Publikationsdetails
On a question of Davenport and diagonal cubic forms over $$\mathbb {F}_q(t)$$
- verfasst von
- Jakob Glas, Leonhard Hochfilzer
- Abstract
Given a non-singular diagonal cubic hypersurface X⊂Pn-1 over Fq(t) with char(Fq)≠3, we show that the number of rational points of height at most |P| is O(|P|3+ε) for n=6 and O(|P|2+ε) for n=4. In fact, if n=4 and char(Fq)>3 we prove that the number of rational points away from any rational line contained in X is bounded by O(|P|3/2+ε). From the result in 6 variables we deduce weak approximation for diagonal cubic hypersurfaces for n≥7 over Fq(t) when char(Fq)>3 and handle Waring’s problem for cubes in 7 variables over Fq(t) when char(Fq)≠3. Our results answer a question of Davenport regarding the number of solutions of bounded height to x13+x23+x33=x43+x53+x63 with xi∈Fq[t].
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Pennsylvania State University
- Typ
- Artikel
- Journal
- Mathematische Annalen
- Band
- 391
- Seiten
- 5485–5533
- Anzahl der Seiten
- 49
- ISSN
- 0025-5831
- Publikationsdatum
- 04.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1007/s00208-024-03035-z (Zugang:
Offen)