• Zielgruppen
  • Suche
 

Sorry, keine Person spezifiziert

Sprechstunde

Montags, 15-16 Uhr

Research interests

  • Arrangements of Hyperplanes
  • Simplicial Arrangements
  • Complex reflection groups
  • Representability of matroids
  • Geometric invariant theory
  • Computer algebra

Curriculum Vitae

2001-2007 Mathematikstudium an der Westfälischen Wilhelms-Universtität Münster
2007-2010 wissenschaftlicher Mitarbeiter an der Bergischen Universität Wuppertal
2010-2014 wissenschaftlicher Mitarbeiter an der Ruhr-Universität Bochum
2014- wissenschaftlicher Mitarbeiter an der Leibniz Universität Hannover

Conferences/workshops

Hyperplane Arrangements and Reflection Groups (Hannover, August 2015)
Workshop: New perspectives in hyperplane and reflection arrangements (Bochum, 2014)
Hyperplane Arrangements: combinatorial and geometric aspects (Bochum, 2013)

Scientific Papers

1 Torsten Hoge, Gerhard Röhrle: Nice Reflection Arrangements, submitted (2015)  
2 Torsten Hoge, Gerhard Röhrle, Anne Schauenburg: Inductive and Recursive Freeness of Localizations of Multiarrangements. submitted (2015)
3 Torsten Hoge, Gerhard Röhrle: Addition-Deletion Theorems for Factorizations of Orlik-Solomon Algebras and nice Arrangements. submitted (2014)
4 Michael Cuntz, Torsten Hoge: Free but not recursively free arrangements. Proc. Amer. Math. Soc. 143 (2015), no. 1, 35–40
5 Torsten Hoge, Gerhard Röhrle: Ziegler's multireflection arrangements are free. Exp. Math. 23 (2014), no. 4, 448–451
6 Takuro Abe, Mohamed Barakat, Michael Cuntz, Torsten Hoge, Hiroaki Terao: The freeness of ideal subarrangements of Weyl arrangements. to appear in J. Eur. Math. Soc. (2014)
7 Nils Amend, Torsten Hoge, Gerhard Röhrle: On inductively free restrictions of reflection arrangements. J. Algebra 418 (2014), 197–212
8 Nils Amend, Torsten Hoge, Gerhard Röhrle: Supersolvable restrictions of reflection arrangements. J. Combin. Theory Ser. A 127 (2014)
9 Torsten Hoge, Gerhard Röhrle: Supersolvable reflection arrangements. Proc. Amer. Math. Soc. 142 (2014), no. 11, 3787–3799
10 Torsten Hoge, Gerhard Röhrle: On inductively free reflection arrangements. Journal für die reine und angewandte Mathematik (Crelles Journal). ISSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: 10.1515/crelle-2013-0022, April 2013 (online)
11 Torsten Hoge, Gerhard Röhrle: Reflection arrangements are hereditarily free. Tohoku Math. J. (2) 65 (2013), no. 3, 313–319
12 Torsten Hoge: A presentation of the trace algebra of three $3\times 3$ matrices. J. Algebra 358 (2012), 257–268