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1 Ordinary characters

A partition of n ∈ N0 is a sequence λ = (λi)i∈N of non-negative integers such that λ1 ≥ λ2 ≥ . . . and
|λ| :=

∑
i∈N λi = n. The non-zero λi are called parts of λ, while the λi = 0 are usually omitted. The

number of parts is called the length of λ. Every partition λ can be visualized with a Young diagram
with λi boxes in the i-th row. By “transposing” the Young diagram (i. e. reflecting on the diagonal)
we obtain the Young diagram of the conjugate partition λ′ = (λ′i) with λ′i := |{j : λj ≥ i}| for i ∈ N.
Obviously, λ′′ = λ. We call λ symmetric if λ′ = λ. A Young tableau (of λ) is a Young diagram (of
λ) where every box contains exactly one of the numbers 1, . . . , n and the numbers in each row are
increasingly ordered.

Example 1. Let λ = (4, 2, 2, 1) = (4, 22, 1) be a partition of n = 9. Then the Young diagram of λ, a
Young tableau and the conjugate Young diagram are given by:

2 3 6 7
1 8
5 9
4

Every conjugacy class of the symmetric group Sn consists of the elements with a common cycle type.
Therefore, the conjugacy classes of Sn can be identified with the partitions of n and sgn(λ) = (−1)n−l

makes sense for partitions λ = (λ1, . . . , λl) of n. The Young tableaux of λ are in one-to-one correspon-
dence with the (ordered) partitions Y = (Y1, Y2, . . .) of the set {1, . . . , n} such that |Yi| = λi for i ∈ N.
Hence, Sn acts transitively on the set of Young tableaux of λ via gY = (gYi) for g ∈ Sn. The stabilizer
of Y is the Young subgroup SY :=

∏
Sym(Yi) ≤ Sn and the permutation character is ψλ := (1SY

)Sn .
The characters ψλ and sgnψλ′ (where sgn is the sign character) have exactly one irreducible constituent
χλ. Then χλ′ = sgnχλ and

Irr(Sn) = {χλ : λ partition of n}.

Example 2. We have ψ(n) = 1Sn = χ(n) and χ(1n) = χ(n)′ = sgn. The Young tableaux of (n − 1, 1)
can be identified with the numbers 1, . . . , n. Hence, ψ(n−1,1) is the natural (2-transitive) permutation
character of Sn and χ(n−1,1) = ψ(n−1,1) − 1Sn for n ≥ 2.

Let λ and µ be partitions of n. If g ∈ Sn has type µ, then ψλ(g) is the number of ways to distribute
the parts of µ onto the parts of λ.
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Example 3. For λ = (5, 4) and µ = (3, 22, 12), we obtain ψλ(g) = 5 as follows:

Starting with ψ(n) = χ(n) = 1Sn , one can compute Irr(Sn) recursively via

χλ = ψλ −
∑
µ>λ

[ψλ, χµ]χµ = ψλ − 1Sn −
∑

(n)>µ>λ

[ψλ, χµ]χµ

where > denotes the lexicographical order. In fact, χµ can only occur in ψλ if µ⊵ λ, i. e.

s∑
i=1

µi ≥
s∑

i=1

λi (s = 1, 2, . . .)

(dominance order).

The hook hij(λ) = hij of a box (i, j) of the Young diagram Y of a partition λ is the union of the boxes
(i, j), (i, j + 1), . . . and the boxes (i+ 1, j), (i+ 2, j), . . . . Then |hij | = λi + λ′j − i− j + 1 is the hook
length and the hook length formula holds

χλ(1) =
n!∏

(i,j) box of Y
|hij |

.

Let tk be the number of k-cycles of some g ∈ Sn. Frobenius’ character formula states that χλ(g) is the
coefficient of Xh11

1 Xh21
2 . . . in the polynomial∏

i<j

(Xi −Xj)
∏
k≥1

(Xk
1 +Xk

2 + . . .)tk .

Let lij := λ′j − i (resp. aij := λi − j) be the leg length (resp. arm length). Removing hij from Y yields
a Young diagram of a partition λ \hij of n−|hij |. Equivalently, one can remove the corresponding rim
hook.

Example 4. A Young diagram filled with hook lengths, the hook h11 and its rim hook:

7 5 2 1
4 2
3 1
1

Next, let g ∈ Sn of type µ and let h ∈ Sn−µk
be of type (µ1, . . . , µk−1, µk+1, . . .). Let Y be the Young

tableau of λ. Then the Murnaghan-Nakayama formula states that

χλ(g) =
∑

(i,j) box of Y
|hij |=µk

(−1)lijχλ\hij
(h).

The special case µk = 1 is called branching rule

(χλ)Sn−1 =
∑

(i,j) box of Y
|hij |=1

χλ\hij
.
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2 Specht modules

Let T1, . . . , Tk be the Young tableaux of a given partition λ of n. Note that k = n!∏
λi!

. The Q-vector
space M with basis T1, . . . , Tk is the QSn-permutation module with character ψλ as defined above.
Let Y ′

i be the set partition of {1, . . . , n} corresponding to the conjugate tableau T ′
i of λ′. The Specht

module Sλ associated with λ is the submodule of M generated by the elements

ti :=
∑

π∈SY ′
i

sgn(π)πTi (i = 1, . . . , k)

(it is easy to see that πTi ̸= σTi for π ̸= σ). It turns out that Sλ is simple with character χλ. In
particular, all irreducible characters of Sn can be realized over Z. Therefore, the Frobenius-Schur
indicators are always 1. A basis of Sλ is given by those ti such that Ti is standard, i. e. also the columns
of Ti are increasingly ordered. Thus, the hook formula also counts the number of standard Young
tableaux of λ.

3 Blocks

Let p be a prime. A p-hook is a hook of length p. Starting from a partition λ we can successively
remove all p-hooks from the corresponding Young diagram to obtain the p-core which is a partition
of n − wp where w is the weight of λ (this does not depend on the way the hooks are removed).
Characters χλ, χµ ∈ Irr(Sn) lie in the same p-block if and only if they have the same p-core (Nakayama’s
conjecture). In this way, the p-blocks of Sn can be labeled by p-cores. The weight of a block B is the
weight of any λ with χλ ∈ Irr(B). Note that conjugate characters (and blocks) have conjugate cores.
The principal block containing 1Sn = χ(n) corresponds to the core (r) where r ∈ {0, . . . , p − 1} such
that n ≡ r (mod p). The blocks of weight 0 contain only one irreducible character χλ where λ is a
core. By the hook formula, |Sn|p = χλ(1)p. Hence, these are the blocks of p-defect 0. Ono proved
that p-defect 0 characters exist for all n and p ≥ 5. Note that the 2-cores are the staircase partitions
(k, k−1, . . . , 1). In particular, Sn has at most one 2-block of weight w and in that case n−2w =

(
k+1
2

)
is a triangular number.

In general, the fusion system of a p-block B of weight w is the fusion system of Spw with respect to its
Sylow p-subgroup P of order pw+⌊w/p⌋+... (Legendre’s formula). In particular, P is a defect group of B.
If w =

∑
aip

i−1 is the p-adic expansion (i. e. 0 ≤ ai . . . < p), then P ∼=
∏
P ai
i where Pi := Cp ≀ . . . ≀ Cp

(i copies). Moreover, B is splendid derived equivalent to the principal block of Swp and

k(B) := |Irr(B)| =
∑

(w1,...,wp)∈Np
0∑

wi=w

π(w1) . . . π(wp)

where π(m) is the number of partitions of m ∈ N0. Obviously, P is abelian if and only if w < p and in
this case Broué’s conjecture holds.

The (p)-abacus Aλ ⊆ {0, . . . , p− 1} ×N0 of a partition λ is defined by (r, s) ∈ Aλ ⇔ ∃i : r+ sp = hi1.
The elements of Aλ can be visualized as beads on a matrix with infinitely many columns. The rows of
this matrix are called runners. Removing a box from the Young diagram of λ is the same as moving a
bead of Aλ up to the previous runner (modulo p). Removing a p-hook slides a bead to the left by one
(in particular this spot must be vacant beforehand). Hence, the abacus of a core has no “holes” and its
first runner is empty.
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Let B be a block of weight w with core µ. Let ai be the number of beads on runner i of Aµ. Suppose
that ai+1−ai ≥ w for some i ∈ {0, . . . , p−2}. Then, interchanging runner i and i+1 yields a core of a
block B̂ of Sn−ai+1+ai which is Morita equivalent to B (Scopes’ reduction). Thus, in order to determine
the Morita equivalence class of B we may assume that ai+1− ai < w for i = 0, . . . , p− 2. Since a0 = 0,
it follows that ai ≤ i(w− 1) for all i. The number of blocks with these restrictions is 1

p

(
wp
p−1

)
. If µ ̸= µ′,

then B is also Morita equivalent to the block B′ of Sn with core µ′ (note that Irr(B′) = sgn Irr(B)).
Therefore the number of Morita equivalence classes of p-blocks of symmetric groups of weight w is at
most

1

2p

(
wp

p− 1

)
+

1

2

(
⌊wp/2⌋
⌊p/2⌋

)
.

If ai = i(w − 1) for i = 0, . . . , p− 1, then B is called RoCK block and

n =
p

24

(
(w − 1)2p(p2 − 1) + 2(w − 1)p2 + 22w + 2

)
.

In the case w < p the RoCK is Morita equivalent to its Brauer correspondent in NSn(D) where D is a
defect group of B. Moreover, B is Morita equivalent to the principal block of Sp ≀ Sw.

Example 5. The Morita equivalence classes of 3-blocks of Sn of weight (defect) 2 are represented by
the principal blocks of S6, S7 and a non-principal block of S11. The cores and abaci are given as follows:

empty abacus/core
0 ·
1 •
2 ·

0 ·
1 ·
2 •

0 · ·
1 • ·
2 • •

4 Decomposition numbers

In general, the number of irreducible Brauer characters of a finite group equals the number of conjugacy
classes of p-regular elements. For Sn this is the number of partitions with no non-zero part divisible by
p. A partition is called p-regular if it has no p parts of the same non-zero length (for p = 2 this means
that all parts are distinct). By Glaisher’s Theorem, also the number of these partitions is the number
of irreducible Brauer characters (for p = 2 this is Euler’s Theorem: the number of partitions with
distinct parts is the number of partitions with odd parts). Starting from an arbitrary partition λ we
construct a p-regular partition λ0 by successively removing p-hooks with arm length 0. For a p-block
B with weight w and core µ the number of irreducible Brauer characters in B equals the number of
p-regular partitions with core µ. We write IBr(B) := {φλ : χλ ∈ Irr(B), λ0 = λ} and

l(B) := |IBr(B)| =
∑

(w1,...,wp−1)∈Np−1
0∑

wi=w

π(w1) . . . π(wp−1).

Unlike in the ordinary case there is no formula for the degrees of Brauer characters. In fact, for p = 2 and
n ≥ 20 (say) these degrees are unknown. We denote the decomposition numbers of B by dλτ := dχλφτ .
If the irreducible characters of B are ordered in such a way that the p-regular partitions in decreasing
lexicographical order come first, then the decomposition matrix (dλτ ) has unitriangular shape.

For partitions λ and µ of n let

tλµ := −
∑

λ\hij(λ)=µ\hkl(µ)

(−1)lij(λ)+lkl(µ)νp(|hij(λ)|)
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where νp is the p-adic valuation. Then the Jantzen-Schaper formula states that

dλτ ≤
∑
µ>λ

tλµdµτ

for λ ̸= τ . Moreover, dλτ = 0 if and only if the right hand side is 0. For blocks of weight at most 3 it
is known that dλτ ≤ 1 and therefore (dλτ ) can be computed recursively.

5 Cartan invariants

We have seen above that k(B) and l(B) only depend on the weight w of a block B of Sn. We therefore
write k(w) := k(B) and l(w) := l(B). The elementary divisors of the Cartan matrix C(B) of B will
also depend solely on w (but C(B) itself depends on more than that). We make use of the generating
function P (x) :=

∑
k≥0 π(k)x

k. A formula of Euler states that

P (x) =
∞∏
k=1

1

1− xk
.

Moreover, if π0(n) is the number of p-regular partitions of n, then∑
n≥0

π0(n)x
n = P (x)P (xp)−1.

The results above can be rephrased as ∑
w≥0

k(w)xw = P (x)p, (5.1)

∑
w≥0

l(w)xw = P (x)p−1. (5.2)

Let m(w) be the multiplicity of 1 as an elementary divisor of C(B). Then∑
w≥0

m(w)xw = P (x)p−2P (xp).

In particular, m(w) > 0 if p > 2 and

m(w) =

{
π(w/2) if w ≡ 0 (mod 2)

0 otherwise

if p = 2. For a partition λ = (λ1, . . .) let

e(λ) =
∑
k≥1

pνp(λk)+1 − 1

p− 1
.

Let πe0(n) be the number of p-regular partitions λ of n such that e(λ) = e. A theorem of Olsson says
that the multiplicity of pe as an elementary divisor of C(B) is

w∑
s=0

m(w − s)πe0(s).

It is also possible to express the multiplicities of lower defect groups of B.
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Example 6. The principal 2-block B of S10 has weight w = 5. We only need the 2-regular partitions
of 1, 3, 5:

λ (1) (2, 1) (3) (3, 2) (4, 1) (5)

e(λ) 1 4 1 4 8 1

Hence, 2e can only occur as elementary divisor if e ∈ {1, 4, 8}. The multiplicity of 28 = |D| is always
1. The multiplicities of 2 and 16 are

m(4)π10(1) +m(2)π10(3) +m(0)π10(5) = 2 + 1 + 1 = 4,

π40(3) + π40(5) = 1 + 1 = 2

respectively. In general, the multiplicity of 2 is π(0) + . . .+ π(k) if w = 2k + 1 and 0 otherwise.

6 Heights

Let n =
∑
aip

i is the p-adic expansion where p is a prime. For any expansion n =
∑
bip

i with
b0, b1, . . . ≥ 0 let

δ(b0, b1, . . .) :=

∑
i bi − ai
p− 1

≥ 0.

Let Ed(n) be the set of those sequences (b0, . . .) such that δ(b0, . . .) = d.

Next let c(n) be the number of p-core partitions of n (= number of blocks of defect 0 of Sn). Set
C(x) :=

∑
n≥0 c(n)x

n. Generalizing (5.1) we define

P (x)s =
∞∑
t=0

k(s, t)xt,

C(x)s =

∞∑
t=0

c(s, t)xt.

Note that if t < p, then c(t) = π(t) and c(s, t) = k(s, t) for all s ≥ 0. Let md(n) be the number of
χ ∈ Irr(Sn) such that χ(1)p = pd. Olsson has shown that

md(n) =
∑

(b0,...)∈Ed(n)

c(1, b0)c(p, b1)c(p
2, b2) . . . .

For d = 0 we have E0(n) = {(a0, . . .)} and this yields MacDonald’s Theorem

m0(n) = k(1, a0)k(p, a1) . . . .

If additionally p = 2, then ai ≤ 1 and m0(n) = 2a0+.... In particular, if n = 2k, then m0(n) = n and the
corresponding characters χλ ∈ Irr(Sn) (of odd degree) are labeled by the hook partitions λ = (s, 1n−s)
for s = 1, . . . , n.

Now let B be a p-block of Sn with weight w and defect d. The height h(χ) ≥ 0 of χ ∈ Irr(B) is defined
by χ(1)pp

d−h(χ) = |Sn|p. Let kh(w) be the number of χ ∈ Irr(B) of height h (depends only on w).
Then

kh(w) =
∑

(b0,...)∈Eh(w)

c(p, b0)c(p
2, b1) . . . .
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Since for n = pw there is only one block of maximal defect in Sn, we recover k0(w) = m0(pw). The
maximal possible height of some χ ∈ Irr(B) is

h =
w −

∑
ai

p− 1

where w =
∑
aip

i is the p-adic expansion. Then kh(w) = c(p, w) since Eh(w) = {(w, 0, . . .)}. For
p = 2 it can happen that kh(w) = 0 (e. g. k3(5) = c(2, 5) = 0). In general, Olsson’s Conjecture
k0(w) ≤ |D : D′| holds where D is a defect group of B.

Example 7. For p = 2 and n = 7 = 1 + 2 + 4 we have (a0, a1, a2) = (1, 1, 1) and

E1(7) = {(3, 0, 1), (1, 3)}, E2(7) = {(3, 2)}, E3(7) = {(5, 1)}, E4(7) = {(7)}.

Moreover,

C(x) = 1 + x+ x3 + x6 + x10 + . . . , C(x)2 = 1 + 2x+ x2 + 2x3 + . . . , C(x)4 = 1 + 4x+ . . .

Consequently,

m0(7) = 21+1+1 = 8,

m1(7) = c(1, 3)c(4, 1) + c(1, 1)c(2, 3) = 4 + 2 = 6,

m2(7) = c(1, 3)c(2, 2) = 1,

m3(7) = c(1, 5)c(2, 1) = 0,

m4(7) = c(1, 7) = 0

7 Alternating groups

A conjugacy class C of An lies in a conjugacy class of Sn and therefore belongs to a partition λ of
n. More precisely, C is not a conjugacy class of Sn if and only if λ has distinct odd parts. In this
case C ∪̇ C(12) is a conjugacy class of Sn. By Sylvester’s Theorem there is a bijection Γ between the
symmetric partitions and the partitions with distinct odd parts:

(λ1, λ2, . . .)
Γ−→ (2λ1 − 1, 2λ2 − 3, . . .)

−→

If λ ̸= λ′, then (χλ)An ∈ Irr(An). Now suppose that λ = λ′ and µ := Γ(λ). Then by Clifford theory,
(χλ)An = ξλ + ξ

(12)
λ for some ξλ ∈ Irr(An) with ξSn

λ = χλ. We fix g ∈ An of type µ. Then for h ∈ An

and ϵ := (−1)
n−l(µ)

2 we have

ξλ(h) =


1
2χλ(h) if h is not of type µ,

1
2

(
ϵ+

√
ϵµ1 . . . µl(µ)

)
if h is conjugate to g in An,

1
2

(
ϵ−√

ϵµ1 . . . µl(µ)
)

if h is conjugate to g(12) in An.
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This allows to compute the character table of An from Irr(Sn).

Similarly, if B is a p-block of Sn with core µ ̸= µ′, then B is isomorphic to a block B′ of An via
restriction. In this case, p > 2 and B and B′ have the same fusion system. Now suppose that B has
core µ = µ′, weight w and defect group D. Then B covers a block B′ of An with defect group D ∩An

and fusion system Awp. If p = 2, every core has the form µ = (a, a − 1, . . . , 1) = µ′. If in addition
w is odd, then every χ ∈ Irr(B) restricts to Irr(B′). Hence, in this case, k(B) = 2k(B′) and the
decomposition matrix of B consists of two copies of the decomposition matrix of B′.

For an odd prime p let p∗ = (−1)
p−1
2 p. Robinson and Thompson have shown that if n ≥ 25, then

Q(An) = Q(
√
p∗ : 3 ≤ p ≤ n prime , p ̸= n− 2).

8 Wreath products

Generalizing the abacus we call any strictly decreasing sequence a = (ai) ∈ Nl
0 a β-set of length

l(a) = l. We often identify β-sets with finite subsets of N0. For s ∈ N0 also

a+s := (a1 + s, . . . , al + s, s− 1, s− 2, . . . , 0)

is a β-set (of length l+s). Any β-set a determines a partition λ := P (a) := (a1−(l−1), a2−(l−2), . . . , al)
(note that a is the set of first column hook lengths of λ). Since P (a) = P (a+s), we may assume that
l(a) ≡ 0 (mod p) in the following. We define a

(p)
i := {b ∈ N0 : bp + i ∈ a} for i = 0, . . . , p − 1

(that is, we look at each runner of the abacus individually). Then the sequence of partitions λ(p) :=
(P (a

(p)
0 ), . . . , P (a

(p)
p−1)) is called the p-quotient of λ. The number

∑
|P (a(p)i )| equals the weight of λ.

Conversely, λ is uniquely determined by its p-core and p-quotient. If µ is the p-core of λ, the p-sign
of λ is defined by δp(λ) = (−1)

∑
li where the li are the leg lengths of the p-hooks removed from λ to

obtain µ.

Example 8. For λ = (5, 4, 12) and p = 2 we obtain

a = (8, 6, 2, 1), (a
(p)
i ) = ({4, 3, 1}, {0}), λ(p) = ((2, 2, 1), ()).

Hence, λ has weight 5 and the p-core is (1).

Let B be a p-block of Sn with weight w. Let Irr(Cp) = {φ1, . . . , φp} and let τ = (τ1, . . . , τp) a tuple
of partitions such that

∑
|τi| = w. The linear characters φ⊗|τi| := φi ⊗ . . . ⊗ φi ∈ Irr(C

|τi|
p ) extend

to Cp ≀ S|τi| and we can define φτi := φ⊗|τi|χτi ∈ Irr(Cp ≀ S|τi|) where χτi ∈ Irr(S|τi|). Finally let
φτ :=

(⊗p
i=1 φτi

)Cp≀Sw ∈ Irr(Cp ≀ Sw). Then Irr(B) → Irr(Cp ≀ Sw), χλ 7→ φλ(p) is a height preserving
bijection.

Now we label the conjugacy classes of Cp ≀Sw where we consider Cp as Z/pZ. For (x1 . . . xw, σ) ∈ Cp ≀Sw
we define a tuple of partitions τ = (τ0, . . . , τp−1) as follows: For every cycle (a1, . . . , as) in σ let
s ∈ τxa1+...+xas

. Then
∑

|τi| = w. Let g1, . . . , gl ∈ Cp ≀ Sw be representatives for the classes of Cp ≀ Sw
corresponding to the partition tuples τ with τ0 = () (note that these elements are non-trivial). Osima
has shown that there exists S ∈ GL(l(B),C) such that

(dχλ,i) = (δp(λ)φλ(p)(gi))S
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where (dχλ,i)λ,i is the decomposition matrix of B. It follows that the so-called contributions of B can
be computed inside the smaller group Cp ≀ Sw. More precisely,

[χλ, χµ]
0 =

1

n!

∑
g∈S0

n

χλ(g)χµ(g
−1) = δp(λ)δp(µ)

l∑
i=1

1

|CCp≀Sw(gi)|
φλ(p)(gi)φµ(p)(g−1

i )

for every χλ, χµ ∈ Irr(B).

9 Double covers and spin blocks

The Schur multiplier M(Sn) := H2(Sn,C×) is trivial for n ≥ 3 and of order 2 for n ≥ 4. For 4 ≤ n ̸= 6
there are two non-isomorphic double covers:

Ŝn := ⟨x1, . . . , xn−1, z | z2 = 1, x2i = (xixi+1)
3 = [xi, xj ] = z for i < j − 1⟩,

S̃n := ⟨x1, . . . , xn−1, z | z2 = 1, x2i = (xixi+1)
3 = 1, [xi, xj ] = z for i < j − 1⟩

(here z is central). The outer automorphism of S6 induces an isomorphism Ŝ6 ∼= S̃6. We regard Irr(Sn)
as a subset of Irr(Ŝn) by inflation. The characters in Irr(Ŝn) \ Irr(Sn) are called spin characters (these
are the faithful characters of Ŝn). They correspond to the projective characters of Sn. The partitions
of n with pairwise distinct parts are called bar partitions (this is the same as 2-regular). For each
bar partition λ = (λ1, . . . , λl) of n we can choose a spin character χ̂λ such that χ̂λ ̸= χ̂µ for λ ̸= µ.
Moreover, χ̂λ = sgn χ̂λ if and only if sgn(λ) = 1 (i. e. n ≡ l (mod 2)). The characters χ̂λ and sgn χ̂λ

(if sgn(λ) = −1) constitute all spin characters.

The shifted Young diagram Ŷλ associated to λ is obtained by shifting the i-th row of the Young diagram
i− 1 boxes to the right (so a staircase emerges on the left). The bar lengths of the i-row of Ŷλ contains
the numbers

{1, . . . , λi} ∪ {λi + λj : j > i} \ {λi − λj : j > i}

in decreasing order (so λi − λj is replaced by λi + λj). The (i, j)-th bar length is denoted by |hij |
(despite shifting, the i-th row still starts with (i, 1)). The actual bars hij can be visualized as follows:
If i + j > l, then hij consists of the last hij boxes in row i of Ŷλ (this is called an unmixed bar). If
i+ j ≤ l, then hij consists of all boxes in rows i and i+ j of Ŷλ (a mixed bar).

Example 9. The shifted Young diagram and the bar lengths for λ = (5, 4, 2, 1) are

9 7 6 5 2
6 5 4 1

2 3
1

The mixed bars correspond to the blue boxes.

The analog to the hook formula is

χ̂λ(1) = 2

[
n−l
2

]
n!∏
|hij |

where [(n− l)/2] is the largest integer not exceeding (n− l)/2. We can remove a bar hij and rearrange
the rows to obtain a new shifted Young diagram corresponding to a bar partition λ \ hij .
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Inclusion gives a one-to-one correspondence between the 2-blocks of Sn and Ŝn. If B ⊆ B̂ are such
2-blocks, then l(B) = l(B̂) and

k(B̂) = k(B) + p(w) + |{λ partition of w : sgn(λ) = −(−1)w}|

where w is the weight of B.

Now let p be an odd prime. Every p-block of Ŝn is a block of Sn or consists entirely of spin characters.
In the latter case we call it a spin block. Bars of size p are called p-bars. Removing all p-bars from a
bar partition λ successively yields the p-core of λ. The number of removed p-bars is the p-weight of
λ (this equals the number of bar lengths divisible by p). Two spin characters lie in the same (spin)
block B̂ if and only if they have the same p-core (Morris conjecture). Moreover, sgn B̂ = B̂. We attach
the p-weight and p-core also to B̂. For weights w > 0, the defect group of B̂ is a Sylow p-subgroup of
Spw (still assuming p > 2). However, for w = 0, the defect is 0 if sgn(λ) = 1 and 1 otherwise (since
sgnλ ∈ B̂). In general, the sign of a spin block with p-core µ is sgn(µ). In contrast to Sn, the number
k(B̂) = k(w, ϵ) of characters in B̂ does not only depend on the p-weight w, but also on the sign ϵ. Let
q := (p− 1)/2 and

∞∑
k=0

α(n, ϵ)xn :=
1

2

(P (x)q+1

P (x2)
+ ϵ

P (x2)3q−3

P (x)q−1P (x4)q−1

)
.

Then k(w, ϵ) = α(w, ϵ)+2α(w,−ϵ). For p = 3 and w > 0, the sign is irrelevant, i. e. k(w, ϵ) = k(w,−ϵ).
For p = 5, we have k(w, (−1)w) + p(w) = k(w,−(−1)w).

The Schur multiplier of An is

M(An) =

{
2 if n = 4, 5, 8, 9, . . .

6 if n = 6, 7

and in each case there exists a unique covering group Ân (since An is perfect). For n ̸= 6, 7 we have
Ân

∼= Ŝ′
n. For n = 6, 7 the covering groups are conveniently defined by GAP as PerfectGroup(2160)

and PerfectGroup(15120) respectively. We may assume n ≥ 8 for the remainder. For an odd bar
partition λ the restriction of χ̂λ to Ân is irreducible. If sgn(λ) = 1, then the restriction is a sum of two
irreducible characters of Ân. Every spin block B̂ of Ŝn of weight w > 0 covers a unique block Â of Ân.
Moreover, k(Â) = k(w,−ϵ) where ϵ is the sign of B̂.
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