Publikationsdetails
Calculating entries of unitary 𝑆𝐿𝟹-friezes
- verfasst von
- Lucas Surmann
- Abstract
In this article we consider tame $ SL_3 $-friezes that arise by specializing a cluster of Pl\"ucker variables in the coordinate ring of the Grassmannian $ \mathscr{G}(3,n) $ to $ 1 $. We show how to calculate arbitrary entries of such friezes from the cluster in question. Let $ \mathscr{F} $ be such a cluster. We study the set $ \mathscr{F}_x $ of cluster variables in $ \mathscr{F} $ that share a given index $ x $ and derive a structure Theorem for $ \mathscr{F}_x $. These sets prove central to calculating the first and last non-trivial rows of the frieze. After that, simple recursive formulas can be used to calculate all remaining entries.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Journal of Combinatorial Algebra
- ISSN
- 2415-6302
- Publikationsdatum
- 11.03.2025
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- Fachgebiet (basierend auf ÖFOS 2012)
- Kombinatorik, Algebra, Graphentheorie
- Elektronische Version(en)
-
https://doi.org/10.4171/JCA/111 (Zugang:
Offen)
https://doi.org/10.48550/arXiv.2404.09811 (Zugang: Offen)