Disclaimer: I won’t spoil how to solve Rubik’s cube!
The $(3 \times 3 \times 3)$ Rubik’s cube was invented by E. Rubik in 1974.
The $(3 \times 3 \times 3)$ Rubik's cube was invented by E. Rubik in 1974.

A move is a rotation of one of the six faces by 90°, 180° or 270°:
The (3 × 3 × 3) Rubik’s cube was invented by E. Rubik in 1974.

A move is a rotation of one of the six faces by 90°, 180° or 270°:
Mechanics

- The $(3 \times 3 \times 3)$ Rubik’s cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by 90°, 180° or 270°:

![Rotation diagram]

- We don’t need rotations of “middle layers“ since this has the same effect as turning the adjacent faces in the opposite direction.
Mechanics

- The $(3 \times 3 \times 3)$ Rubik’s cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by 90°, 180° or 270°:

![Cube before and after rotation]

- We don’t need rotations of “middle layers“ since this has the same effect as turning the adjacent faces in the opposite direction.
- The centers are fixed now (top \rightarrow white, front \rightarrow orange, ...).
The $(3 \times 3 \times 3)$ Rubik’s cube was invented by E. Rubik in 1974.

A move is a rotation of one of the six faces by $90\degree$, $180\degree$ or $270\degree$:

We don’t need rotations of “middle layers“ since this has the same effect as turning the adjacent faces in the opposite direction.

The centers are fixed now (top \rightarrow white, front \rightarrow orange, \ldots).

How “big” is the cube?
How many states can we reach by applying an arbitrary number of moves?
Facelets

- Idea: Enumerate the $6 \cdot 8 = 48$ edge and corner facelets:
Facelets

- Idea: Enumerate the $6 \cdot 8 = 48$ edge and corner facelets:

Every move becomes a permutation in S_{48}, e.g. a clockwise 90° turn of the front face:

The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik’s group is
 \[G := \langle f, b, l, r, u, d \rangle \leq S_{48}. \]
The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik’s group is
 \[G := \langle f, b, l, r, u, d \rangle \leq S_{48}. \]
- Consequence: The cube has at most $48! \approx 10^{61}$ states.
 We can do much better.
The cube group

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik’s group is

$$G := \langle f, b, l, r, u, d \rangle \leq S_{48}.$$

- Consequence: The cube has at most $48! \approx 10^{61}$ states. We can do much better.
- Is G transitive on the 48 facelets?
The cube group

Similarly, we define b (back), l (left), r (right), u (up), d (down).

Rubik’s group is

$$G := \langle f, b, l, r, u, d \rangle \leq S_{48}.$$

Consequence: The cube has at most $48! \approx 10^{61}$ states. We can do much better.

Is G transitive on the 48 facelets?

No: The $8 \cdot 3 = 24$ corner facelets and the $12 \cdot 2 = 24$ edge facelets form orbits Ω_C and Ω_E.

Ω_C:

Ω_E:

Hence,

\[G \leq \text{Sym}(\Omega_C) \times \text{Sym}(\Omega_E) \cong S_{24}^2 \]

and \(|G| \leq (24!)^2 \approx 10^{48}\).
Action on Ω_C

- Hence,
 \[G \leq \text{Sym}(\Omega_C) \times \text{Sym}(\Omega_E) \cong S_{24}^2 \]
 and $|G| \leq (24!)^2 \approx 10^{48}$.
- Is the action of G on Ω_C primitive?
Action on Ω_C

- Hence,

$$G \leq \text{Sym}(\Omega_C) \times \text{Sym}(\Omega_E) \cong S_{24}^2$$

and $|G| \leq (24!)^2 \approx 10^{48}$.

- Is the action of G on Ω_C primitive?
- No: the three facelets of a corner **cubie** form a block Δ in Ω_C.
Hence,

\[G \leq \text{Sym}(\Omega_C) \times \text{Sym}(\Omega_E) \cong S_{24}^2 \]

and \(|G| \leq (24!)^2 \approx 10^{48} \).

Is the action of \(G \) on \(\Omega_C \) primitive?

No: the three facelets of a corner cubie form a block \(\Delta \) in \(\Omega_C \).

We can permute the three facelets of \(\Delta \) only cyclically:
From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf Ω mit Block Δ. Sei $H := \{g \in G : g \Delta = \Delta\}$ und sei $\varphi : H \rightarrow \text{Sym}(\Delta)$ die Operation auf Δ. Sei $\Gamma := \{g\Delta : g \in G\}$ und sei $\psi : G \rightarrow \text{Sym}(\Gamma)$ die Operation auf Γ. Dann ist G zu einer Untergruppe von $\varphi(H) \wr \psi(G)$ isomorph.
From the lecture:

This gives a homomorphism \(G \to C_3 \wr S_8 \leq S_{24} \).

\textbf{Satz 6.26.} Sei \(G \) eine imprimitive Permutationsgruppe auf \(\Omega \) mit Block \(\Delta \). Sei \(H := \{ g \in G : g \Delta = \Delta \} \) und sei \(\varphi : H \to \text{Sym}(\Delta) \) die Operation auf \(\Delta \). Sei \(\Gamma := \{ g \Delta : g \in G \} \) und sei \(\psi : G \to \text{Sym}(\Gamma) \) die Operation auf \(\Gamma \). Dann ist \(G \) zu einer Untergruppe von \(\varphi(H) \cdot \psi(G) \) isomorph.
This gives a homomorphism $G \rightarrow C_3 \wr S_8 \leq S_{24}$.

Similarly, the two facelets of an edge cubie form a block of Ω_E.
From the lecture:

- This gives a homomorphism $G \to C_3 \wr S_8 \leq S_{24}$.
- Similarly, the two facelets of an edge cubie form a block of Ω_E.
- Therefore,

$$G \leq C_3 \wr S_8 \times C_2 \wr S_{12}$$

and $|G| \leq 3^8 8! \cdot 2^{12} 12! \approx 5 \cdot 10^{20}$.

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf Ω mit Block Δ. Sei $H := \{ g \in G : g \Delta = \Delta \}$ und sei $\varphi : H \to \text{Sym}(\Delta)$ die Operation auf Δ. Sei $\Gamma := \{ g \Delta : g \in G \}$ und sei $\psi : G \to \text{Sym}(\Gamma)$ die Operation auf Γ. Dann ist G zu einer Untergruppe von $\varphi(H) \wr \psi(G)$ isomorph.
Action on corner cubies

Now we investigate the action of G on the set C of the eight corner cubies.

Let $\phi_C: G \to \text{Sym}(C)$ the corresponding homomorphism.

Consider the move sequence $x := u \circ r \circ f \in G$.

With suitable labeling:

$\phi_C(x) = (1, 2)(3, 4, 5, 6, 7)$

and

$\phi_C(x^5) = (1, 2)$.

By Exercise 31, S_8 is generated by adjacent transpositions.

Hence, $\phi_C(G) = S_8$.
Action on corner cubies

- Now we investigate the action of G on the set C of the eight corner cubies.
- Let $\varphi_C : G \to \text{Sym}(C)$ the corresponding homomorphism.
Action on corner cubies

- Now we investigate the action of G on the set C of the eight corner cubies.
- Let $\varphi_C : G \to \text{Sym}(C)$ the corresponding homomorphism.
- Consider the move sequence $x := u \circ r \circ f \in G$.

\[\begin{array}{c}
\text{f} \\
\end{array} \]
Now we investigate the action of G on the set C of the eight corner cubies.

Let $\varphi_C : G \rightarrow \text{Sym}(C)$ the corresponding homomorphism.

Consider the move sequence $x := u \circ r \circ f \in G$.

By Exercise 31, S_8 is generated by adjacent transpositions. Hence, $\varphi_C(G) = S_8$.
Action on corner cubies

- Now we investigate the action of G on the set \mathcal{C} of the eight corner cubies.
- Let $\varphi_{\mathcal{C}} : G \to \text{Sym}(\mathcal{C})$ the corresponding homomorphism.
- Consider the move sequence $x := u \circ r \circ f \in G$.

By Exercise 31, S_8 is generated by adjacent transpositions. Hence, $\varphi_{\mathcal{C}}(G) = S_8$.

![Rubik's Cube Diagram]
Action on corner cubies

- Now we investigate the action of G on the set C of the eight corner cubies.
- Let $\varphi_C : G \to \text{Sym}(C)$ the corresponding homomorphism.
- Consider the move sequence $x := u \circ r \circ f \in G$.

![Diagram of Rubik's cube transformations]
Action on corner cubies

- Now we investigate the action of G on the set C of the eight corner cubies.
- Let $\varphi_C : G \rightarrow \text{Sym}(C)$ the corresponding homomorphism.
- Consider the move sequence $x := u \circ r \circ f \in G$.

With suitable labeling: $\varphi_C(x) = (1, 2)(3, 4, 5, 6, 7)$ and $\varphi_C(x^5) = (1, 2)$.
Action on corner cubies

- Now we investigate the action of G on the set C of the eight corner cubies.
- Let $\varphi_C : G \to \text{Sym}(C)$ the corresponding homomorphism.
- Consider the move sequence $x := u \circ r \circ f \in G$.

With suitable labeling: $\varphi_C(x) = (1, 2)(3, 4, 5, 6, 7)$ and $\varphi_C(x^5) = (1, 2)$.

By Exercise 31, S_8 is generated by adjacent transpositions. Hence, $\varphi_C(G) = S_8$.
Action on edge cubies

- It remains to compute the order of $G_C := \text{Ker}(\varphi_C)$.
Action on edge cubies

- It remains to compute the order of $G_C := \text{Ker}(\varphi_C)$.
- Let $\varphi_E : G \to \text{Sym}(E)$ be the action on the set E of the 12 edge cubies.
Action on edge cubies

- It remains to compute the order of $G_C := \text{Ker}(\varphi_C)$.
- Let $\varphi_E : G \to \text{Sym}(\mathcal{E})$ be the action on the set \mathcal{E} of the 12 edge cubies.
- Each of the six generators of G is a 4-cycle on \mathcal{C} and on \mathcal{E}.
Action on edge cubies

- It remains to compute the order of $G_C := \text{Ker}(\varphi_C)$.
- Let $\varphi_E : G \rightarrow \text{Sym}(E)$ be the action on the set E of the 12 edge cubies.
- Each of the six generators of G is a 4-cycle on C and on E.
- It follows that $\text{sgn}(\varphi_C(g)) = \text{sgn}(\varphi_E(g))$ for all $g \in G$.
Action on edge cubes

- It remains to compute the order of $G_C := \text{Ker}(\varphi_C)$.
- Let $\varphi_E : G \to \text{Sym}(E)$ be the action on the set E of the 12 edge cubes.
- Each of the six generators of G is a 4-cycle on C and on E.
- It follows that $\text{sgn}(\varphi_C(g)) = \text{sgn}(\varphi_E(g))$ for all $g \in G$.
- In particular, $\varphi_E(G_C) \subseteq A_{12}$.
Action on edge cubies

- Consider the commutator $y := [f, r] = f r f^{-1} r^{-1} \in G$.

\[\phi_{C}(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5). \]

It follows that $y^2 \in G_C$.

Similarly, $\phi_{E}(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4)$.

Therefore, $(1, 4, 5) = \phi_{E}(y^2) \in \phi_{E}(G_C) \subseteq A_{12}$.

By Exercise 31, $A_{12} = \langle (1, 2, 3), \ldots, (10, 11, 12) \rangle \subseteq \phi_{E}(G_C) \subseteq A_{12}$.

Action on edge cubies

- Consider the commutator $y := [f, r] = f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute

$$\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).$$
Action on edge cubies

- Consider the commutator $y := [f, r] = frf^{-1}r^{-1} \in G$.
- With suitable labeling we compute

$$\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).$$

- It follows that $y^2 \in G_C$.

Consider the commutator \(y := [f, r] = frf^{-1}r^{-1} \in G \).

With suitable labeling we compute

\[
\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).
\]

It follows that \(y^2 \in G_C \).

Similarly,

\[
\varphi_E(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4).
\]
Action on edge cubies

- Consider the commutator \(y := [f, r] = f r f^{-1} r^{-1} \in G \).
- With suitable labeling we compute

 \[
 \varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).
 \]

 It follows that \(y^2 \in G_C \).
- Similarly,

 \[
 \varphi_E(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4).
 \]

 Therefore, \((1, 4, 5) = \varphi_E(y^2) \in \varphi_E(G_C) \).
Action on edge cubies

- Consider the commutator $y := [f, r] = f r f^{-1} r^{-1} \in G$.
- With suitable labeling we compute
 \[
 \varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).
 \]
- It follows that $y^2 \in G_C$.
- Similarly,
 \[
 \varphi_E(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4).
 \]
- Therefore, $(1, 4, 5) = \varphi_E(y^2) \in \varphi_E(G_C)$.
- By Exercise 31, $A_{12} = \langle (1, 2, 3), \ldots, (10, 11, 12) \rangle \subseteq \varphi_E(G_C) \subseteq A_{12}$.
Edge flips (computed)

- It remains to investigate $N := \ker(\varphi_C) \cap \ker(\varphi_E) \leq G$.

 This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).

 We have $N = N_3 \oplus N_2 \leq C_8 \times C_12$ (in fact: $F(G) = N$).

 A generator of G is a product of two disjoint 4-cycles on Ω_E and therefore an even permutation.

 For this reason it is impossible to flip only one edge and leave everything else fixed.

 Hence, $|N_2| \leq 2^{11}$.

Edge flips (computed)

- It remains to investigate \(N := \ker(\varphi_C) \cap \ker(\varphi_E) \leq G \).
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
Edge flips (computed)

- It remains to investigate $N := \text{Ker}(\varphi_C) \cap \text{Ker}(\varphi_E) \trianglelefteq G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N = N_3 \oplus N_2 \leq C^8_3 \times C^{12}_2$ (in fact: $F(G) = N$).
Edge flips (computed)

- It remains to investigate $N := \text{Ker}(\varphi_C) \cap \text{Ker}(\varphi_E) \trianglelefteq G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N = N_3 \oplus N_2 \leq C_3^8 \times C_2^{12}$ (in fact: $F(G) = N$).
- A generator of G is a product of two disjoint 4-cycles on Ω_E and therefore an even permutation.
It remains to investigate $N := \ker(\varphi_C) \cap \ker(\varphi_E) \leq G$.

This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).

We have $N = N_3 \oplus N_2 \leq C_3^8 \times C_2^{12}$ (in fact: $F(G) = N$).

A generator of G is a product of two disjoint 4-cycles on Ω_E and therefore an even permutation.

For this reason it is impossible to flip only one edge and leave everything else fixed.
Edge flips (computed)

- It remains to investigate $N := \text{Ker}(\varphi_C) \cap \text{Ker}(\varphi_E) \trianglelefteq G$.
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have $N = N_3 \oplus N_2 \leq C_3^8 \times C_2^{12}$ (in fact: $F(G) = N$).
- A generator of G is a product of two disjoint 4-cycles on Ω_E and therefore an even permutation.
- For this reason it is impossible to flip only one edge and leave everything else fixed.
- Hence, $|N_2| \leq 2^{11}$.
Edge flips (realized)

On the other hand, we can flip just two (adjacent) edges:

\[r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b = \] (13 moves)
Edge flips (realized)

- On the other hand, we can flip just two (adjacent) edges:

\[r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b = \] (13 moves)

- These “2-flips” generate all states with an even number of flips.
On the other hand, we can flip just two (adjacent) edges:

\[r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b = \]

These “2-flips” generate all states with an even number of flips.

This shows \(|N_2| = 2^{11}|.

The group \(N_2 \rtimes S_{12} \leq G\) is the reflection group with Dynkin diagram \(D_{12}\).
Edge flips (realized)

- On the other hand, we can flip just two (adjacent) edges:

$$r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b =$$

- These “2-flips” generate all states with an even number of flips.
- This shows $|N_2| = 2^{11}$.
- The group $N_2 \rtimes S_{12} \leq G$ is the reflection group with Dynkin diagram D_{12}.
Corner orientations (computed)

- Let $g \in G$ be a generator corresponding to

$$ (t, \pi) \in \langle \zeta \rangle^C \rtimes \text{Sym}(C) \cong C_3 \wr S_8. $$
Corner orientations (computed)

- Let \(g \in G \) be a generator corresponding to
 \[
 (t, \pi) \in \langle \zeta \rangle^C \rtimes \text{Sym}(C) \cong C_3 \rtimes S_8.
 \]

- Since \(g \) has order 4, we obtain

 \[
 1 = (t, \pi)^4 = (t \cdot \pi t, \pi^2) \ast (t, \pi) \ast (t, \pi) = (t \cdot \pi t \cdot \pi^2 t, \pi^3) \ast (t, \pi) \\
 = (t \cdot \pi t \cdot \pi^2 t \cdot \pi^3 t, \pi^4).
 \]
Corner orientations (computed)

- Let \(g \in G \) be a generator corresponding to

\[(t, \pi) \in \langle \zeta \rangle^C \rtimes \text{Sym}(C) \cong C_3 \rtimes S_8.\]

- Since \(g \) has order 4, we obtain

\[1 = (t, \pi)^4 = (t \cdot \pi t, \pi^2) \ast (t, \pi) \ast (t, \pi) = (t \cdot \pi t \cdot \pi^2 t, \pi^3) \ast (t, \pi) = (t \cdot \pi t \cdot \pi^2 t \cdot \pi^3 t, \pi^4).\]

- In particular,

\[1 = \prod_{c \in C} (t \pi t \pi^2 t \pi^3 t)(c) = \prod_{c \in C} t(c) \prod_{c \in C} t(\pi^{-1} c) \prod_{c \in C} t(\pi^{-2} c) \prod_{c \in C} t(\pi^{-3} c) = \left(\prod_{c \in C} t(c) \right)^4 = \prod_{c \in C} t(c).\]
Corner orientations (computed)

- If \((t, \pi), (t', \pi') \in \langle \zeta \rangle^C \rtimes \text{Sym}(C)\) such that \(\prod t(c) = \prod t'(c) = 1\), then also
 \[
 \prod_{c \in C} (t \cdot \pi t')(c) = \prod_{c \in C} t(c) \prod_{c \in C} t'(\pi^{-1} c) = 1.
 \]
Corner orientations (computed)

- If \((t, \pi), (t', \pi') \in \langle \zeta \rangle^C \rtimes \text{Sym}(C)\) such that \(\prod t(c) = \prod t'(c) = 1\), then also
 \[
 \prod_{c \in C} (t \cdot \pi t')(c) = \prod_{c \in C} t(c) \prod_{c \in C} t'(\pi^{-1} c) = 1.
 \]
- Consequently, every \(g \in G\) corresponds to some \((t, \pi)\) with \(\prod t(c) = 1\).
Corner orientations (computed)

- If \((t, \pi), (t', \pi') \in \langle \zeta \rangle^C \rtimes \text{Sym}(C)\) such that \(\prod t(c) = \prod t'(c) = 1\), then also
 \[
 \prod_{c \in C} (t \cdot \pi t')(c) = \prod_{c \in C} t(c) \prod_{c \in C} t'(\pi^{-1} c) = 1.
 \]
- Consequently, every \(g \in G\) corresponds to some \((t, \pi)\) with \(\prod t(c) = 1\).
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.
Corner orientations (computed)

- If \((t, \pi), (t', \pi') \in \langle \zeta \rangle^C \rtimes \text{Sym}(C)\) such that \(\prod t(c) = \prod t'(c) = 1\), then also
 \[
 \prod_{c \in C} (t \cdot \pi t')(c) = \prod_{c \in C} t(c) \prod_{c \in C} t'(\pi^{-1} c) = 1.
 \]

- Consequently, every \(g \in G\) corresponds to some \((t, \pi)\) with \(\prod t(c) = 1\).

- Interpretation: It is impossible to twist a single corner cubie without changing the rest.

- In particular, \(|N_3| \leq 3^7\).
Corner orientations (computed)

- If \((t, \pi), (t', \pi') \in \langle \zeta \rangle^C \rtimes \text{Sym}(C)\) such that \(\prod t(c) = \prod t'(c) = 1\), then also
 \[
 \prod_{c \in C} (t \cdot \pi t')(c) = \prod_{c \in C} t(c) \prod_{c \in C} t'(\pi^{-1} c) = 1.
 \]
 Consequently, every \(g \in G\) corresponds to some \((t, \pi)\) with \(\prod t(c) = 1\).
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.
- In particular, \(|N_3| \leq 3^7\).
- This can also be visualized as follows.
Corner orientations (visualized)

Fix an orientation of the corner facelets:
Corner orientations (visualized)

Fix an orientation of the corner facelets:

Every move causes one of the following effects:
Corner orientations (visualized)

- No twists are introduced (move f).

\[
\begin{array}{ccc}
+ & - & \\
U & - & + \\
- & + & + \\
- & 0 & 0 & - & + & 0 & 0 \\
L & F & R & B \\
+ & - & 0 & 0 & + & - & 0 & 0 \\
+ & - & - \\
D & + \\
- & + \\
\end{array}
\]

The sum of all twists is always 0 modulo 3.
Corner orientations (visualized)

- No twists are introduced (move f).
- Two positive twists and two negative-twists are introduced (move r).

The sum of all twists is always 0 modulo 3.
Corner orientations (visualized)

- No twists are introduced (move f).
- Two positive twists and two negative-twists are introduced (move r).
- Three positive twists or three negative twists are introduced (move b).

The sum of all twists is always $0 \mod 3$.

Benjamin Sambale (LUH)
No twists are introduced (move f).

Two positive twists and two negative-twists are introduced (move r).

Three positive twists or three negative twists are introduced (move b).

\[+ - 0 + 0 - + 0 + \]

The sum of all twists is always 0 modulo 3.

\Rightarrow The sum of all twists is always 0 modulo 3.
Corner orientations (realized)

- On the other hand, we can twist just two (adjacent) corners:

\[u^2bu^2b^{-1}lu^2f^{-1}u^2fl^2b^{-1}lb = \] (13 moves)
Corner orientations (realized)

- On the other hand, we can twist just two (adjacent) corners:

\[
u^2 b u^2 b^{-1} u^2 f^{-1} u^2 f l^2 b^{-1} l b = (13 \text{ moves})\]

- This shows \(|N_3| = 3^7 \).
The order of G

We have proved:

Axiom
The order of G

We have proved:

Theorem

An element $(t, \pi, t', \pi') \in (C_3 \wr S_8) \times (C_2 \wr S_{12})$ belongs to G if and only if

\[
\text{sgn}(\pi) = \text{sgn}(\pi'), \quad \prod_{c \in C} t(c) = \prod_{e \in E} t'(e) = 1.
\]

Hence, the index of G in $(C_3 \wr S_8) \times (C_2 \wr S_{12})$ is 12 and

\[
|G| = 2^{27} \cdot 3^{14} \cdot 5^3 \cdot 7^2 \cdot 11 = 43.252.003.274.489.856.000.
\]
The order of G

We have proved:

Theorem

An element $(t, \pi, t', \pi') \in (C_3 \wr S_8) \times (C_2 \wr S_{12})$ belongs to G if and only if

$$\text{sgn}(\pi) = \text{sgn}(\pi'), \quad \prod_{c \in \mathcal{C}} t(c) = \prod_{e \in \mathcal{E}} t'(e) = 1.$$

Hence, the index of G in $(C_3 \wr S_8) \times (C_2 \wr S_{12})$ is 12 and

$$|G| = 2^{27} \cdot 3^{14} \cdot 5^3 \cdot 7^2 \cdot 11 = 43,252,003,274,489,856,000.$$

Interpretation: After taking apart and reassembling the cubies randomly, the cube is “solvable“ in only 1 out of 12 cases.
Consequences

\(G \cong (C_3^7 \times C_2^{11}) \rtimes (A_8 \times A_{12}) \rtimes C_2. \) Composition factors:
\(C_2 \) (12 times), \(C_3 \) (7 times), \(A_8, A_{12}. \)
Consequences

- $G \cong (C_3^7 \times C_2^{11}) \rtimes (A_8 \times A_{12})$ × C_2. Composition factors: C_2 (12 times), C_3 (7 times), A_8, A_{12}.

- $Z(G) = \Phi(G) = \langle s \rangle \cong C_2$ where s is the superflip: (all edges are flipped)
Consequences

- $G \cong (C_3^7 \times C_2^{11}) \rtimes (A_8 \times A_{12}) \rtimes C_2$. Composition factors: C_2 (12 times), C_3 (7 times), A_8, A_{12}.

- $Z(G) = \Phi(G) = \langle s \rangle \cong C_2$ where s is the superflip: (all edges are flipped)

- $|G : G'| = 2$.

$Z(G)$ is the center of the group G, and $\Phi(G)$ is the Frattini subgroup. The superflip is a permutation of the edges that flips all of them simultaneously.
Consequences

- $G \cong (C_3^7 \times C_2^{11}) \rtimes (A_8 \times A_{12}) \rtimes C_2$. Composition factors: C_2 (12 times), C_3 (7 times), A_8, A_{12}.
- $Z(G) = \Phi(G) = \langle s \rangle \cong C_2$ where s is the superflip: (all edges are flipped)
- $|G : G'| = 2$.
- $\exp(G) = 55.440$ (largest element order is 1260).
Consequences

- \(G \cong (C_3^7 \times C_2^{11}) \rtimes (A_8 \times A_{12}) \rtimes C_2 \). Composition factors: \(C_2 \) (12 times), \(C_3 \) (7 times), \(A_8 \), \(A_{12} \).

- \(Z(G) = \Phi(G) = \langle s \rangle \cong C_2 \) where \(s \) is the superflip: (all edges are flipped)

- \(|G : G'| = 2\).

- \(\exp(G) = 55.440 \) (largest element order is 1260).

- A chief series: \(1 \trianglelefteq Z(G) \trianglelefteq N_2 \trianglelefteq N \trianglelefteq G_C \trianglelefteq G' \trianglelefteq G \).
Burnside’s Lemma

- Some states of the cube are symmetric to each other:
Burnside’s Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
Burnside’s Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.

- Applying Burnside’s Lemma with the symmetry group $S_4 \times C_2$ of the cube (in \mathbb{R}^3) yields:

\[901,083,918,813,616\]
Burnside’s Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.

- Applying Burnside’s Lemma with the symmetry group $S_4 \times C_2$ of the cube (in \mathbb{R}^3) yields:

Theorem

Up to symmetries the cube has $901,083,404,981,813,616$ states.
Burnside’s Lemma

- Some states of the cube are symmetric to each other:

- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.

- Applying Burnside’s Lemma with the symmetry group $S_4 \times C_2$ of the cube (in \mathbb{R}^3) yields:

Theorem

Up to symmetries the cube has 901.083.404.981.813.616 states.

Using the “symmetry” $g \leftrightarrow g^{-1}$, we get down to 450.541.810.590.509.978.
An upper bound

Optimal solutions

How many moves are required to solve any given cube state?

Theorem

Some states require at least 18 moves.

Proof.

Let s_n be the number of states that can be reached with exactly n moves. Obviously, $s_0 = 1$ and $s_1 = 3 \cdot 6 = 18$. On the second move, it makes no sense to turn the same face again. This leaves 15 moves.
An upper bound

Optimal solutions
How many moves are required to solve any given cube state?

Theorem
Some states require at least 18 moves.

Proof.
Let s_n be the number of states that can be reached with exactly n moves. Obviously, $s_0 = 1$ and $s_1 = 3 \cdot 6 = 18$.

On the second move, it makes no sense to turn the same face again. This leaves 15 moves.
Optimal solutions

How many moves are required to solve any given cube state?

Theorem

Some states require at least 18 moves.

Proof.

- Let s_n be the number of states that can be reached with exactly n moves.
An upper bound

Optimal solutions
How many moves are required to solve any given cube state?

Theorem
Some states require at least 18 moves.

Proof.
- Let s_n be the number of states that can be reached with exactly n moves.
- Obviously, $s_0 = 1$ and $s_1 = 3 \cdot 6 = 18$.
An upper bound

Optimal solutions
How many moves are required to solve any given cube state?

Theorem
Some states require at least 18 moves.

Proof.
- Let s_n be the number of states that can be reached with exactly n moves.
- Obviously, $s_0 = 1$ and $s_1 = 3 \cdot 6 = 18$.
- On the second move, it makes no sense to turn the same face again. This leaves 15 moves.
An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, \(s_2 = 15s_1 - 9 \cdot 3 = 3^5 \).
An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_2 = 15s_1 - 9 \cdot 3 = 3^5$.
- Now suppose that $n - 1$ moves have been carried out.
An upper bound

Proof (continued).

• If the first two moves turn opposite faces, their order does not matter. Hence, \(s_2 = 15s_1 - 9 \cdot 3 = 3^5 \).

• Now suppose that \(n - 1 \) moves have been carried out.

• If the next two moves turn opposite faces, both should differ from face \(n - 1 \). So we reach at most \(18s_{n-1} \) new states in this case.

\[s_{n+1} \leq 12s_n + 18s_{n-1}. \]

Solving the recurrence yields

\[\sum_{n=0}^{17} s_n < |G|. \]
An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, \(s_2 = 15s_1 - 9 \cdot 3 = 3^5 \).
- Now suppose that \(n - 1 \) moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face \(n - 1 \). So we reach at most \(18s_{n-1} \) new states in this case.
- Otherwise, we reach at most \(12s_n \) new states. Altogether,

\[
s_{n+1} \leq 12s_n + 18s_{n-1}.
\]

Solving the recurrence yields

\[
\sum_{n=0}^{17} s_n < |G|.
\]
An upper bound

Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence, $s_2 = 15s_1 - 9 \cdot 3 = 3^5$.

- Now suppose that $n - 1$ moves have been carried out.

- If the next two moves turn opposite faces, both should differ from face $n - 1$. So we reach at most $18s_{n-1}$ new states in this case.

- Otherwise, we reach at most $12s_n$ new states. Altogether,

$$s_{n+1} \leq 12s_n + 18s_{n-1}.$$

- Solving the recurrence yields $\sum_{n=0}^{17} s_n < |G|$.

God’s number is 20

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.
God’s number is 20

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

Proof.

God’s number is 20

Theorem (Rokicki–Kociemba–Davidson–Dethridge, 2010)

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

Proof.

- Most states require 18 moves and the average is slightly below 18.
God’s number is 20

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

Proof.

- Most states require 18 moves and the average is slightly below 18.
- If only quarter turn moves are allowed, God’s number increases to 26.
Finding an optimal solution is **NP-complete** (2018).
Algorithms

- Finding an optimal solution is NP-complete (2018).
- Korf’s algorithm finds an optimal solution, but can take hours for a single state.

Kociemba’s algorithm finds “short” solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube.htm

There is a zero-knowledge AI algorithm in the spirit of AlphaZero which finds solution with 30 quarter turn moves on average.
Algorithms

- Finding an optimal solution is **NP-complete** (2018).
- **Korf’s algorithm** finds an optimal solution, but can take hours for a single state.
- **Kociemba’s algorithm** finds “short” solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube.htm
Algorithms

- Finding an optimal solution is NP-complete (2018).
- **Korf’s algorithm** finds an optimal solution, but can take hours for a single state.
- **Kociemba’s algorithm** finds “short” solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube.htm
- There is a zero-knowledge AI algorithm in the spirit of AlphaZero which finds solution with 30 quarter turn moves on average.
Human achievements

- There are frequent international speedcubing competitions. Some official world records:
 - Fastest solve: 5.53 s on average!
 - Fewest moves: 21 on average!
 - Blindfold: 59 cubes solved in 59:46 minutes including memorization time!
 - Three cubes solved while juggling them!
Human achievements

- There are frequent international speedcubing competitions.
 Some official world records:
- Fastest solve: 5.53s on average!
Human achievements

- There are frequent international **speedcubing** competitions. Some official world records:
 - Fastest solve: 5.53s on average!
 - Fewest moves: 21 on average!
There are frequent international speedcubing competitions. Some official world records:

- Fastest solve: 5.53s on average!
- Fewest moves: 21 on average!
- Blindfold: 59 cubes solved in 59:46 minutes including memorization time!
Human achievements

- There are frequent international speedcubing competitions. Some official world records:
 - Fastest solve: 5.53s on average!
 - Fewest moves: 21 on average!
 - Blindfold: 59 cubes solved in 59:46 minutes including memorization time!
 - Three cubes solved while juggling them!

Human achievements

- There are frequent international speedcubing competitions.
 Some official world records:
 - Fastest solve: 5.53s on average!
 - Fewest moves: 21 on average!
 - Blindfold: 59 cubes solved in 59:46 minutes including memorization time!
 - Three cubes solved while juggling them!

Variations

Is the following cube any different?

Yes, but not so much harder to solve (→ Christmas exercise!).

Benjamin Sambale (LUH)
Variations

Is the following cube any different?

Yes, but not so much harder to solve (→ Christmas exercise!).
Variations

The invention of $n \times n \times n$-cubes:

<table>
<thead>
<tr>
<th>n</th>
<th>Inventor</th>
<th>Product name</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Larry D. Nichols</td>
<td>Pocket Cube</td>
<td>1970</td>
</tr>
<tr>
<td>3</td>
<td>Ernő Rubik</td>
<td>Rubik’s Cube</td>
<td>1974</td>
</tr>
<tr>
<td>4</td>
<td>Péter Sebestény</td>
<td>Rubik’s Revenge</td>
<td>1981</td>
</tr>
<tr>
<td>5</td>
<td>Udo Krell</td>
<td>Professor’s Cube</td>
<td>1981</td>
</tr>
<tr>
<td>6</td>
<td>Panagiotis Verdes</td>
<td>V-Cube 6</td>
<td>2004</td>
</tr>
</tbody>
</table>
Variations

For $n \geq 7$ there is a fundamental design problem:

$$\sqrt{2}n > n + 2\sqrt{2}$$
Variations

- For $n \geq 7$ there is a fundamental design problem:

$$\sqrt{2} \{ n \} \quad \sqrt{2} \{ \sqrt{2} \} \quad 2\sqrt{2} > n + 2\sqrt{2}$$

- The red square falls off!
For $n \geq 7$ there is a fundamental design problem:

$$\sqrt{2}n > n + 2\sqrt{2}$$

The red square falls off!

Remedy:

V-Cube 9:
ShengShou 9:
Endless other variations

Square-1 Skewb Master Ghost cube Pyraminx
Skewb Diamond Skewb Ultimate Gigaminx Hypercube

With the computer...

Let's use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code

\begin{verbatim}
f:=(6,25,43,16,2,14,32,5,13,31,4,12,30,3,11,29,1,10,28)\;
f:=6\cdot25\cdot43\cdot16
\end{verbatim}

\begin{verbatim}
G:=Group(f,b,l,r,u,d);
\end{verbatim}

\begin{verbatim}
Order(G);
\end{verbatim}

\begin{verbatim}
G=Group(u*l,f*r*b); #returns true
\end{verbatim}

Interpretation: Every state can be solved using only the two sequences \(ul\) and \(frb\) (never turning the down face)!
With the computer...

Let's use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code

\texttt{f:=\langle 6,25,43,16 \rangle \ldots ;}
With the computer...

Lets use the open-source computer algebra system GAP. Rubik’s group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code

```gap
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
```

Interpretation: Every state can be solved using only the two sequences ul and frb (never turning the down face)!
With the computer...

Lets use the open-source computer algebra system GAP. Rubik’s group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code

\[
f := (6,25,43,16) \ldots; \\
G := \text{Group}(f,b,l,r,u,d); \\
\text{Order}(G);
\]
With the computer...

Let's use the open-source computer algebra system GAP. Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code

```gap
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
Order(G);
G=Group(u*l,f*r*b); #returns true
```

Interpretation: Every state can be solved using only the two sequences `ul` and `frb` (never turning the down face)!
With the computer...

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

GAP-Code

\[
f:=(6,25,43,16)\ldots;
\]
\[
G:=\text{Group}(f,b,l,r,u,d);
\]
\[
\text{Order}(G);
\]
\[
G=\text{Group}(u*l,f*r*b); \ #\text{returns true}
\]

Interpretation: Every state can be solved using only the two sequences \(ul\) and \(frb\) (never turning the down face)!
With the computer...

GAP-Code

```gap
orb:=Orbits(G);
```

```gap
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
```
With the computer...

GAP-Code

orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
With the computer...

GAP-Code

orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
With the computer...

GAP-Code

```gap
orb := Orbits(G);
corners := Blocks(G, orb[1]);
edges := Blocks(G, orb[2]);
phiC := ActionHomomorphism(G, corners, OnSets);
phiE := ActionHomomorphism(G, edges, OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE, Kernel(phiC))); #"A12"
ZG := Center(G);
s := ZG.1; #first generator = superflip
```

With the computer...

GAP-Code

\begin{align*}
\text{orb} & := \text{Orbits}(G); \\
\text{corners} & := \text{Blocks}(G, \text{orb}[1]); \\
\text{edges} & := \text{Blocks}(G, \text{orb}[2]); \\
\text{phiC} & := \text{ActionHomomorphism}(G, \text{corners}, \text{OnSets}); \\
\text{phiE} & := \text{ActionHomomorphism}(G, \text{edges}, \text{OnSets});
\end{align*}
With the computer...

GAP-Code

```gap
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
 StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
ZG:=Center(G);
s:=ZG.1; #first generator = superflip
```

With the computer...

GAP-Code

```gap
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
```
With the computer...

GAP-Code

```
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
ZG:=Center(G);
```
With the computer...

GAP-Code

```gap
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE,Kernel(phiC))); #"A12"
ZG:=Center(G);
s:=ZG.1; #first generator = superflip
```
With the computer...

GAP-Code

```gap
FG:=FreeGroup("f","b","l","r","u","d");
```

Satz 8.7
PreImagesRepresentative(hom,s); # solution of the superflip
Length(last); # number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); # how long did it take?
BrowseRubikCube(); # interactive mode
With the computer...

GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); #how long did it take?
BrowseRubikCube(); #interactive mode
With the computer...

GAP-Code

\[
\begin{align*}
\text{FG:=FreeGroup("f","b","l","r","u","d");} \\
\text{hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),} \\
\text{GeneratorsOfGroup(G)); \#Satz 8.7} \\
\text{PreImagesRepresentative(hom,s); \#solution of the superflip}
\end{align*}
\]
With the computer...

GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
GeneratorsOfGroup(G)); #Satz 8.7
PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
With the computer...

GAP-Code

```gap
FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG), GeneratorsOfGroup(G)); # Satz 8.7
PreImagesRepresentative(hom,s); # solution of the superflip
Length(last); # number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
```

Benjamin Sambale (LUH)
With the computer...

GAP-Code

FG := FreeGroup("f","b","l","r","u","d");
hom := GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG), GeneratorsOfGroup(G)); # Satz 8.7
PreImagesRepresentative(hom,s); # solution of the superflip
Length(last); # number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); # how long did it take?
With the computer...

GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
 GeneratorsOfGroup(G)); #Satz 8.7
PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); #how long did it take?
BrowseRubikCube(); #interactive mode
My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a “stickerless speedcube” instead of the original Rubik’s brand.
My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a “stickerless speedcube” instead of the original Rubik’s brand.
- Don’t buy $n \times n \times n$-cubes with $n > 5$ (uninteresting and tedious to solve).
My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a “stickerless speedcube” instead of the original Rubik’s brand.
- Don’t buy $n \times n \times n$-cubes with $n > 5$ (uninteresting and tedious to solve).
- If you can solve the $3 \times 3 \times 3$, consider the Ghost cube as a mental challenge.
My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a “stickerless speedcube” instead of the original Rubik’s brand.
- Don’t buy $n \times n \times n$-cubes with $n > 5$ (uninteresting and tedious to solve).
- If you can solve the $3 \times 3 \times 3$, consider the Ghost cube as a mental challenge.
- Don’t waste too much time with Rubik (as I did preparing these slides).
My personal advise

- The $2 \times 2 \times 2$-cube or the Pyraminx are fair Christmas presents (can even be solved by luck).
- Buy a “stickerless speedcube” instead of the original Rubik’s brand.
- Don’t buy $n \times n \times n$-cubes with $n > 5$ (uninteresting and tedious to solve).
- If you can solve the $3 \times 3 \times 3$, consider the Ghost cube as a mental challenge.
- Don’t waste too much time with Rubik (as I did preparing these slides).

Merry Christmas!