B) is small, one can determine a set of representatives for C = C(B) up to basic sets (reductions by Gauß, Minkowski, Hermite, ...).

Example 2.24. If l(B) = 2, then there exists a basic set for B such that

$$C = \frac{\det(C)}{p^{d(B)}} \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$$

with $0 \leq 2\beta \leq \alpha \leq \gamma$. It follows that

$$\frac{3}{4}\alpha^2 \le \alpha\gamma - \beta^2 = \frac{p^{2d(B)}}{\det(C)} \le p^{d(B)}.$$

It is conjectured that $\beta > 0$ (or more generally that q_u is *indecomposable*).

If l(B) is large, heuristics can be used to make the entries of C "small" (LLL algorithm).

We are also interested in the *dual* quadratic form

$$q_u^* : \mathbb{Z}^{l(b_u)} \to \mathbb{Z}, \qquad x \mapsto p^{d(b_u)} x C(b_u)^{-1} x^{\mathrm{T}}.$$

Let $\min q_u^* := \min \left\{ q_u^*(x) : x \in \mathbb{Z}^{l(b_u)} \setminus \{0\} \right\} > 0.$

Proposition 2.25 (Brauer). If $u \in Z(D)$, then $k(B) \min q_u^* \leq l(b_u) p^{d(B)}$.

Sketch of proof. By construction, $M_u^2 = M_u$. It follows that the eigenvalues of M_u are 0 and 1. Therefore,

$$p^{d(B)}l(b_u) = p^{d(b_u)} \operatorname{rk} M_u = \operatorname{tr}(p^{d(b_u)}M_u) = \sum_{\chi \in \operatorname{Irr}(B)} q_u^*(d_{\chi}^u) \ge k(B) \min q_u^*.$$

Quadratic forms with small minimum have been studied. For example, if q_u is indecomposable, then $\min q_u^* > 1$ or $l(b_u) = 1$. In general there are only finitely many vectors $x \in \mathbb{Z}^{l(b_u)}$ with $q_u^*(x) = \min q_u^*$.

2.7 Reduction to quasisimple groups

The methods we have covered so far are in general not sufficient to determine e.g. k(B) from local data. In the following we present a rather different approach which often helps to overcome difficulties encountered otherwise.

- In order to determine the basic algebra of B we may change G in accordance with Fong's reductions. After the first reduction, B is *quasiprimitive*, i. e. for every $N \leq G$, B covers a unique block of N. By the second reduction, we may assume that $O_{p'}(G)$ is cyclic and central in G. Both reductions preserve D and \mathcal{F} .
- The Külshammer-Puig Theorem describes the source algebra of a block covering a nilpotent block. This is often helpful to show that $O_p(G) = 1$. A recent result by Puig gives information in the opposite case where B is covered by a nilpotent block.
- By the previous steps, the *Fitting subgroup* is given by $F(G) = Z(G) = O_{p'}(G)$. As usual, the *layer* E(G) of G is a central product of *components* L_1, \ldots, L_n of G. Moreover, B covers a unique block $B_E = B_1 \otimes \ldots \otimes B_n$ of E(G) with $D(B_E) = D(B_1) \times \ldots \times D(B_n) \leq D$. Here, B_E is nilpotent if and only if all B_i are nilpotent.

• In favorable cases we may use the structure of D to prove that n = 1, i.e. E(G) is quasisimple and S := E(G)/Z(E(G)) is simple. Moreover, $Z(G) \leq C_G(E(G)) \leq C_G(F^*(G)) \leq F(G) = Z(G)$ and $G/Z(G) \leq Aut(E(G)) \leq Aut(S)$. Thus, we are in a position to apply the classification of the finite simple groups. Clifford theory can be used to minimize |G/E(G)|.

3 Example $D = D_8$

Let p = 2 and

$$D = \langle x, y \mid x^4 = y^2 = 1, \ x^y = x^{-1} \rangle \cong D_8.$$

Since a non-trivial p'-automorphism of D must permute the maximal subgroups, we conclude that $\operatorname{Aut}(D)$ is a p-group. In particular, I(B) = 1. There are two candidates of essential subgroups: $E_1 := \langle x^2, y \rangle$ and $E_2 := \langle x^2, xy \rangle$. This gives three possible fusion systems represented by the following groups:

- (i) D (B is nilpotent),
- (ii) S_4 (E_1 is essential),
- (iii) GL(3,2) (E_1 and E_2 are essential).

Let us assume that the second case occurs for *B*. Then we may choose $\mathcal{R} = \{1, x^2, xy, x\}$. By Proposition 2.5, the blocks b_{x^2} , b_{xy} and b_x are nilpotent and

$$k(B) - l(B) = l(b_{x^2}) + l(b_{xy}) + l(b_x) = 3.$$

Moreover, $C(b_{x^2}) = (8)$ and $C(b_{xy}) = C(b_x) = (4)$. Since \mathcal{G} acts trivially on Q_* , Q_* is integral. Note that $p^{d(b_u)}m^u_{\chi\psi} = d_{\chi\varphi}d_{\psi\varphi}$ for $u \in \mathcal{R} \setminus \{1\}$ and $\operatorname{IBr}(b_u) = \{\varphi\}$. By the orthogonality and divisibility relations for xy, we see that $k_0(B) = 4$. Similarly, if we consider x^2 , we get

$$k(B) = k_0(B) + k_1(B) = 4 + 1 = 5,$$
 $l(B) = 2.$

Moreover, $\mathfrak{foc}(B) = E_1$ and $\overline{D} = D/E_1$ has two orbits of length 2 on $\operatorname{Irr}_0(B)$. It follows that $\widehat{Q}_{x^2} = 2(\epsilon_1, \epsilon_2, \epsilon_3)^{\mathrm{T}}$ where $\epsilon_1, \epsilon_2, \epsilon_3 \in \{\pm 1\}$ (see Remark 2.17). Hence, there exists a basic set for B such that

$$\widehat{Q} = \begin{pmatrix} \epsilon_1 & . \\ . & \epsilon_2 \\ -\epsilon_3 & -\epsilon_3 \end{pmatrix}.$$

We obtain

$$Q_* = \begin{pmatrix} \epsilon_1 & \cdot & \epsilon_1 & \epsilon_1 & \epsilon_1 \\ \epsilon_1 & \cdot & \epsilon_1 & -\epsilon_1 & -\epsilon_1 \\ \cdot & \epsilon_2 & \epsilon_2 & \epsilon_2 & -\epsilon_2 \\ \cdot & \epsilon_2 & \epsilon_2 & -\epsilon_2 & \epsilon_2 \\ -\epsilon_3 & -\epsilon_3 & 2\epsilon_3 & \cdot & \cdot \end{pmatrix}, \qquad \qquad C(B) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

up to basic sets. Note that the quadratic form q_1 is already reduced by Example 2.24. It is not hard to show that the isotypy class of B is uniquely determined. It is known further that B is Morita equivalent either to the principal block of S_4 or to the principal block of S_5 (recall from Theorem 1.4 that B is tame). Both blocks are Rickard equivalent (confirming a conjecture of Rouquier in this case).