Publikationsdetails
Rational points on X0(N)∗ when N is non-squarefree
- verfasst von
- Sachi Hashimoto, Timo Keller, Samuel Le Fourn
- Abstract
Let $N$ be a non-squarefree integer such that the quotient $X_0(N)^*$ of the modular curve $X_0(N)$ by the full group of Atkin-Lehner involutions has positive genus. We establish an integrality result for the $j$-invariants of non-cuspidal rational points on $X_0(N)^*$, representing a significant step toward resolving a key subcase of Elkies' conjecture. To this end, we prove the existence of rank-zero quotients of certain modular Jacobians $J_0(pq)$. Furthermore, we provide a conjecturally complete classification of the rational points on $X_0(N)^*$ of genus $1 \leq g \leq 5$. In the process we identify exceptional rational points on $X_0(147)^*$ and $X_0(75)^*$ which were not known before.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Preprint
- Publikationsdatum
- 01.05.2025
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2505.00680 (Zugang:
Offen)