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1 Ordinary characters

A partition of n € Ny is a sequence A = (\;);en of non-negative integers such that Ay > Ay > ... and
Al == > ien Ai = n. The non-zero \; are called parts of A, while the A; = 0 are usually omitted. The
number of parts is called the length of A. Every partition A can be visualized with a Young diagram
with A; boxes in the i-th row. By “transposing” the Young diagram (i.e. reflecting on the diagonal)
we obtain the Young diagram of the conjugate partition N = (\,) with X, := [{j : X\; > i}| for i € N.
Obviously, A" = A\. We call A\ symmetric if N = X\. A Young tableau (of \) is a Young diagram (of
A) where every box contains exactly one of the numbers 1,...,n and the numbers in each row are
increasingly ordered.

Example 1. Let A = (4,2,2,1) = (4,22,1) be a partition of n = 9. Then the Young diagram of ), a
Young tableau and the conjugate Young diagram are given by:
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Every conjugacy class of the symmetric group S, consists of the elements with a common cycle type.
Therefore, the conjugacy classes of S,, can be identified with the partitions of n and sgn(\) = (—1)"~"
makes sense for partitions A = (A1,..., ;) of n. The Young tableaux of A are in one-to-one correspon-
dence with the (ordered) partitions Y = (Y1, Ys,...) of the set {1,...,n} such that |Y;| = \; for i € N.
Hence, S,, acts transitively on the set of Young tableaux of A via 9Y = (9Y;) for g € S,,. The stabilizer
of Y is the Young subgroup Sy := [[Sym(Y;) < S, and the permutation character is 1 := (1g, )".
The characters ¥y and sgn ¢y (where sgn is the sign character) have exactly one irreducible constituent
xx- Then yy = sgny) and
Irr(S,,) = {x» : A partition of n}.

Example 2. We have 9,) = ls, = X(n) and x(i») = X(ny = sgn. The Young tableaux of (n —1,1)
can be identified with the numbers 1,...,n. Hence, 9(,_1 1) is the natural (2-transitive) permutation
character of S, and x(,—1,1) = Y(n-1,1) — 1s, for n > 2.

Let A and p be partitions of n. If g € S, has type u, then 1,(g) is the number of ways to distribute
the parts of y onto the parts of A.



Example 3. For A = (5,4) and u = (3,22, 12), we obtain 1(g) = 5 as follows:

Starting with ¥,) = X(») = ls,,, one can compute Irr(S,,) recursively via
A== D X =¢a—1s, — D [¥a XulXu
u>A (n)>p>A

where > denotes the lexicographical order. In fact, x, can only occur in ¢y if u> A, i.e.

S S
Sw=Y N (s=12..)
=1 =1

(dominance order).

The hook h;j(X) = h;j of a box (i, j) of the Young diagram Y of a partition A is the union of the boxes
(,4), (4,7 +1), ... and the boxes (i +1,7), (i+2,7), .... Then |h;;| = X\i + )\3. —1—j+1is the hook
length and the hook length formula holds
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(4,7) box of Y
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Let 5 be the number of k-cycles of some g € S,,. Frobenius’ character formula states that x(g) is the
coefficient of X{‘“XQh21 ... in the polynomial

[Ix = X)) [T+ x5+ ...
1<J k>1

Let [;; := )\9 — i (resp. a;; := Aj — j) be the leg length (resp. arm length). Removing h;; from Y yields
a Young diagram of a partition A\ h;; of n — |h;;|. Equivalently, one can remove the corresponding rim
hook.

Example 4. A Young diagram filled with hook lengths, the hook h1; and its rim hook:
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Next, let g € Sy, of type p and let h € S,,—,, be of type (u1,..., k-1, ftkt1,---). Let Y be the Young
tableau of A. Then the Murnaghan-Nakayama formula states that

xa(g) = Z (—1)" X x\hy (B)-
(4,7) box of Y
|hijl=t

715[2[1]
12
3[1
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The special case pr = 1 is called branching rule

(4,7) box of Y’
|hijl=1



2 Specht modules

Let T7,...,T; be the Young tableaux of a given partition A of n. Note that k = HL;\Z' The Q-vector
space M with basis T1,...,T} is the QS,-permutation module with character 1, as defined above.
Let Y/ be the set partition of {1,...,n} corresponding to the conjugate tableau 7} of A'. The Specht
module S associated with A is the submodule of M generated by the elements

ti:= Y sen(m)"T;  (i=1,....k)

TrESY/
K3

(it is easy to see that ™T; # °T; for 7 # o). It turns out that S* is simple with character yy. In
particular, all irreducible characters of S, can be realized over Z. Therefore, the Frobenius-Schur
indicators are always 1. A basis of S* is given by those t; such that T} is standard, i.e. also the columns
of T; are increasingly ordered. Thus, the hook formula also counts the number of standard Young
tableaux of A.

3 Blocks

Let p be a prime. A p-hook is a hook of length p. Starting from a partition A we can successively
remove all p-hooks from the corresponding Young diagram to obtain the p-core which is a partition
of n — wp where w is the weight of A (this does not depend on the way the hooks are removed).
Characters xx, xu € Irr(S,,) lie in the same p-block if and only if they have the same p-core (Nakayama’s
conjecture). In this way, the p-blocks of S,, can be labeled by p-cores. The weight of a block B is the
weight of any A with x) € Irr(B). Note that conjugate characters (and blocks) have conjugate cores.
The principal block containing 1g, = X(,) corresponds to the core (r) where r € {0,...,p — 1} such
that n = r (mod p). The blocks of weight 0 contain only one irreducible character y) where A is a
core. By the hook formula, [S,|, = xa(1)p. Hence, these are the blocks of p-defect 0. Ono proved
that p-defect 0 characters exist for all n and p > 5. Note that the 2-cores are the staircase partitions
(k,k—1,...,1). In particular, S, has at most one 2-block of weight w and in that case n — 2w = (k;rl)
is a triangular number.

In general, the fusion system of a p-block B of weight w is the fusion system of S}, with respect to its
Sylow p-subgroup P of order p®+lw/pl+- (Legendre’s formula). In particular, P is a defect group of B.
If w=>3 a;p"~"! is the p-adic expansion (i.e. 0 < a;... < p), then P = [[ P where P, := Cp1...21C)
(i copies). Moreover, B is splendid derived equivalent to the principal block of Sy, and

k(B):=Irr(B)| = > w(wi)...w(wp)
(wl,‘..,wp)ENg

S wi=w

where 7(m) is the number of partitions of m € Ny. Obviously, P is abelian if and only if w < p and in
this case Broué’s conjecture holds.

The (p)-abacus Ay C {0,...,p— 1} x Ny of a partition A is defined by (r,s) € Ay < Ji : r+ sp = h;1.
The elements of Ay can be visualized as beads on a matrix with infinitely many columns. The rows of
this matrix are called runners. Removing a box from the Young diagram of A is the same as moving a
bead of Ay up to the previous runner (modulo p). Removing a p-hook slides a bead to the left by one
(in particular this spot must be vacant beforehand). Hence, the abacus of a core has no “holes” and its
first runner is empty.



Let B be a block of weight w with core p. Let a; be the number of beads on runner ¢ of A,. Suppose
that a; 41 —a; > w for some i € {0,...,p—2}. Then, interchanging runner i and ¢+ 1 yields a core of a
block B of Sn—ai41+a; Which is Morita equivalent to B (Scopes’ reduction). Thus, in order to determine
the Morita equivalence class of B we may assume that a;11 —a; < w for i =0,...,p— 2. Since ay = 0,
it follows that a; < i(w — 1) for all 7. The number of blocks with these restrictions is I%(puipl). If u # 4/,
then B is also Morita equivalent to the block B’ of S,, with core p’ (note that Irr(B’) = sgnIrr(B)).
Therefore the number of Morita equivalence classes of p-blocks of symmetric groups of weight w is at

most
1( wp ) +1<pr/2j>
2p\p—1) 2\ |p/2] )
Ifa; =i(w—1)fori=0,...,p—1, then B is called RoCK block and

n= 2% ((w —1)%p(p* — 1) + 2(w — 1)p* + 22w + 2).
In the case w < p the RoCK is Morita equivalent to its Brauer correspondent in Ng, (D) where D is a

defect group of B. Moreover, B is Morita equivalent to the principal block of Sp ¢ Sy,.

Example 5. The Morita equivalence classes of 3-blocks of S,, of weight (defect) 2 are represented by
the principal blocks of Sg, S7 and a non-principal block of S71. The cores and abaci are given as follows:

0 0 0
empty abacus/core 1e [ 1 (1] 1 [ ]
2 2| e 2 ° —

4 Decomposition numbers

In general, the number of irreducible Brauer characters of a finite group equals the number of conjugacy
classes of p-regular elements. For S, this is the number of partitions with no non-zero part divisible by
p. A partition is called p-regular if it has no p parts of the same non-zero length (for p = 2 this means
that all parts are distinct). By Glaisher’s Theorem, also the number of these partitions is the number
of irreducible Brauer characters (for p = 2 this is Fuler’s Theorem: the number of partitions with
distinct parts is the number of partitions with odd parts). Starting from an arbitrary partition A we
construct a p-regular partition A by successively removing p-hooks with arm length 0. For a p-block
B with weight w and core u the number of irreducible Brauer characters in B equals the number of
p-regular partitions with core u. We write IBr(B) := {¢y : xa € Irr(B), A = A} and

I(B) := |IBr(B)| = > m(wi) ... 7w(wp_1).
(wl,...,wp_1)€N7671

w;=w

Unlike in the ordinary case there is no formula for the degrees of Brauer characters. In fact, for p = 2 and
n > 20 (say) these degrees are unknown. We denote the decomposition numbers of B by dy, := dy,, -
If the irreducible characters of B are ordered in such a way that the p-regular partitions in decreasing
lexicographical order come first, then the decomposition matrix (dy,) has unitriangular shape.

For partitions A and p of n let

tap == — Z (_1)ln(>\)+lm(u)yp(|hij()\)|)
A\hij (N)=p\hgr ()



where v, is the p-adic valuation. Then the Jantzen-Schaper formula states that

dAT < Z tkud;u'

u>A

for A # 7. Moreover, dy, = 0 if and only if the right hand side is 0. For blocks of weight at most 3 it
is known that dy, < 1 and therefore (dy,) can be computed recursively.

5 Cartan invariants

We have seen above that k(B) and [(B) only depend on the weight w of a block B of S,,. We therefore
write k(w) := k(B) and [(w) := I(B). The elementary divisors of the Cartan matrix C(B) of B will
also depend solely on w (but C'(B) itself depends on more than that). We make use of the generating
function P(z) := Y oo m(k)z". A formula of Euler states that

P =]

k=1

Moreover, if mg(n) is the number of p-regular partitions of n, then

Z mo(n)az™ = P(x)P(2P) L.

n>0

The results above can be rephrased as

Let m(w) be the multiplicity of 1 as an elementary divisor of C'(B). Then

Z m(w)z? = P(z)P~2P(P).

w>0

In particular, m(w) > 0 if p > 2 and

_Jm(w/2) ifw=0 (mod 2)
m(w) = 0 otherwise

if p = 2. For a partition A = (Ay,...) let

Let 7§(n) be the number of p-regular partitions A of n such that e(\) = e. A theorem of Olsson says
that the multiplicity of p® as an elementary divisor of C(B) is

It is also possible to express the multiplicities of lower defect groups of B.



Example 6. The principal 2-block B of Sig has weight w = 5. We only need the 2-regular partitions

of 1, 3, 5:
A 21 B) 6.2 41 (5
eM|1 4 1 4 g8 1

Hence, 2¢ can only occur as elementary divisor if e € {1,4,8}. The multiplicity of 28 = |D| is always
1. The multiplicities of 2 and 16 are

m(4)mh (1) + m(2)md (3) + m(0)mh(5) =2+ 141 =4,
ma(3)+mg(5) =14+1=2

respectively. In general, the multiplicity of 2 is 7(0) + ... 4+ w(k) if w = 2k 4+ 1 and 0 otherwise.

6 Heights

Let n = Y a;p' is the p-adic expansion where p is a prime. For any expansion n = Y_b;p' with
bo,b1,... >0 let

Yo ibi—ai
L) == > 0.
d(bo, b1, .. .) b1 >0

Let E4(n) be the set of those sequences (by,...) such that §(bg,...) = d.

Next let ¢(n) be the number of p-core partitions of n (= number of blocks of defect 0 of S,,). Set
C(x) == 3,50 c(n)z". Generalizing (5.1)) we define

C(z)° = Z c(s,t)x’.

Note that if ¢ < p, then ¢(t) = 7 (t) and ¢(s,t) = k(s,t) for all s > 0. Let mgy(n) be the number of
x € Irr(S,) such that x(1), = p?. Olsson has shown that

ma(n) = Y e(L,bo)e(p,br)e(p? ba) . ...
(bo,--.)EE4(n)

For d = 0 we have Ey(n) = {(ao,...)} and this yields MacDonald’s Theorem

mo(n) = k(1,a0)k(p,a1)....

If additionally p = 2, then a; < 1 and mg(n) = 2%+ In particular, if n = 2%, then mg(n) = n and the
corresponding characters x» € Irr(S,) (of odd degree) are labeled by the hook partitions A = (s,1"~%)
fors=1,...,n.

Now let B be a p-block of S,, with weight w and defect d. The height h(x) > 0 of x € Irr(B) is defined
by x(1)pp® ") = |S,|,. Let kx(w) be the number of x € Trr(B) of height h (depends only on w).
Then

kp(w) = Z c(p,bo)e(p?,b1) . . ..

(bos...)EER (W)



Since for n = pw there is only one block of maximal defect in S,,, we recover ko(w) = mo(pw). The
maximal possible height of some x € Irr(B) is

h:w—Zai
p—1

where w = > a;p’ is the p-adic expansion. Then ky(w) = c(p,w) since Ej(w) = {(w,0,...)}. For

p = 2 it can happen that kp(w) = 0 (e.g. k3(5) = ¢(2,5) = 0). In general, Olsson’s Conjecture
ko(w) < |D : D’| holds where D is a defect group of B.

Example 7. For p=2and n =7 =1+ 2+ 4 we have (ag,a1,a2) = (1,1,1) and

El(7) = {(3707 1)7 (1’3)}7 E2(7) = {(3’ 2)}7 E3(7) = {(5’ 1)}7 E4(7) = {(7)}

Moreover,
Clx)=14+z+23+24+20+..., C@)P?=1+2c+22+2:3+..., Cl@)=1+4z+...
Consequently,
m0(7) 2 +1+1 _ 8
m1(7) = ¢(1, 3)c(4, 1)—}—0(1 1)c(2,3) =4+2=6
ma(7) = ¢(1,3)e(2,2) =
ms(7) = ¢(1,5)e(2, 1)
m4(7) = 6(1’7)

7 Alternating groups

A conjugacy class C of A, lies in a conjugacy class of S, and therefore belongs to a partition A\ of
n. More precisely, C is not a conjugacy class of S, if and only if A has distinct odd parts. In this
case C'UC(12) is a conjugacy class of S,. By Sylvester’s Theorem there is a bijection I' between the
symmetric partitions and the partitions with distinct odd parts:

)\1,)\2,... 2)\1—1 2)\2

If A # N, then (xa)a, € Irr(A,,). Now suppose that A = X\ and p := I'(\). Then by Clifford theory,
(XA)a, =&+ 5/(\12) for some &) € Irr(4,,) with ff” =y We fix g € A, of type p. Then for h € A,

n=l(p)
and € := (—1) 2 we have

%X)\(h) if h is not of type p,
E(h) = %(e + €1 ..,ul(ﬂ)) if h is conjugate to g in A,
%(e — €T - .,u,l(u)) if h is conjugate to g(1?) in A,,.



This allows to compute the character table of A4, from Irr(S,).

Similarly, if B is a p-block of S, with core u # p/, then B is isomorphic to a block B’ of A, via
restriction. In this case, p > 2 and B and B’ have the same fusion system. Now suppose that B has
core = ', weight w and defect group D. Then B covers a block B’ of A,, with defect group DN A,
and fusion system A,,. If p = 2, every core has the form y = (a,a —1,...,1) = p/. If in addition
w is odd, then every x € Irr(B) restricts to Irr(B’). Hence, in this case, k(B) = 2k(B’) and the
decomposition matrix of B consists of two copies of the decomposition matrix of B’.

For an odd prime p let p* = (—1)112;1 p. Robinson and Thompson have shown that if n > 25, then

Q(An) = Q(v/p* : 3 < p < nprime ,p#n—2).

8 Wreath products

Generalizing the abacus we call any strictly decreasing sequence a = (a;) € Nf) a f-set of length
l(a) = I. We often identify S-sets with finite subsets of Ny. For s € Ny also

at = (a1 +s,...,q1+8,5—1,5—2,...,0)

is a B-set (of length [+s). Any -set a determines a partition A := P(a) := (a1—(I—1),a2—(—2),...,a;)
(note that a is the set of first column hook lengths of \). Since P(a) = P(a™*), we may assume that
l(a) = 0 (mod p) in the following. We define al(.p) ={beNy:bp+ica}fori=0,..,p—1
(that is, we look at each runner of the abacus individually). Then the sequence of partitions AP) =
(P(a(()p)), e ,P(a;p_)l)) is called the p-quotient of A\. The number |P(a§p))| equals the weight of .
Conversely, A is uniquely determined by its p-core and p-quotient. If u is the p-core of A, the p-sign

of X is defined by 6,(\) = (—1)2! where the I; are the leg lengths of the p-hooks removed from A to
obtain p.

Example 8. For A = (5,4,12) and p = 2 we obtain

a = (8767271)7 (agp)) = ({47371}7{0})7 /\(p) = ((2727 1)7())

Hence, A has weight 5 and the p-core is (1).

Let B be a p-block of S,, with weight w. Let Irr(C)p) = {¢1,...,¢p} and let 7 = (71,...,7,) a tuple
of partitions such that 3 |7;| = w. The linear characters 1™ := ¢; @ ... @ p; € Irr(C’I‘,Til) extend
to Cp 1 S}, and we can define ¢, = <P®|Ti|Xn- € Irr(Cp ¢ S)r,) where x;, € Irr(S);,)). Finally let
o= (QF_, QOTi)szSw € Irr(Cp 1 Sw). Then Irr(B) — Irr(Cp 1 Sw), Xa — @@ is a height preserving
bijection.

Now we label the conjugacy classes of C,1.S,, where we consider C), as Z/pZ. For (z1 ...y, 0) € CplSy
we define a tuple of partitions 7 = (79,...,7p—1) as follows: For every cycle (ai,...,as) in o let
8 € Tug, +..+xa, - Lhen Y. |m| = w. Let g1,...,91 € Cp1 Sy be representatives for the classes of Cp 1 Sy,
corresponding to the partition tuples 7 with 79 = () (note that these elements are non-trivial). Osima
has shown that there exists S € GL(I(B), C) such that

(dyy,i) = (Op(N)prw (9i))S



where (dy, i), is the decomposition matrix of B. It follows that the so-called contributions of B can
be computed inside the smaller group C),? S,,. More precisely,

z
Do xul® = Z (g 1) = 8,(N)dp() Z W%m (9:)¢ (9, ")

geSO

for every xx, x, € Irr(B).

9 Double covers and spin blocks

The Schur multiplier M (S,,) := H?(S,,,C*) is trivial for n > 3 and of order 2 for n > 4. For 4 <n # 6
there are two non-isomorphic double covers:

Sy = (21, .. Tno1,2 | 22 = 1,07 = (wmi11)° = [wi,25] = 2 for i < j — 1),

Sy = {21,y tn1, 2 | 22 = 1,07 = (ziwip1)® = 1, [wi, 2] = z for i < j — 1)

(here z is central). The outer automorphism of Sg 1nduces an isomorphism §6 = §6. We regard Irr(S),)
as a subset of Irr(S,,) by inflation. The characters in Irr(S,,) \ Irr(S,) are called spin characters (these
are the faithful characters of S, ). They correspond to the projective characters of S,,. The partitions
of n with pairwise distinct parts are called bar partitions (this is the same as 2-regular). For each
bar partition A = (A1,..., ;) of n we can choose a spin character x such that x # x, for A # p.
Moreover, x) = sgn X, if and only if sgn(A) =1 (i.e. n =1 (mod 2)). The characters x) and sgn x»
(if sgn(A) = —1) constitute all spin characters.

The shifted Young diagram }A/A associated to A is obtained by shifting the i-th row of the Young diagram
i — 1 boxes to the right (so a staircase emerges on the left). The bar lengths of the i-row of Y) contains
the numbers

{1,...,/\1}U{)\i+)\j 2j>i}\{>\i—)\j tj >}
in decreasing order (so A; — A; is replaced by A; + A;). The (4,7)-th bar length is denoted by |h;;|
(despite shifting, the i-th row still starts with (i,1)). The actual bars h;; can be visualized as follows:
If i +j > I, then h;; consists of the last h;; boxes in row i of Y\ (this is called an unmized bar). If
i+ 7 <1, then h;; consists of all boxes in rows i and i + j of Y\ (a mized bar).

Example 9. The shifted Young diagram and the bar lengths for A = (5,4,2,1) are

19]7[6]5[2
615]4]1
203
L
The mixed bars correspond to the blue boxes.
The analog to the hook formula is
n— !
) =2l 2

where [(n —1)/2] is the largest integer not exceeding (n —[)/2. We can remove a bar h” and rearrange
the rows to obtain a new shifted Young diagram corresponding to a bar partition A\ h;;.

\_/



Inclusion gives a one-to-one correspondence between the 2-blocks of .S, and §n If B C B are such

2-blocks, then {(B) = I(B) and
k(B) = k(B) + p(w) + |{\ partition of w : sgn(A) = —(—=1)"}|

where w is the weight of B.

Now let p be an odd prime. Every p-block of §n is a block of S, or consists entirely of spin characters.
In the latter case we call it a spin block. Bars of size p are called p-bars. Removing all p-bars from a
bar partition A successively yields the p-core of A\. The number of removed p-bars is the p-weight of
A (this equals the number of bar lengths divisible by p). Two spin characters lie in the same (spin)
block B if and only if they have the same p-core (Morris conjecture). Moreover, Sgﬂg = B. We attach
the p-weight and p-core also to B. For weights w > 0, the defect group of Bisa Sylow p-subgroup of
Spw (still assuming p > 2). However, for w = 0, the defect is 0 if sgn(A) = 1 and 1 otherwise (since
sgu A € E) In general, the sign of a spin block with p-core p is sgn(p). In contrast to .S, the number
k(B) = k(w,€) of characters in B does not only depend on the p-weight w, but also on the sign €. Let
qg:=(p—1)/2 and

o0

1/ P(z)t! P(z?%)343
Za(n, €)a’ = 5( Jg 3)32 TP x q(1])3 x4 ‘1*1)'
D @) " Py TPG)

Then k(w, €) = a(w, €) +2a(w, —¢). For p = 3 and w > 0, the sign is irrelevant, i.e. k(w, €) = k(w, —¢).
For p = 5, we have k(w, (—1)") + p(w) = k(w, —(—1)").

The Schur multiplier of A, is

M(An) =

2 ifn=4,5.8,9,...
6 ifn=6,7

and in each case there exists a unique covering group A\n (since A, is perfect). For n # 6,7 we have
A, =~ 5’\,’1 For n = 6,7 the covering groups are conveniently defined by GAP as PerfectGroup(2160)
and PerfectGroup(15120) respectively. We may assume n > 8 for the remainder. For an odd bar
partition A the restriction of x to A, is irreducible. If sgn(A) = 1, then the restriction is a sum of two
irreducible characters of A Every spin block B of S of weight w > 0 covers a unique block A of A
Moreover, k(A) = k(w, —e) where € is the sign of B.
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