# Rubik's Group My final lecture

Benjamin Sambale

Leibniz Universität Hannover

08.07.2024

• The  $(3 \times 3 \times 3)$  Rubik's cube was invented by E. Rubik in 1974.

- The  $(3 \times 3 \times 3$ -)Rubik's cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by  $90^{\circ}$ ,  $180^{\circ}$  or  $270^{\circ}$ :



- The  $(3 \times 3 \times 3)$  Rubik's cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by  $90^{\circ}$ ,  $180^{\circ}$  or  $270^{\circ}$ :



- The  $(3 \times 3 \times 3)$ -Rubik's cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by  $90^{\circ}$ ,  $180^{\circ}$  or  $270^{\circ}$ :



 We don't need rotations of "middle layers" since this has the same effect as turning the adjacent faces in the opposite direction.

- The  $(3 \times 3 \times 3)$ -Rubik's cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by  $90^{\circ}$ ,  $180^{\circ}$  or  $270^{\circ}$ :



- We don't need rotations of "middle layers" since this has the same effect as turning the adjacent faces in the opposite direction.
- ullet The centers are fixed now (top o white, front o orange,  $\dots$ ).

- The  $(3 \times 3 \times 3)$ -Rubik's cube was invented by E. Rubik in 1974.
- A move is a rotation of one of the six faces by  $90^{\circ}$ ,  $180^{\circ}$  or  $270^{\circ}$ :



- We don't need rotations of "middle layers" since this has the same effect as turning the adjacent faces in the opposite direction.
- The centers are fixed now (top  $\rightarrow$  white, front  $\rightarrow$  orange, ...).

### How "big" is the cube?

How many states can we reach by applying an arbitrary number of moves?

### **Facelets**

• Idea: Enumerate the  $6 \cdot 8 = 48$  edge and corner facelets:



### **Facelets**

• Idea: Enumerate the  $6 \cdot 8 = 48$  edge and corner facelets:



• Every move becomes a permutation in  $S_{48}$ , e.g. a clockwise  $90^\circ$  turn of the front face:

$$f := (6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)(17, 19, 24, 22)(18, 21, 23, 30).$$

• Similarly, we define b (back), l (left), r (right), u (up), d (down).

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$G := \langle f, b, l, r, u, d \rangle \le S_{48}.$$

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$G := \langle f, b, l, r, u, d \rangle \le S_{48}.$$

• Consequence: The cube has at most  $48! \approx 10^{61}$  states. We can do much better.

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$G := \langle f, b, l, r, u, d \rangle \le S_{48}.$$

- Consequence: The cube has at most  $48! \approx 10^{61}$  states. We can do much better.
- Is G transitive on the 48 facelets?

- Similarly, we define b (back), l (left), r (right), u (up), d (down).
- Rubik's group is

$$G := \langle f, b, l, r, u, d \rangle \le S_{48}.$$

- Consequence: The cube has at most  $48! \approx 10^{61}$  states. We can do much better.
- Is G transitive on the 48 facelets?
- No: The  $8\cdot 3=24$  corner facelets and the  $12\cdot 2=24$  edge facelets form orbits  $\Omega_C$  and  $\Omega_E$ .

 $\Omega_C$ :



 $\Omega_E$ :



Hence,

$$G \leq \operatorname{Sym}(\Omega_C) \times \operatorname{Sym}(\Omega_E) \cong S_{24}^2$$

and  $|G| \le (24!)^2 \approx 10^{48}$ .

Hence,

$$G \leq {\rm Sym}(\Omega_C) \times {\rm Sym}(\Omega_E) \cong S_{24}^2$$
 and  $|G| \leq (24!)^2 \approx 10^{48}.$ 

• Is the action of G on  $\Omega_C$  primitive?

Hence,

$$G \leq {\rm Sym}(\Omega_C) \times {\rm Sym}(\Omega_E) \cong S_{24}^2$$
 and  $|G| \leq (24!)^2 \approx 10^{48}.$ 

- Is the action of G on  $\Omega_C$  primitive?
- No: the three facelets of a corner cubie form a block  $\Delta$  in  $\Omega_C$ .

Hence,

$$G \leq \operatorname{Sym}(\Omega_C) \times \operatorname{Sym}(\Omega_E) \cong S_{24}^2$$

and  $|G| \le (24!)^2 \approx 10^{48}$ .

- Is the action of G on  $\Omega_C$  primitive?
- No: the three facelets of a corner cubic form a block  $\Delta$  in  $\Omega_C$ .
- ullet We can permute the three facelets of  $\Delta$  only cyclically:



#### From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf  $\Omega$  mit Block  $\Delta$ . Sei  $H := \{g \in G : g\Delta = \Delta\}$  und sei  $\varphi : H \to \operatorname{Sym}(\Delta)$  die Operation auf  $\Delta$ . Sei  $\Gamma := \{g\Delta : g \in G\}$  und sei  $\psi : G \to \operatorname{Sym}(\Gamma)$  die Operation auf  $\Gamma$ . Dann ist G zu einer Untergruppe von  $\varphi(H) \wr \psi(G)$  isomorph.

#### From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf  $\Omega$  mit Block  $\Delta$ . Sei  $H := \{g \in G : g\Delta = \Delta\}$  und sei  $\varphi : H \to \operatorname{Sym}(\Delta)$  die Operation auf  $\Delta$ . Sei  $\Gamma := \{g\Delta : g \in G\}$  und sei  $\psi : G \to \operatorname{Sym}(\Gamma)$  die Operation auf  $\Gamma$ . Dann ist G zu einer Untergruppe von  $\varphi(H) \wr \psi(G)$  isomorph.

• This gives a homomorphism  $G \to C_3 \wr S_8 \leq S_{24}$ .

#### From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf  $\Omega$  mit Block  $\Delta$ . Sei  $H := \{g \in G : {}^g\Delta = \Delta\}$  und sei  $\varphi : H \to \operatorname{Sym}(\Delta)$  die Operation auf  $\Delta$ . Sei  $\Gamma := \{{}^g\Delta : g \in G\}$  und sei  $\psi : G \to \operatorname{Sym}(\Gamma)$  die Operation auf  $\Gamma$ . Dann ist G zu einer Untergruppe von  $\varphi(H) \wr \psi(G)$  isomorph.

- This gives a homomorphism  $G \to C_3 \wr S_8 \leq S_{24}$ .
- ullet Similarly, the two facelets of an edge cubic form a block of  $\Omega_E$ .

#### From the lecture:

Satz 6.26. Sei G eine imprimitive Permutationsgruppe auf  $\Omega$  mit Block  $\Delta$ . Sei  $H := \{g \in G : g\Delta = \Delta\}$  und sei  $\varphi : H \to \operatorname{Sym}(\Delta)$  die Operation auf  $\Delta$ . Sei  $\Gamma := \{g\Delta : g \in G\}$  und sei  $\psi : G \to \operatorname{Sym}(\Gamma)$  die Operation auf  $\Gamma$ . Dann ist G zu einer Untergruppe von  $\varphi(H) \wr \psi(G)$  isomorph.

- This gives a homomorphism  $G \to C_3 \wr S_8 \leq S_{24}$ .
- ullet Similarly, the two facelets of an edge cubic form a block of  $\Omega_E$ .
- Therefore,

$$G \leq C_3 \wr S_8 \times C_2 \wr S_{12}$$

and  $|G| \le 3^8 8! \cdot 2^{12} 12! \approx 5 \cdot 10^{20}$ .

 $\bullet$  Now we investigate the action of G on the set  ${\mathcal C}$  of the eight corner cubies.

- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.

- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.
- Consider the move sequence  $x := u \circ r \circ f \in G$ .



- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.
- Consider the move sequence  $x := u \circ r \circ f \in G$ .



- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.
- Consider the move sequence  $x := u \circ r \circ f \in G$ .



- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.
- Consider the move sequence  $x := u \circ r \circ f \in G$ .



- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.
- Consider the move sequence  $x := u \circ r \circ f \in G$ .



• With suitable labeling:  $\varphi_C(x) = (1,2)(3,4,5,6,7)$  and  $\varphi_C(x^5) = (1,2)$ .

- Now we investigate the action of G on the set  $\mathcal C$  of the eight corner cubies.
- Let  $\varphi_C: G \to \operatorname{Sym}(\mathcal{C})$  the corresponding homomorphism.
- Consider the move sequence  $x := u \circ r \circ f \in G$ .



- With suitable labeling:  $\varphi_C(x) = (1,2)(3,4,5,6,7)$  and  $\varphi_C(x^5) = (1,2)$ .
- Since  $S_8 = \langle (1,2), \dots, (7,8) \rangle$  (exercise),  $\varphi_C(G) = S_8$ .

• It remains to compute the order of  $G_C := \mathrm{Ker}(\varphi_C)$ .

- It remains to compute the order of  $G_C := \mathrm{Ker}(\varphi_C)$ .
- Let  $\varphi_E:G \to \mathrm{Sym}(\mathcal{E})$  be the action on the set  $\mathcal{E}$  of the 12 edge cubies.

- It remains to compute the order of  $G_C := \mathrm{Ker}(\varphi_C)$ .
- Let  $\varphi_E: G \to \operatorname{Sym}(\mathcal{E})$  be the action on the set  $\mathcal{E}$  of the 12 edge cubies.
- ullet Each of the six generators of G is a 4-cycle on  $\mathcal C$  and on  $\mathcal E.$

- It remains to compute the order of  $G_C := \mathrm{Ker}(\varphi_C)$ .
- Let  $\varphi_E: G \to \operatorname{Sym}(\mathcal{E})$  be the action on the set  $\mathcal{E}$  of the 12 edge cubies.
- ullet Each of the six generators of G is a 4-cycle on  ${\mathcal C}$  and on  ${\mathcal E}.$
- It follows that  $\operatorname{sgn}(\varphi_C(g)) = \operatorname{sgn}(\varphi_E(g))$  for all  $g \in G$ .

- It remains to compute the order of  $G_C := \mathrm{Ker}(\varphi_C)$ .
- Let  $\varphi_E: G \to \operatorname{Sym}(\mathcal{E})$  be the action on the set  $\mathcal{E}$  of the 12 edge cubies.
- ullet Each of the six generators of G is a 4-cycle on  ${\mathcal C}$  and on  ${\mathcal E}.$
- It follows that  $\operatorname{sgn}(\varphi_C(g)) = \operatorname{sgn}(\varphi_E(g))$  for all  $g \in G$ .
- In particular,  $\varphi_E(G_C) \subseteq A_{12}$ .

• Consider the commutator  $y := [f, r] = frf^{-1}r^{-1} \in G$ .

- Consider the commutator  $y := [f, r] = frf^{-1}r^{-1} \in G$ .
- With suitable labeling we compute

$$\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).$$

- Consider the commutator  $y := [f, r] = frf^{-1}r^{-1} \in G$ .
- With suitable labeling we compute

$$\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).$$

• It follows that  $y^2 \in G_C$ .

- Consider the commutator  $y := [f, r] = frf^{-1}r^{-1} \in G$ .
- With suitable labeling we compute

$$\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).$$

- It follows that  $y^2 \in G_C$ .
- Similarly,

$$\varphi_E(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4)$$

and  $(1, 4, 5) = \varphi_E(y^2) \in \varphi_E(G_C)$ .

- Consider the commutator  $y := [f, r] = frf^{-1}r^{-1} \in G$ .
- With suitable labeling we compute

$$\varphi_C(y) = (1, 2, 3, 4)(4, 3, 5, 6)(1, 4, 3, 2)(4, 6, 5, 3) = (1, 4)(3, 5).$$

- It follows that  $y^2 \in G_C$ .
- Similarly,

$$\varphi_E(y) = (1, 2, 3, 4)(4, 5, 6, 7)(1, 4, 3, 2)(4, 7, 6, 5) = (1, 5, 4)$$

and  $(1,4,5) = \varphi_E(y^2) \in \varphi_E(G_C)$ .

• Therefore,  $A_{12} = \langle (1,2,3), \dots, (10,11,12) \rangle \subseteq \varphi_E(G_C) \subseteq A_{12}$ .

• It remains to investigate  $N := \operatorname{Ker}(\varphi_C) \cap \operatorname{Ker}(\varphi_E) \unlhd G$ .

- It remains to investigate  $N := \operatorname{Ker}(\varphi_C) \cap \operatorname{Ker}(\varphi_E) \unlhd G$ .
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).

- It remains to investigate  $N := \operatorname{Ker}(\varphi_C) \cap \operatorname{Ker}(\varphi_E) \unlhd G$ .
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have  $N=N_3\oplus N_2\leq C_3^8\times C_2^{12}$  (in fact:  $\mathrm{F}(G)=N$ ).

- It remains to investigate  $N := \operatorname{Ker}(\varphi_C) \cap \operatorname{Ker}(\varphi_E) \unlhd G$ .
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have  $N=N_3\oplus N_2\leq C_3^8\times C_2^{12}$  (in fact: F(G)=N).
- A generator of G is a product of two disjoint 4-cycles on  $\Omega_E$  and therefore an even permutation.

- It remains to investigate  $N := \operatorname{Ker}(\varphi_C) \cap \operatorname{Ker}(\varphi_E) \unlhd G$ .
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have  $N=N_3\oplus N_2\leq C_3^8\times C_2^{12}$  (in fact: F(G)=N).
- A generator of G is a product of two disjoint 4-cycles on  $\Omega_E$  and therefore an even permutation.
- For this reason it is impossible to flip only one edge and leave everything else fixed.

- It remains to investigate  $N := \operatorname{Ker}(\varphi_C) \cap \operatorname{Ker}(\varphi_E) \unlhd G$ .
- This is the set of states where each cubie is in the right spot, but might be flipped (edge) or twisted (corner).
- We have  $N=N_3\oplus N_2\leq C_3^8\times C_2^{12}$  (in fact: F(G)=N).
- A generator of G is a product of two disjoint 4-cycles on  $\Omega_E$  and therefore an even permutation.
- For this reason it is impossible to flip only one edge and leave everything else fixed.
- Hence,  $|N_2| \le 2^{11}$ .

• On the other hand, we can flip just two (adjacent) edges:

$$r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b =$$
 (13 moves)

• On the other hand, we can flip just two (adjacent) edges:

$$r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b =$$
 (13 moves)

• These "2-flips" generate all states with an even number of flips.

• On the other hand, we can flip just two (adjacent) edges:

$$r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b =$$
 (13 moves)

- These "2-flips" generate all states with an even number of flips.
- This shows  $|N_2| = 2^{11}$ .

• On the other hand, we can flip just two (adjacent) edges:

$$r^2 f^2 r^{-1} f r f r^2 b^{-1} u^{-1} f^{-1} u f b =$$
 (13 moves)

- These "2-flips" generate all states with an even number of flips.
- This shows  $|N_2| = 2^{11}$ .
- The group  $N_2 \rtimes S_{12} \leq G$  is the reflection group with Dynkin diagram  $D_{12}$ .

• Let  $g \in G$  be a generator corresponding to

$$(t,\pi) \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C}) \cong C_3 \wr S_8.$$

• Let  $g \in G$  be a generator corresponding to

$$(t,\pi) \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C}) \cong C_3 \wr S_8.$$

 $\bullet$  Since g has order 4, we obtain

$$1 = (t, \pi)^4 = (t \cdot {}^{\pi}t, \pi^2) * (t, \pi) * (t, \pi) = (t \cdot {}^{\pi}t \cdot {}^{\pi^2}t, \pi^3) * (t, \pi)$$
$$= (t \cdot {}^{\pi}t \cdot {}^{\pi^2}t \cdot {}^{\pi^3}t, \pi^4).$$

ullet Let  $g \in G$  be a generator corresponding to

$$(t,\pi) \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C}) \cong C_3 \wr S_8.$$

ullet Since g has order 4, we obtain

$$1 = (t, \pi)^4 = (t \cdot {}^{\pi}t, \pi^2) * (t, \pi) * (t, \pi) = (t \cdot {}^{\pi}t \cdot {}^{\pi^2}t, \pi^3) * (t, \pi)$$
$$= (t \cdot {}^{\pi}t \cdot {}^{\pi^2}t \cdot {}^{\pi^3}t, \pi^4).$$

In particular,

$$\begin{split} 1 &= \prod_{c \in \mathcal{C}} (t^{\pi}t^{\pi^2}t^{\pi^3}t)(c) = \prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t(^{\pi^{-1}}c) \prod_{c \in \mathcal{C}} t(^{\pi^{-2}}c) \prod_{c \in \mathcal{C}} t(^{\pi^{-3}}c) \\ &= \left(\prod_{c \in \mathcal{C}} t(c)\right)^4 = \prod_{c \in \mathcal{C}} t(c). \end{split}$$

• If  $(t,\pi), (t',\pi') \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$  such that  $\prod t(c) = \prod t'(c) = 1$ , then also

$$\prod_{c \in \mathcal{C}} (t \cdot {}^\pi t')(c) = \prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t'({}^{\pi^{-1}}c) = 1.$$

• If  $(t,\pi), (t',\pi') \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \operatorname{Sym}(\mathcal{C})$  such that  $\prod t(c) = \prod t'(c) = 1$ , then also

$$\prod_{c \in \mathcal{C}} (t \cdot {^\pi}t')(c) = \prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t'({^{\pi^{-1}}c}) = 1.$$

ullet Consequently, every  $g\in G$  corresponds to some  $(t,\pi)$  with  $\prod t(c)=1$ .

• If  $(t,\pi), (t',\pi') \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \mathrm{Sym}(\mathcal{C})$  such that  $\prod t(c) = \prod t'(c) = 1$ , then also

$$\prod_{c \in \mathcal{C}} (t \cdot {}^{\pi}t')(c) = \prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t'({}^{\pi^{-1}}c) = 1.$$

- ullet Consequently, every  $g\in G$  corresponds to some  $(t,\pi)$  with  $\prod t(c)=1$ .
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.

• If  $(t,\pi), (t',\pi') \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \mathrm{Sym}(\mathcal{C})$  such that  $\prod t(c) = \prod t'(c) = 1$ , then also

$$\prod_{c \in \mathcal{C}} (t \cdot {}^{\pi}t')(c) = \prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t'({}^{\pi^{-1}}c) = 1.$$

- $\bullet$  Consequently, every  $g \in G$  corresponds to some  $(t,\pi)$  with  $\prod t(c) = 1.$
- Interpretation: It is impossible to twist a single corner cubie without changing the rest.
- In particular,  $|N_3| \leq 3^7$ .

• If  $(t,\pi), (t',\pi') \in \langle \zeta \rangle^{\mathcal{C}} \rtimes \mathrm{Sym}(\mathcal{C})$  such that  $\prod t(c) = \prod t'(c) = 1$ , then also

$$\prod_{c \in \mathcal{C}} (t \cdot {}^{\pi}t')(c) = \prod_{c \in \mathcal{C}} t(c) \prod_{c \in \mathcal{C}} t'({}^{\pi^{-1}}c) = 1.$$

- Consequently, every  $g \in G$  corresponds to some  $(t,\pi)$  with  $\prod t(c) = 1$ .
- Interpretation: It is impossible to twist a single corner cubic without changing the rest.
- In particular,  $|N_3| \leq 3^7$ .
- This can also be visualized as follows.

Fix an orientation of the corner facelets:



Fix an orientation of the corner facelets:



Every move causes one of the following effects:

▶ No twists are introduced (move *f*).



- ▶ No twists are introduced (move *f*).
- ightharpoonup Two positive twists and two negative-twists are introduced (move r).



- No twists are introduced (move f).
- ightharpoonup Two positive twists and two negative-twists are introduced (move r).
- ightharpoonup Three positive twists or three negative twists are introduced (move b).



- No twists are introduced (move f).
- ightharpoonup Two positive twists and two negative-twists are introduced (move r).
- ightharpoonup Three positive twists or three negative twists are introduced (move b).



 $\Longrightarrow$  The sum of all twists is always 0 modulo 3.

• On the other hand, we can twist just two (adjacent) corners:

$$u^2bu^2b^{-1}lu^2f^{-1}u^2fl^2b^{-1}lb =$$
 (13 moves)

• On the other hand, we can twist just two (adjacent) corners:

$$u^2bu^2b^{-1}lu^2f^{-1}u^2fl^2b^{-1}lb =$$
 (13 moves)

• This shows  $|N_3| = 3^7$ .

#### The order of G

We have proved:

#### The order of G

We have proved:

#### **Theorem**

An element  $(t, \pi, t', \pi') \in (C_3 \wr S_8) \times (C_2 \wr S_{12})$  belongs to G if and only if

$$\operatorname{sgn}(\pi) = \operatorname{sgn}(\pi'), \qquad \prod_{c \in \mathcal{C}} t(c) = \prod_{e \in \mathcal{E}} t'(e) = 1.$$

Hence, the index of G in  $(C_3 \wr S_8) \times (C_2 \wr S_{12})$  is 12 and

$$|G| = 2^{27} \cdot 3^{14} \cdot 5^3 \cdot 7^2 \cdot 11 = 43.252.003.274.489.856.000.$$

#### The order of G

We have proved:

#### **Theorem**

An element  $(t, \pi, t', \pi') \in (C_3 \wr S_8) \times (C_2 \wr S_{12})$  belongs to G if and only if

$$\operatorname{sgn}(\pi) = \operatorname{sgn}(\pi'), \qquad \prod_{c \in \mathcal{C}} t(c) = \prod_{e \in \mathcal{E}} t'(e) = 1.$$

Hence, the index of G in  $(C_3 \wr S_8) \times (C_2 \wr S_{12})$  is 12 and

$$|G| = 2^{27} \cdot 3^{14} \cdot 5^3 \cdot 7^2 \cdot 11 = 43.252.003.274.489.856.000.$$

Interpretation: After taking apart and reassembling the cubies randomly, the cube is "solvable" in only 1 out of 12 cases.

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

#### Consequences

•  $G \cong (C_3^7 \times C_2^{11}) \rtimes (A_8 \times A_{12}) \rtimes C_2$ . Composition factors:  $C_2$  (12 times),  $C_3$  (7 times),  $C_3$  (7 times),  $C_4$  (12 times),  $C_5$  (7 times),  $C_7$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (13 times),  $C_8$  (14 times),  $C_8$  (15 times),  $C_8$  (15 times),  $C_8$  (17 times),  $C_8$  (17 times),  $C_8$  (18 times),  $C_8$  (19 time

#### Consequences

- $G\cong (C_3^7\times C_2^{11})\rtimes (A_8\times A_{12})\rtimes C_2$ . Composition factors:  $C_2$  (12 times),  $C_3$  (7 times),  $C_3$  (7 times),  $C_4$  (12 times),  $C_5$  (7 times),  $C_7$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (13 times),  $C_8$  (14 times),  $C_8$  (15 times),  $C_8$  (17 times),  $C_8$  (17 times),  $C_8$  (18 times),  $C_8$  (19 times),
- $\operatorname{Z}(G) = \Phi(G) = \langle s \rangle \cong C_2$  where s is the superflip: (all edges are flipped)



# Consequences

•  $G\cong (C_3^7\times C_2^{11})\rtimes (A_8\times A_{12})\rtimes C_2$ . Composition factors:  $C_2$  (12 times),  $C_3$  (7 times),  $C_3$  (7 times),  $C_4$  (12 times),  $C_5$  (7 times),  $C_7$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (13 times),  $C_8$  (14 times),  $C_8$  (15 times),  $C_8$  (17 times),  $C_8$  (17 times),  $C_8$  (18 times),  $C_8$  (19 times)





• |G:G'|=2.

# Consequences

- $G\cong (C_3^7\times C_2^{11})\rtimes (A_8\times A_{12})\rtimes C_2$ . Composition factors:  $C_2$  (12 times),  $C_3$  (7 times),  $C_3$  (7 times),  $C_4$  (12 times),  $C_5$  (7 times),  $C_7$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (13 times),  $C_8$  (14 times),  $C_8$  (15 times),  $C_8$  (17 times),  $C_8$  (17 times),  $C_8$  (18 times),  $C_8$  (19 times)
- $\operatorname{Z}(G) = \Phi(G) = \langle s \rangle \cong C_2$  where s is the superflip: (all edges are flipped)



- |G:G'|=2.
- $\exp(G) = 55.440$  (largest element order is 1260).

# Consequences

- $G\cong (C_3^7\times C_2^{11})\rtimes (A_8\times A_{12})\rtimes C_2$ . Composition factors:  $C_2$  (12 times),  $C_3$  (7 times),  $C_3$  (7 times),  $C_4$  (12 times),  $C_5$  (7 times),  $C_7$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (12 times),  $C_8$  (13 times),  $C_8$  (14 times),  $C_8$  (15 times),  $C_8$  (15 times),  $C_8$  (17 times),  $C_8$  (17 times),  $C_8$  (17 times),  $C_8$  (18 times),  $C_8$  (19 times)
- $\operatorname{Z}(G) = \Phi(G) = \langle s \rangle \cong C_2$  where s is the superflip: (all edges are flipped)



- |G:G'|=2.
- $\exp(G) = 55.440$  (largest element order is 1260).
- A chief series:  $1 \unlhd \operatorname{Z}(G) \unlhd N_2 \unlhd N \unlhd G_C \unlhd G' \unlhd G$ .

• Some states of the cube are symmetric to each other:







Some states of the cube are symmetric to each other:



ullet A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.

Some states of the cube are symmetric to each other:



- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
- Applying Burnside's Lemma with the symmetry group  $S_4 \times C_2$  of the cube (in  $\mathbb{R}^3$ ) yields:

Some states of the cube are symmetric to each other:



- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
- Applying Burnside's Lemma with the symmetry group  $S_4 \times C_2$  of the cube (in  $\mathbb{R}^3$ ) yields:

#### Theorem

*Up to symmetries the cube has* 901.083.404.981.813.616 *states.* 

Some states of the cube are symmetric to each other:



- A solution (with n moves) of one state can be transformed into a solution (with n moves) of any symmetric state.
- Applying Burnside's Lemma with the symmetry group  $S_4 \times C_2$  of the cube (in  $\mathbb{R}^3$ ) yields:

#### **Theorem**

*Up to symmetries the cube has* 901.083.404.981.813.616 *states.* 

Using the "symmetry"  $g \leftrightarrow g^{-1}$ , we get down to 450.541.810.590.509.978.

### Optimal solutions

How many moves are required to solve any given cube state?

### Optimal solutions

How many moves are required to solve any given cube state?

#### Theorem

Some states require at least 18 moves.

#### Optimal solutions

How many moves are required to solve any given cube state?

#### Theorem

Some states require at least 18 moves.

#### Proof.

ullet Let  $s_n$  be the number of states that can be reached with exactly n moves.

#### Optimal solutions

How many moves are required to solve any given cube state?

#### Theorem

Some states require at least 18 moves.

#### Proof.

- Let  $s_n$  be the number of states that can be reached with exactly n moves.
- Obviously,  $s_0 = 1$  and  $s_1 = 3 \cdot 6 = 18$ .

#### Optimal solutions

How many moves are required to solve any given cube state?

#### **Theorem**

Some states require at least 18 moves.

#### Proof.

- Let  $s_n$  be the number of states that can be reached with exactly n moves.
- Obviously,  $s_0 = 1$  and  $s_1 = 3 \cdot 6 = 18$ .
- ullet On the second move, it makes no sense to turn the same face again. This leaves 15 moves.

### Proof (continued).

• If the first two moves turn opposite faces, their order does not matter. Hence,  $s_2=15s_1-9\cdot 3=3^5.$ 

### Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence,  $s_2=15s_1-9\cdot 3=3^5$ .
- ullet Now suppose that n-1 moves have been carried out.

### Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence,  $s_2=15s_1-9\cdot 3=3^5.$
- Now suppose that n-1 moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face n-1. So we reach at most  $18s_{n-1}$  new states in this case.

### Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence,  $s_2=15s_1-9\cdot 3=3^5$ .
- Now suppose that n-1 moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face n-1. So we reach at most  $18s_{n-1}$  new states in this case.
- ullet Otherwise, we reach at most  $12s_n$  new states. Altogether,

$$s_{n+1} \le 12s_n + 18s_{n-1}.$$

### Proof (continued).

- If the first two moves turn opposite faces, their order does not matter. Hence,  $s_2=15s_1-9\cdot 3=3^5$ .
- Now suppose that n-1 moves have been carried out.
- If the next two moves turn opposite faces, both should differ from face n-1. So we reach at most  $18s_{n-1}$  new states in this case.
- Otherwise, we reach at most  $12s_n$  new states. Altogether,

$$s_{n+1} \le 12s_n + 18s_{n-1}.$$

• Solving the recurrence yields  $\sum_{n=0}^{17} s_n < |G|$ .



### Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

### Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

#### Proof.

Sponsored by Google. More info at https://www.cube20.org.

### Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

#### Proof.

Sponsored by Google. More info at https://www.cube20.org.

ullet Most states require 18 moves and the average is slightly below 18.

### Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2010)

Every state of the cube can be solved with at most 20 moves and the superflip cannot be solved with less than 20 moves.

#### Proof.

Sponsored by Google. More info at https://www.cube20.org.

- Most states require 18 moves and the average is slightly below 18.
- ullet If only quarter turn moves are allowed, God's number increases to 26.

• Finding an optimal solution is NP-complete (2018).

- Finding an optimal solution is NP-complete (2018).
- Korf's algorithm finds an optimal solution, but can take hours for a single state.

- Finding an optimal solution is NP-complete (2018).
- Korf's algorithm finds an optimal solution, but can take hours for a single state.
- Kociemba's algorithm finds "short" solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube.htm

- Finding an optimal solution is NP-complete (2018).
- Korf's algorithm finds an optimal solution, but can take hours for a single state.
- Kociemba's algorithm finds "short" solutions (less than 20 moves on average) within seconds. Implementation: http://kociemba.org/cube.htm
- There is a zero-knowledge AI algorithm in the spirit of AlphaZero which finds solution with 30 quarter turn moves on average.

• Easy: Solve the bottom layer intuitively.

- Easy: Solve the bottom layer intuitively.
- Intermediate: Find a way to solve the middle layer (four edges must be put in place).

- Easy: Solve the bottom layer intuitively.
- Intermediate: Find a way to solve the middle layer (four edges must be put in place).
- You end up with:



• For the top layer use the following general strategy:

- For the top layer use the following general strategy:
  - ▶ Find a move sequence s, which permutes the cubies of the top layer among themselves. It may scramble the bottom and middle layers.

- For the top layer use the following general strategy:
  - ▶ Find a move sequence s, which permutes the cubies of the top layer among themselves. It may scramble the bottom and middle layers.
  - lacktriangle Apply the commutator [s,u]. This will leave the bottom and middle layers in place.

- For the top layer use the following general strategy:
  - ▶ Find a move sequence s, which permutes the cubies of the top layer among themselves. It may scramble the bottom and middle layers.
  - lacktriangle Apply the commutator [s,u]. This will leave the bottom and middle layers in place.
- ullet Choose s to perform one of the following: interchange edges, flip edges, interchange corners etc. Repeat the procedure in each case.

- For the top layer use the following general strategy:
  - ▶ Find a move sequence s, which permutes the cubies of the top layer among themselves. It may scramble the bottom and middle layers.
  - lacktriangle Apply the commutator [s,u]. This will leave the bottom and middle layers in place.
- ullet Choose s to perform one of the following: interchange edges, flip edges, interchange corners etc. Repeat the procedure in each case.
- ullet Commutators are even permutation. This is not a problem since you may apply u as needed.

- For the top layer use the following general strategy:
  - ▶ Find a move sequence s, which permutes the cubies of the top layer among themselves. It may scramble the bottom and middle layers.
  - lacktriangle Apply the commutator [s,u]. This will leave the bottom and middle layers in place.
- ullet Choose s to perform one of the following: interchange edges, flip edges, interchange corners etc. Repeat the procedure in each case.
- $\bullet$  Commutators are even permutation. This is not a problem since you may apply u as needed.
- ullet Tip: Write down s and  $s^{-1}$  on paper! If you mess up [s,u], you have to start from the very beginning.

#### Human achievements

• There are frequent international speedcubing competitions. Some official world records as of July 2024:

#### Human achievements

- There are frequent international speedcubing competitions. Some official world records as of July 2024:
- Fastest solve: 4.48s on average!

- There are frequent international speedcubing competitions. Some official world records as of July 2024:
- Fastest solve: 4.48s on average!
- Fewest moves: 20 on average!

- There are frequent international speedcubing competitions.
   Some official world records as of July 2024:
- Fastest solve: 4.48s on average!
- Fewest moves: 20 on average!
- Blindfold: 62 cubes solved in 57:47 minutes including memorization time!

- There are frequent international speedcubing competitions.
   Some official world records as of July 2024:
- Fastest solve: 4.48s on average!
- Fewest moves: 20 on average!
- Blindfold: 62 cubes solved in 57:47 minutes including memorization time!
- Three cubes solved while juggling them!

- There are frequent international speedcubing competitions.
   Some official world records as of July 2024:
- Fastest solve: 4.48s on average!
- Fewest moves: 20 on average!
- Blindfold: 62 cubes solved in 57:47 minutes including memorization time!
- Three cubes solved while juggling them!

Visit: https://www.worldcubeassociation.org, www.speedsolving.com

Is the following cube any different?



Is the following cube any different?



Answer: Yes.

• The six face centers now provide four possible orientations.

- The six face centers now provide four possible orientations.
- As these are independent from the remaining permutations, the new group  $\hat{G}$  embeds into  $G \times C_4^6$ .

- The six face centers now provide four possible orientations.
- As these are independent from the remaining permutations, the new group  $\hat{G}$  embeds into  $G \times C_4^6$ .
- Write  $\hat{g} := (g, \epsilon_u, \epsilon_f, \dots, \epsilon_d) \in \hat{G}$  with  $\epsilon_* \in \langle \zeta \rangle \cong C_4$ .

- The six face centers now provide four possible orientations.
- As these are independent from the remaining permutations, the new group  $\hat{G}$  embeds into  $G \times C_4^6$ .
- Write  $\hat{g} := (g, \epsilon_u, \epsilon_f, \dots, \epsilon_d) \in \hat{G}$  with  $\epsilon_* \in \langle \zeta \rangle \cong C_4$ .
- If g=1, then  $\epsilon_u \dots \epsilon_d \in \langle \zeta^2 \rangle$ , because  $\hat{g}$  requires an even number of  $90^{\circ}$ -rotations.

- The six face centers now provide four possible orientations.
- As these are independent from the remaining permutations, the new group  $\hat{G}$  embeds into  $G \times C_4^6$ .
- Write  $\hat{g} := (g, \epsilon_u, \epsilon_f, \dots, \epsilon_d) \in \hat{G}$  with  $\epsilon_* \in \langle \zeta \rangle \cong C_4$ .
- If g=1, then  $\epsilon_u \dots \epsilon_d \in \langle \zeta^2 \rangle$ , because  $\hat{g}$  requires an even number of  $90^\circ$ -rotations.
- ullet On the other hand,  $(uf)^{105}=(1_G,\zeta,\zeta,1,\ldots,1)\in \hat{G}.$  Hence,

$$|\hat{G}| = 2^{11}|G| = 88.580.102.706.155.225.088.000.$$

#### The invention of $n \times n \times n$ -cubes:

| $\overline{n}$ | Inventor          | Product name     | Year |
|----------------|-------------------|------------------|------|
| 2              | Larry D. Nichols  | Pocket Cube      | 1970 |
| 3              | Ernő Rubik        | Rubik's Cube     | 1974 |
| 4              | Péter Sebestény   | Rubik's Revence  | 1981 |
| 5              | Udo Krell         | Professor's Cube | 1981 |
| 6              | Panagiotis Verdes | V-Cube 6         | 2004 |

• For  $n \ge 7$  there is a fundamental design problem:



• For  $n \ge 7$  there is a fundamental design problem:



The red square falls off!

• For  $n \ge 7$  there is a fundamental design problem:



- The red square falls off!
- Remedy:





ShengShou 9:



#### Endless other variations



Visit: www.thecubicle.com, ruwix.com, mastercubestore.de

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code f:=(6,25,43,16)...;
```

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,1,r,u,d);
```

Lets use the open-source computer algebra system GAP.
Rubik's group can be copied from
http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,l,r,u,d);
Order(G);
```

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,1,r,u,d);
Order(G);
G=Group(u*1,f*r*b); #returns true
```

Lets use the open-source computer algebra system GAP. Rubik's group can be copied from

http://www.gap-system.org/Doc/Examples/rubik.html

```
GAP-Code
f:=(6,25,43,16)...;
G:=Group(f,b,1,r,u,d);
Order(G);
G=Group(u*1,f*r*b); #returns true
```

Interpretation: Every state can be solved using only the two sequences  $\it ul$  and  $\it frb$  (never turning the down face)!

```
GAP-Code
orb:=Orbits(G);
```

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
```

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
```

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
```

```
GAP-Code
orb:=Orbits(G);
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
```

```
GAP-Code
orb:=Orbits(G):
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
```

```
GAP-Code
orb:=Orbits(G):
corners:=Blocks(G.orb[1]):
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE, Kernel(phiC))); #"A12"
```

```
GAP-Code
orb:=Orbits(G):
corners:=Blocks(G.orb[1]):
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE, Kernel(phiC))); #"A12"
ZG:=Center(G);
```

```
GAP-Code
orb:=Orbits(G):
corners:=Blocks(G,orb[1]);
edges:=Blocks(G,orb[2]);
phiC:=ActionHomomorphism(G,corners,OnSets);
phiE:=ActionHomomorphism(G,edges,OnSets);
StructureDescription(Image(phiC)); #returns "S8"
StructureDescription(Image(phiE, Kernel(phiC))); #"A12"
ZG:=Center(G);
s:=ZG.1; #first generator = superflip
```

```
GAP-Code
FG:=FreeGroup("f","b","l","r","u","d");
```

#### **GAP-Code**

```
FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7
```

#### **GAP-Code**

```
FG:=FreeGroup("f","b","l","r","u","d");
```

 $\verb|hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),GeneratorsOfGroup(FG),Gene$ 

GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip

```
GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
```

```
GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves

PreImagesRepresentative(hom,Random(G));
```

```
GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves

PreImagesRepresentative(hom,Random(G));

StringTime(time); #how long did it take?
```

```
GAP-Code

FG:=FreeGroup("f","b","l","r","u","d");
hom:=GroupHomomorphismByImages(FG,G,GeneratorsOfGroup(FG),
    GeneratorsOfGroup(G)); #Satz 8.7

PreImagesRepresentative(hom,s); #solution of the superflip
Length(last); #number of quarter turn moves
PreImagesRepresentative(hom,Random(G));
StringTime(time); #how long did it take?
BrowseRubikCube(); #interactive mode
```

• The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).

- The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.

- The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy  $n \times n \times n$ -cubes with n > 5 (just tedious to solve).

- The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy  $n \times n \times n$ -cubes with n > 5 (just tedious to solve).
- If you can solve the  $3 \times 3 \times 3$ , consider the Ghost cube as a mental challenge.

- The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy  $n \times n \times n$ -cubes with n > 5 (just tedious to solve).
- If you can solve the  $3 \times 3 \times 3$ , consider the Ghost cube as a mental challenge.
- The Puppet cube (V1) is one of the hardest puzzles with a simple design (it resists group theory).

- The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy  $n \times n \times n$ -cubes with n > 5 (just tedious to solve).
- If you can solve the  $3 \times 3 \times 3$ , consider the Ghost cube as a mental challenge.
- The Puppet cube (V1) is one of the hardest puzzles with a simple design (it resists group theory).
- Don't waste too much time with Rubik (as I did preparing these slides).

- The  $2 \times 2 \times 2$ -cube or the Pyraminx are fair (Christmas) presents (can even be solved by luck).
- Buy a "stickerless speedcube" instead of the original Rubik's brand.
- Don't buy  $n \times n \times n$ -cubes with n > 5 (just tedious to solve).
- If you can solve the  $3 \times 3 \times 3$ , consider the Ghost cube as a mental challenge.
- The Puppet cube (V1) is one of the hardest puzzles with a simple design (it resists group theory).
- Don't waste too much time with Rubik (as I did preparing these slides).

#### Happy semester break!